用户名: 密码: 验证码:
TiO_2及稀土掺杂TiO_2基材料的结构和光学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体发光器件在各个领域都有广泛的应用。随着GaN等宽带隙半导体蓝光发光器件的研制成功,宽带隙半导体发光材料越来越受到重视。氧化钛(TiO_2)是一种宽带隙半导体材料,在发光材料、太阳能电池、光催化、自旋电子学等领域有广泛的应用前景。本文以TiO_2为基质,采用电纺丝法制备了TiO_2及Eu~(3+)离子掺杂的TiO_2纳米纤维,用溶胶-凝胶法制备了Eu~(3+)离子掺杂的TiO_2-SiO_2复合粉末及薄膜和Er~(3+)离子掺杂的TiO_2-SiO_2复合薄膜。利用场发射扫描电镜(FE-SEM)、透射电镜(TEM)、X射线衍射(XRD)、Raman、傅里叶红外(FT-IR)、紫外可见分光光度计(UV-Vis)等现代分析技术,对发光材料的结构进行了表征,用光致发光激发谱(PLE)和光致发光发射谱(PL)研究了材料的发光性质与影响因素及发光机理。主要工作有以下几个方面:
     1.用电纺丝法制备了TiO_2的纳米纤维并研究了退火温度对材料的形貌、结构和发光性能的影响。随着退火温度的升高,得到的纳米纤维的表面由光滑变得粗糙,纤维的直径由70nm左右减小到40nm左右,TiO_2纳米纤维逐渐由锐钛矿相转变成金红石相。观察到400℃下退火样品的550nm处自俘获激子的辐射复合发光,峰的强度随着退火温度的升高而减小,同时发现在600℃和800℃下退火的纳米纤维在近红外820nm处的发光峰是由于Ti~(3+)离子的缺陷态引起的,峰的强度随着退火温度的升高而增强,说明不同相结构的TiO_2辐射复合中心不同。
     2.用电纺丝法了Eu~(3+)离子掺杂的TiO_2纳米纤维并研究了纳米纤维的发光性质。样品能产生很强的红色发光。Eu~(3+)离子的发光强度随着其掺杂浓度的升高是先增大后减弱,Eu~(3+)离子浓度达到3mol%时发光强度最强,而高于3mol%时发光的强度减弱,这叫做浓度猝灭效应。又研究了退火温度对纳米纤维发光的影响,600℃为最佳退火温度。而对于TiO_2纳米纤维自身结构相关的近红外820nm处的发光,掺Eu~(3+)离子的样品比纯的样品发光强度有明显的增强,这是在荧光的激发和发射过程中出现了能量转移,退火温度低的时候,是TiO_2基底的能量传递给Eu~(3+)离子,增强稀土的发光。随着退火温度的升高,Eu~(3+)离子的跃迁能量背传递给TiO_2基质,导致820nm的发光峰的强度增强。
     3.用溶胶-凝胶法制备了Eu~(3+)离子掺杂的TiO_2-SiO_2复合纳米粉末并研究了退火温度和复合粉末中的TiO_2浓度对样品光致发光的影响。报道了复合粉末样品在室温下的激发谱和发射谱。对于不同温度退火的样品,在温度低于900℃的时候,发光强度随着退火温度的升高而增强,当退火温度超过900℃时,发光强度逐渐减弱,当退火温度超过900℃的时候,引起了Eu~(3+)离子的移动,使Eu~(3+)离子之间的距离缩短,导致更快的离子间能量传递,增加了非辐射复合的能量损耗,最终表现出发光强度的减弱;对于不同TiO_2浓度的样品,随着TiO_2浓度的增加,Eu~(3+)离子的发光显著增强。当TiO_2浓度达到80%时,Eu~(3+)离子的发光最强,当摩尔浓度大于80%时,Eu~(3+)离子的浓度减弱,这是由于Eu~(3+)离子溶解度是有限的,所以当TiO_2的浓度达到80%,Eu~(3+)离子的溶解度达到了饱和,而当TiO_2的浓度继续增加时,Eu~(3+)离子的溶解度将减小,导致Eu~(3+)离子的聚集形成了团簇,表现出发光强度的降低。
     4.用溶胶-凝胶法制备了Eu~(3+)离子掺杂的TiO_2-SiO_2复合薄膜并研究了退火温度对复合薄膜的光致发光的影响。在退火温度为700℃的时候,Eu~(3+)离子引起的发光强度是最强的,而随着退火温度的升高由TiO_2本身的Ti~(3+)离子缺陷能级引起的在近红外820nm处的发光峰的强度变得越来越强,一方面是因为随着退火温度的升高Ti~(3+)离子增多,即缺陷能级数量增多,另一方面是Eu~(3+)离子的能量背传递给Ti~(3+)离子缺陷能级,这两个原因导致820nm处的发光峰强度随退火温度而增强。
     5.用溶胶-凝胶法制备了Er~(3+)离子掺杂的TiO_2-SiO_2复合薄膜并研究了退火温度和Ti/Si比例变化对复合薄膜的光致发光的影响。在523nm、545nm的绿光发射对应于Er~(3+)离子4f层内的~2H_(11/2)-~4I_(15/2)和~4S_(3/2)~~4I_(15/2)的跃迁,在660nm的红光发射对应于Er~(3+)离子~4F_(9/2)-~4I_(15/2)的跃迁。随着Ti/Si比例的增加,Er~(3+)离子的发光强度逐渐增强,且Er~(3+)离子的发光峰出现了劈裂,这可能是由于Er~(3+)离子周围局域环境的变化引起的。随着退火温度的升高,Er~(3+)离子的发光强度增强,峰的劈裂也越来越明显,并没有发现浓度和温度猝灭效应,可能是因为Er~(3+)离子不同的基质材料中的溶解度不同造成的。
Semiconductors light emitting devices are widely used in many fields. The widebandgap semiconductors light emitting materials have been paid more and moreattention since GaN light emitting devices were successfully developed. TiO_2, as widebandgap semiconductors has potential applications in the fields of light-emittingmaterials, solar cells, photocatalysis, and spin electronics. In this work, TiO_2 was usedas matrix, TiO_2 and Eu~(3+) ions doped TiO_2 nanofibers were prepared byelectrospinning method. Eu~(3+) ions doped TiO_2-SiO_2 composite powders and thin filmsas well as Er~(3+) ions doped TiO_2-SiO_2 composite thin films were fabricated by sol-gelmethod. Modern analysis techniques including FE-SEM, TEM, XRD, Raman, FT-IRand UV-Vis were used to investigate the characteristics of these materials. The factorsinfluencing on the luminescence properties and the luminescence mechanisms of thematerials were studied by photoluminescence (PL) and photoluminescence excitation(PLE) spectra. The main results of the research work are as follows:
     1. TiO_2 nanofibers were fabricated by electrospinning and the effect of annealingtemperature on the morphology, structure and PL properties of the nanofibers wasinvestigated. With increasing of the annealing temperature, the average diameters ofthe nanofibers changed from 70nm to 40nm, the surface of nanofibers became muchrougher and the crystalline phase transformed from anatase to rutile. The nanofibersannealed at 400℃show a visible emission at 550nm, which was attributed to theradiative recombination of self-trapped excitons. The intensity of the visible peakdecreased with the increase of annealing temperature. The nanofibers annealed at 600℃and 800℃show an infrared emission at 820nm which was attributed to thedefect states associated with Ti~(3+) ions. The intensity of the infrared peak increased asthe annealing temperature increases. These results indicate that for the differentphases, the different defect centers act as radiative and non-radiative centers.
     2. Eu~(3+) ions doped TiO_2 nanofibers were obtained by electrospinning method andtheir PL properties were investigated. The PL spectra of the materials showed strong red emission. PL intensity in visible range due to Eu~(3+) ions increased at first but thendecreased as the concentration of Eu~(3+) ions increases. And it reached maximum whenthe concentration of Eu~(3+) ions was 3mol%. This is called concentration quench effect.The annealing temperature effect on the PL properties of the nanofibers was alsostudied. The intensity of visible emission due to Eu~(3+) ions reached maximum whenthe annealing temperature was 600℃. The PL intensity due to defect statesassociated with Ti~(3+) ions of host TiO_2 appeared at 820nm and was stronger thanundoped nanofibers. There was an existence of energy transfer between the TiO_2 hostand Eu~(3+) ions. When the annealing temperature was lower, the energy transferoccured from TiO_2 host to Eu~(3+) ions, and led to the increase of the visible emission.The energy back transfer from Eu~(3+) ions to defect level associated with Ti~(3+) ionsdominanted the emissions at higher annealing temperature and led to the increase ofinfrared 820nm emission.
     3. Eu~(3+) ions doped TiO_2-SiO_2 composite powders were prepared by sol-gelmethod and the effects of annealing temperature and the TiO_2 content on the PLproperties of the powders were investigated. The PL spectra and PLE spectra wererecorded at room temperature. With the increasing of annealing temperature, theintensity of the PL increased initially (up to 900℃). When the annealing temperatureis above 900℃, decreased PL intensity can be observed. With the annealingtemperature increasing, the spatial separation between Eu~(3+) ions becomes smaller andcross-relaxation rate is higher, which increased the probability of the nonradiative ofthe optically active ions to the ground electronic state. Therefore, the fluorescenceintensity decreased at higher annealing temperature. For the samples with differentTiO_2 concentrations, the intensity of the Eu~(3+) emission increased with TiO_2concentration (up to 80%). After the TiO2 concentration was above 80%, the intensityof the Eu~(3+) ions emission decreased. These results indicated that the solubility of Eu~(3+)in TiO_2-SiO_2 was limited and the TiO_2 concentration of 80% was the saturation. Whenthe TiO_2 concentration was above 80%, the Eu~(3+) ions formed aggregates and clusterswhich was responsible for the decrease of the PL intensity.
     4. Eu~(3+) ions doped TiO_2-SiO_2 composite thin films with different annealing temperature were fabricated by sol-gel method. The intensity of visible emission dueto Eu~(3+) ions reached maximum when annealing temperature was at 700℃. Theintensity of the infrared emission at 820nm due to the defect states associated withTi~(3+) ions increased with the increase of annealing temperature. On the one hand, thenumber of Ti~(3+) ions increased with the increased annealing temperature, which causedthe increasing of defect levels; on the other hand, the energy back transfer from Eu~(3+)ions to defect level associated with Ti~(3+) ions. These two facts lead to the increase ofthe emission intensity at 820nm with the increase of annealing temperature.
     5. Er~(3+) doped TiO_2-SiO_2 composite thin films were fabricated by sol-gel methodand the effects of annealing temperature and the ratio of Ti and Si atoms on the PLproperties of the thin films were investigated. Three luminescence bands could bedetected at 523, 545 and 660nm in visible region which corresponded to the intra-4ftransitions of ~2H_(11/2) -~4I_(15/2), ~4S_(3/2)-~4I_(15/2), and ~4F_(9/2)-~4I_(15/2), respectively. The intensity of theemission bands at visible region due to Er~(3+) ions increased with the increaseof of Ti/Si, and the peaks split into several subpeaks superimposed on the bands at 523, 545and 660nm. This splitting could be attributed to the transition between the Starksublevels of the upper states (~2H_(11/2), ~4S_(3/2), ~4F_(9/2)) and the ground state ~4I_(15/2), due to thecrystalline environment of the rare earth. With the increase of annealing temperature,the intensity of emission bands at visible region increased and the splitting of theemission bands became more obviously. Neither temperature quenching effect norconcentration quench effect was found here, which could be due to that Er~(3+) ions haddifferent solubility in different host materials.
引文
[1]. A. Fujishima and K. Honda, Nature 238 (1972) 37.
    [2]. S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn and P. Schmuki, Nano. Lett. 7 (2007) 1286.
    [3]. A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia and P. G. Bruce, Adv. Mater. 17 (2005) 862.
    [4]. B O'Regan and M. Gratzel, Nature 353 (1991) 737.
    [5]. O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, C. Dickey and C. A. Grimes, Adv. Mater. 5 (2003) 624.
    [6]. G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee and C. A. Grimes, J. Mater. Res. 18 (2003) 2588.
    [7]. D. Wang, D. Choi, Z. Yang, V. V. Viswanathan, Z. Nie, C. Wang, Y. Song, J. Zhang and J. Liu, Chem. Mater. 20 (2008) 3435.
    [8]. J. Xu, C. Jia, B. Cao and W. Zhang, Electrchim. Acta. 52 (2007) 8044.
    [9]. Z. Guan, X. Zhang, Y. Ma, Y. Cao and J. Yao, J. Mater. Res. 16 (2001) 907.
    [10]. T. Mazza, E. Barborini, I. N. Kholmanov, P. Piseri, G. Bongiomo, S. Vinati and P. Milani, Appl. Phys. Lett. 87 (2005) 103108.
    [11]. M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, D. Y. Kim, Nanotechnology 15 92004) 1861.
    [12]. P. ball, Nature 377 (1995) 290.
    [13]. S. Chuangchote, T. Sagawa and S. Yoshikawa, Appl. Phys. Lett. 93 (2008) 033310.
    [14]. Y. Kijitori, M. Ikegami and T. Miyasaka, Chem. Lett. 36 (2007) 190.
    [15]. S. Ito, N. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin and M. Gratzel, Chem. Commun. (Cambridge) 2006, 4004.
    [16]. C. J. Lin, W. Y. Yu and S. H. Chien, Appl. Phys. Lett. 93 (2008) 133107.
    [17]. A. S. Zuruzi, A. Kolmakov, N. C. Macdonald and M. Moskovits, Appl. Phys. Lett. 88 (2006) 102904.
    [18].何平,赵红东,潘国峰,一种便携式TiO_2薄膜乙醇气敏传感器的研制,传感器学报,2007年第20卷第07期,1471-1474.
    [19]. S. Passinger, M. S. Saifullah, C. Reinhardt, K. R. Subramanian, B. N. Chichkov and M. E. Welland, Adv. Mater. 19 (2007) 1218.
    [20]. H. Masai, T. Fujiwara, H. Mori and T. Komatsu, Appl. Phys. Lett. 90 (2007) 081907.
    [21]. W. M. Jadwisienczak, H. J. Lozykowski, F. Perjeru, H. Chen, M. Kordesch and G. Brown, Appl. Phys. Lett. 76 (2000) 3376.
    [22]. H. Y. Peng, C. W. Lee, H. Q. Everitt, D. S. Lee, A. J. Steckl and J. M. Zavada, Appl. Phys. Lett. 86 (2005) 051110.
    [23]. G. Ehrhart, M. Bouazaoui, B. Capoen, V. Ferreiro, R. Mahiou, O. Robe and S. Turrell, Opt. Mater. 29 (2007) 1723.
    [24]. A. Vadivel Murugan, Annamraju Kasi Viswanath, V. Ravi, Bhalchandra A. Kakade and V. Saaminathan, Appl. Phys. Lett. 89 (2006) 123120.
    
    [25]. Heesun Yang, Hyeokjin Lee and Paul H. Holloway, Nanotechnology 16 (2005)2794.
    
    [26]. Jiangtao Chen, Jun Wang, Fei Zhang, De Yan, Guangan Zhang, Renfu Zhuo and Pengxun Yan, J. Phys. D: Appl. Phys. 10 (2008) 105306.
    
    [27]. E. Nogales, B.Mendez, J. Piqueras and J. A. Garcia, Nanotechnology 20 (2009)15201.
    
    [28]. Soung Soo Yi, Jong Seong bae, Byung Kee Moon, Jung Hyun Jeong and Jung Hwan Kim, Opt. Mater. 28 (2006) 610.
    
    [29]. A. Conde-Callardo, M. Garcia-Rocha and I. Hemandez-Calderom, Appl. Phys.Lett. 78 (2001) 3436.
    
    [30]. I. Z. Grodz, W. Mista, W. Strek, E. Bukowska, K. Hermanowicz, and K.maruszewski, Opt. Mater. 26 (2004) 207.
    
    [31]. Hongpeng You and Masayuki Nogami, J. Phys. Chem. B 108 (2004) 12003.
    
    [32]. J. Desilvestro, M. Gratzle, L. Kaven and J. Moser, J. Am. Chem. Soc. 107 (1985)2988.
    
    [33]. V. Kozhukharov, P. Vitanov, P. Stefchev, J. Environ. Prot. Eco. 2 (2001) 107.
    
    [34]. Amy L. Linsebigler, Guangquan Lu and John T. Yates, Chem. Rev. 95 (1995)735.
    
    [35]. J. P. Wilcoxon, Photocatalysis Using Semiconductor Nanoclusters. In Advanced Catalytic Materials; Materials Research Society Symposium Proceedings, Boston,MA, 1998.Nov 30-Dec 3.
    
    [36]. X. Bokhimi, A. Morales, M. Aguilar, J. A. Toledo-Antonio and F. Pedraza, Int. J.Hydrogen Energ. 26 (2001) 1279.
    
    [37]. D. W. Kim, N. Enomoto, Z. Nakagawa, J. Am. Ceram. Soc. 79 (1996) 1095.
    
    [38]. M. Gotic, M. Ivanda, A. Sekulic, S. Music, S. Popovic, A. Turkovic, K. Furic,Mater. Lett. 12(1996)225.
    
    [39]. M. Gratzel, Heterogeneous Photochemical Electron Transfer, CRC Press, Baton Rouge, FL, 1988.
    
    [40]. C. F. Chu, F. Lai, J. T. Chu, C. C. Yu, C. F. Lin, H. C. Kuo and S. C. Wang, J. Appl. Phys. 95 (2004) 3916.
    [41]. D. Zhang, Z. C. Liu and X. D. Hu, Semicond. Sci. Technol. 24 (2009) 045003.
    [42]. Y. W. Cheng, H. H. Chen, M. Y. Ke, C. P. Chen and J. J. Huang, Opt. Commun. 282 (2009) 835.
    [43]. E. D. Haberer, R. Sharma, C. Meier, A. R. Stonas, S. Nakamura, S. P. DenBaars and E. L. Hu, Appl. Phys. Lett. 85 (2004) 5179.
    [44]. U. Ozgur, Y. I. Alivov, C. Liu, A. Yeke, M. A. Reshchikov, S.Dogan, V. Avrutin, S. J. Cho and H. Morkog, J. Appl. Phys. 98 (2005) 041301.
    [45]. C. Klingshim, ChemPhysChem 8 (2007) 782.
    [46]. F. Verbakel, Stefan C. J. Meskers and Rene A. J. Janssen, Appl. Phys. Lett. 89 (2006) 102103.
    [47].刘恩科等,半导体物理学,西安交通大学出版社,1998
    [48].沈学础,半导体光谱和发光性质,科学出版社,2002
    [49].孙家跃等,固体发光材料,化学工业出版社,2003
    [50].徐叙榕,苏勉曾,发光血和发光材料,化学工业出版社,2004
    [51].贺德衍等译,半导体材料物理基础,兰大出版社,2002
    [52].韩万书.中国固体无机化学十年进展.北京:高等教育出版社,1998.
    [53].苏锵,刘仁行.稀土发光及激光材料.北京:冶金出版社,1995.
    [54].李建宇 稀土发光材料及其应用.北京:化学工业出版社,2003.
    [55]. G. Blasse and B. C. Grabmaier, Luminescent materials, Springer-Verlag, Berlin Heidelberg, 1994.
    [56]. M. J. Dejneka, A. Streltsov, S. Pal, A. G. Frutos, C. L. Powell, K. Yost, P. K. Yuen, U. Muller and J. Lahiri, PNAS 100 (2003) 389.
    [57].张思远,毕宪章,稀土光谱理论.吉林科学出版社,1991.
    [58]. G. Blasse, The Influence of Charge-Transfer and Rydberg states on the luminescence properties. Spring- Verlag, Berlin Heidelberg New York, 1975.
    [59]. H. Hu and W. H. Zhang, Opt. Mater. 28 (2006) 536.
    [60]. X. S. Zhang, X. Y. Dong, L. Li, Z. Wang, Y. G. Liu, D. Q. Dong, Y. F. Zhang and G. Y. Kai, Proc. SPIE 6782 (2007) 67822J.
    [61]. T. R Tang, Ceram. Int. 33 (2007) 1251.
    [62]. H. Y. Peng, C. W. Lee, H. O. Everitt, D. S. Lee, A. J. Steckl and J. M. Zavada,Appl. Phys. Lett. 86 (2005) 051110.
    
    [63]. H. Mendel, S. B. Aldaber genova, R. Weingartner, G Frank, H. P. Strunk and A.A. Andreev, Opt. Mater. 28 (2006) 794.
    
    [64]. F. S. Liu, W. J. Ma, Q. J. Liu, J. K. Liang, J. Luo, L. T. Yang, G. B. Song, Y.Zhang and G H. Rao, Appl. Surf. Sci. 245 (2005) 391.
    
    [65]. S. Ray, P. Pramanik, A. Singha and A. Roy, J. Appl. Phys. 97 (2005) 094312.
    
    [66]. N. Rakov, G S. Maciel, W. B. Lozano and C. B. De Araujo, Appl. Phys. Lett. 88(2006)081908.
    
    [67]. N. Wang, H. Lin, J. B. Li, X. Z. Yang and L. Z. Zhang, J. Lumin. 122-123 (2007)889.
    
    [68]. R. L. Bell, J. Appl. Phys. 34 (1963) 1563.
    
    [69]. H. Ennen, J. Schneider, G. Pomrenke and A. Axmann, Appl. Phys. Lett. 43(1983)943.
    [1]. A. Sandell, M. P. Anderson, Y. Alfredsson, M. K.-J. Johansson, J. Schnadt, H. Rensmo, H. Siegbahn and P. Uvdal, J. Appl. Phys. 92 (2002) 3381.
    [2]. M. Kawachi, M. Yasu, T. Edahiro, Electron. Lett. 19 (1983) 583.
    [3]. M. K. Lee, H. C. Lee and C. M. Hsu, Mat. Sci. Semicon. Proc. 10 (2007) 61.
    [4]. B. Lin, T. Li, Y. Zhao, F. K. Huang, L. Guo and Y. Q. Feng, J. Chromatogra. A 1192 (2008) 95.
    [5]. T. Rattanavoravipa, T. Sagawa and S. Yoshikawa, Sol. Energ. Mat. Sol. C. 92 (2008) 1445.
    [6]. G. H. Li, S. Ciston, Z. V. Saponjic, L. Chen, N. M. Dimitrijevic, T. Rajh and K. A. Gray, J. Catal. 253 (2008) 105.
    [7]. P. K. Surolia, M. A. Lazar, R. J. Tayade and R. V. Jasra, Ind. Eng. Chem. Res. 47 (2008) 5847.
    [8]. A. V. Murugan, V. Samuel and V. Ravi, Mater. Lett. 60 (2006) 479.
    [9]. X. Zhao, M. H. Liu and Y. F. Zhu, Thin Solid Films 515 (2007) 7127.
    [10]. Y. M. Sung and H. J. Kim, Thin Solid Films 515 (2005) 4996.
    [11]. K. Prabakar, T. Takahashi, T. Nezuka, K. Takahashi, T. Nakashima, Y. Kubota and A. Fujishima, Renew. Energ. 33 (2008) 277.
    [12]. H. Kikuchi, M. Kitano, M. Takeuchi, M. Matsuoka, M. Anpo and P. V. Kamat, J. Phys. Chem. B 110 (2006) 5537.
    [13]. Y. D. Wang, A. N. Zhou, Z. Y. Yang, Mater. Lett. 62 (2008) 1930.
    [14]. M. S. Lee, S. S. Park, G. D. Lee, C. S. Ju and S. S. Hong, Catal. Today 101 (2005) 283.
    [15].郑欣.用改进的扩散火焰反应起受控合成纳米TiO_2颗粒.稀有金属快报,2002(5):21.
    [16]. K. K. Akurati, A. Vital, G. Fortunato, R. Hany, E Nueesch and T. Graule, Solid State Sci. 9 (2007) 247.
    [17]. X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon 44 (2006) 325.
    [18]. A. Monoy, A. Brevet, L. Imhoff, B. Domenichini, E. Leseiewaka, P. M. Peterle, M. C. Marco de Lucas and S. Bourgeois, Thin Solid Films 515 (2006) 697
    [19]. K. Shalini, S. Chandrasekaran and S. A. Shivashankar, Journal of Cryst. Growth 284 (2005) 388.
    [20]. R. Roy, Science 238 (1987) 1664.
    [21]. T. Schuler, T. Krajewski, L. Grobelsek and M. A. Aegerter, Thin Solid Films 502 (2006) 67.
    [22]. Y. Wang, Q. H. Jiang, H. C. He and C. W. Nan, Appl. Phys. Lett. 88 (2006) 142503.
    [23]. A. A. Ansari, P. R. Solanki and B. D. Malhotra, Appl. Phys. Lett. 92 (2008)263901.
    [24]. Q. P. Pham, U. Sharma, A. G. Mikos, Tissue Engineering 12 (2006) 1197.
    [25]. O. O. Dosunmu, G. G. Chase, W. Kakaphinan and D. H. Reneker, Nanotechnology 17 (2006) 1123.
    [26]. S. H. Tan, R. Inai, M. Kotaki and S. Ramakrishna, Polymer 46 (2005) 6128.
    [27]. B. K. Gu, M. K. Shin, K. W. Sohn, S. I. Kim, S. J. Kim, S. K. Kim, H Lee and J. S. Park, Appl. Phys. Lett. 90 (2007) 263907.
    [28]. Li Dan, McCann Jesse T., Xia Younan, Marquez Manuel, J. Am. Ceram. Soc. 89 (2006) 1861.
    [29]. M. Graeser, M. Bognitzki, W. Massa, C. Pietzonka, A. Greiner and J. H. Wendorff, Adv. Mater. 19 (2007) 4244.
    [30]. Rainer Ostermann, Dan Li, Yadong Yin, Jesse T. McCann and Younan Xia, Nano Lett. 6 (2006) 1297.
    [31]. P. K. Panda and S. Ramakrishna, J. Mater. Sci. 42 (2007) 2189.
    [32].郑伟涛等,薄膜材料与薄膜技术北京:化工出版社,2003.
    [33].左演声,陈文哲,梁伟,材料现代分析方法 北京工业大学出版社,2000.
    [34]. (a) M.Ebelmen, Ann. Chimie Phys. 16 (1846) 129; (b) M.Ebelmen, C. R. Acad, Sci. 25 (1847) 854.
    [35]. T. Graham, J. Chem. Soc. 17 (1864) 318.
    [36]. R. Roy, J. Am. Ceram. Soc. 39 (1956) 145-146.
    [37]. Dilich Angew, Chem Int Ed Engl.10 (1971) 363.
    [38]. L. Kocon, F. Despetis, J. Phalippou J. Non-cryst. Solids 225 (1998) 96.
    [39]. K. Kim, K. Y. Jang, R. S. Upadlhye, J. Am. Ceram. Soc. 74 (1991) 1987.
    [40]. R. Caps and J. Fricke, Sol. Energy 26 (1986) 361.
    [41]. B. E. Yoldas, J. Am. Ceram. Soc. 65 (387) 1982.
    [42]. John D. Mackenzie and Eric P. Bescher, Acc. Chem. Res. 40 (2007) 810.
    [43]. M. Yamane, S. Inoue and A. Yasymori, J. Non-Cryst. Solids 63 (1984) 13.
    [44]. M. W. Colby, A. Osaka and J. D. MacKenzie, J. Non-Cryst. Solids 82 (1986)37.
    [45]. M. Nogami and Y. Moriya, J. Non-Cryst. Solids 37 (1980) 191.
    [46]. C. J. Brinker and G. W. Scherer, Sol-Gel science, Academic Press: New York,1989.
    [47]. R. K. Dwivedi, J. Mater. Sci. Lett. 5 (1986) 373.
    [48]. G. W. Scherer, J. Non-Cryst. Solids 87 (1986) 199.
    [49]. X. Wang, Y. Kim, B. Ku, J. Kumar and L. A. Samuelson, Polym. Mater. Sci. Eng. 88 (2003) 35.
    
    [50]. M. Seo, Y. Akutsu and H. Kagemoto, Ceram. Int. 33 (2007) 625.
    
    [51]. R. E. Marotti, C. D. Bojorge, E. Broitman, H. R. Canepa, J. A. Dalchiele and A.J. Gellman, Thin Solid Films 517 (2008) 1077.
    
    [52]. M. C. Ferrara, D. Altamura, M. Schioppa, L. Tapfer, E. Nichelatti, L. Pilloni and M. Montecchi, J. Phys. D: Appl. Phys. 41 (2008) 225408.
    
    [53]. Y. G. Cao, L. Miao, S. Tanemura, M. Tanemura, Y. Kuno and Y. Hayashi, Appl.Phys. Lett. 88(2006)251116.
    
    [54]. S. Y. Lee and B. O. Park, Thin Solid Films 516 (2008) 3862.
    
    [55]. K. H. Kao, S. H. Chuang, W. C. Wu, T. S. Chao, J. H. Chen, M. W. Ma, R. H.Gao and M. Y. Chiang, Appl. Phys. Lett. 93 (2008) 092907.
    
    [56]. G Srinivasan, N. Gopalakrishnan, Y. S. Yu, R. Kesavamoorthy and J. Kumar,Superlattice Microst. 43 (2008) 112.
    
    [57]. J. Sabataityte, I. Oja, F. Lenzmann, O. Volobujeva and M. Krunks, Comptes Rendus Chimie 9 (2006) 708.
    
    [58]. X. Zhi, G Y. Zhao, T. Zhu and Y. Li, Surf. Interface Anal. 40 (2008) 67.
    
    [59]. H. D. Wang, B. S. Xu, J. J. Liu, D. M. Zhuang, S. C. Wei, X. C. Zhang, G. Jin and Y. Jiang, Mater. Lett. 59 (2005) 1683.
    
    [60]. D. Li and Y. N. Xia, Adv. Mater. 16 (2004) 1151.
    
    [61]. Z. M. Huang, Y. Z. Zhang, M. Kotakic, S. Ramakrishna, Compos. Sci. and Technol. 63 (2003) 2223.
    
    [62]. D. H. Reneker and I. Chun, Nanotechnology 7 (1996) 216.
    
    [63]. L. Larrondo, R. St. John Manley, J. Polym. Sci. Polym. Phys. Edition 19 (1981)909.
    
    [64]. L. Larrondo, R. St. John Manley, J. Polym. Sci. Polym. Phys. Edition 19 (1981)921.
    
    [65]. L. Larrondo, R. St. John Manley, J. Polym. Sci. Polym. Phys. Edition 19 (1981)933.
    
    [66]. A. L. Yarin, S. Koombhongse and D. H. Reneke, J. Appl. Phys. 89 (2001) 3018.
    
    [67]. S. Jin, D. Wang, M. C. McAlpine, R. S. Friendman, Y. Wu and C. M. Lieber, Nano Lett. 4(2004)915.
    
    [68]. G. Zheng, W. Lu, S. Lin and C. M. Lieber, Adv. Mater. 16 (2004) 1890.
    
    [69]. Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Laudon and C. M. Lieber,Science 294 (2001) 1313.
    
    [70]. H. Kind, H. Q. Yan, B. Messer, M. Law and P. Yang, Adv. Mater. 14 (2002) 58.
    
    [71]. E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan and Z. L. Wang, Appl. Phys.Lett. 81 (2002)1869.
    
    [72]. D. H. Reneker, A. L. Yarin, H. Fong and S. Koombhongse, J. Appl. Phys. 87(2000)4531.
    
    [73]. V. G. Drozin, J. Colloid Sci. 10 (1955) 158.
    
    [74]. C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, J. Han and C. W. Zhou, Appl.Phys. Lett. 82(2003)1613.
    
    [75]. F. Fong, I. Chun and D. H. Reneker, Polymer 40 (1999) 4585.
    
    [76]. Taylor GI.,Proc. Roy. Soc. London A 1966, 291: 145.
    
    [77]. J. M. Deitzel, J. Kleinmeyer, D. Harris and N. C. Beck Tan, Polymer 42 (2001)260.
    
    [78]. J. Kameoka, R. Orth, Y. O. Yang, D. Czaplewaki, R. Mathers, G. W. Coates and H. G. Craighead, Nanotechnology 14 (2003) 1124.
    
    [79]. C. L. Casper, J. S. Stepaens, N. G. Tassi, D. B. Chase and J. F. Rabolt,Macromolecules 37 (2004) 573.
    
    [80]. A. Formhals, U. S. Patent No. 1,975,504, 1934.
    
    [81]. H. L. Simons, U. S. Patent no. 3,280,299, 1966.
    
    [82]. J. Doshi, G. Sirinavasan and D. H. Reneker, Polymer News 20 (1956) 206.
    
    [83]. J. Doshi, Doctoral Dissertation, 1994, The University of Akron.
    
    [84]. G. Srinicasan and D. H. Reneker, Polymer Int. 36 (1995) 195.
    
    [85]. I. Chun, Doctoral Dissertation, 1995, The University of Akron.
    
    [86]. D. H. Reneker and I. Chun, Nanotechnology 7 (1996) 216.
    
    [87]. Z. Chen, M. D. Foster, W. Zhou, H. Fong and D. H. Renker, Macromolecules 34(2001)6156.
    
    [88]. H. F. Jia, G. Y. Zhu, B. Vugrinovich, W. Kataphinan, D. H. Reneker and P. Wang, Biotechnol. Prog. 18 (2002) 1027.
    [89]. C. J. Buchko, L. C. Chen, Y. Chen and D. C. Martin, Polymer 40 (1999) 7379.
    [90]. M. Bognitzld, W. Czado, T. Frese, A. Schaper, M. Steinhart, A. Greiner and J. h. Wendorff, Adv. Mater. 13 (2001) 70.
    [91]. S. Megelski, J. S. Stephens, D. B. Chase and J. F. Rabolt, Macromolecules 35 (2002) 8456.
    [92].何崇智 郗秀荣 孟庆恩等编著 X 射线衍射实验技术 上海:上海科学技术出版社1988.
    [93].杨于兴 X射线衍射分析(修订版)上海:上海交通大学出版社 1989.
    [94].吴刚 材料结构表征及应用 北京:化学工业出版社 2001.
    [95].叶恒强 透射电子显微学进展 北京:科学出版社 2003.
    [96].王国文 原子与分子光谱导论 北京:北京大学出版社 1985.
    [97].郑顺旋编著 激光喇曼光谱学 上海:上海科学技术出版社 1985.
    [98].张叔良 易大年 红外光谱分析与新技术 北京:中国医药科技出版社 1993.
    [99].周名成 俞汝勤编 紫外与可见分光光度分析法 北京:化学工业出版社,1986.
    [100]..陈国珍 黄贤智 郑朱梓等编著 荧光分析法(第二版)北京:科学出版社1990.
    [1]. A. Fujishima, K. Honda, Nature 238 (1972) 37-38
    [2]. S. Horikoshi, H. Hidaka and N. Serpone, Environ. Sci. Technol. 36 (2002) 1357.
    [3]. S. Horikoshi, A. Tokunaga, N. Watanabe, H. Hidaka and N. Serpone, Journal of Photoch. Photobio. A 177 (2006) 129.
    [4]. K. Sunada, X. G. Ding, M. S. Utami, Y. Kawashima, Y. Miyama and K. Hashimoto, J. Agric. Food Chem. 56 (2008) 4819.
    [5]. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, Nano Lett. 6 (2006) 215.
    [6]. M. Adachi, Y. Murata, J. Takao, J. T. Jiu, M. Sakamoto and F. M. Wang, J. Am. Chem. Soc. 126 (2004) 14943.
    [7]. P. K. Dutta and M. F. De Lucia, Sensors and Actuators B: Chemical 115 (2006) 1.
    [8]. C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han and K. C. Singh, Sensor Actuat. B: Chem. 128 (2007) 320.
    [9]. Z. R. Zhang, Z. L. Gong and Y. Yang, J. Phys. Chem. B 108 (2004) 17546.
    [10]. M. S. Wu, M. J. Wang, J. J. Jow, W. D. Yang, C. Y. Hsieh and H. M. Tsai, Journal of Power Sources 185 (2008) 1420.
    [11]. Y. Wang and N. Herron, J. Phys. Chem. 92 (1988) 4988.
    [12]. A. C. Yans, J. D. Castillo, M. Torres, J. Peraza, V. D. Rodriguez and J. M. Ramos, Appl. Phys. Lett. 85 (2004) 2343.
    
    [13]. S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong and J. H. Kim, Opt. Mater. 28 (2006)610.
    
    [14]. M. Mortier, A. Bensalah, G. Dantelle, G. Patriarche and D. Vivien, Opt. Mater.29(2007)1263.
    
    [15]. C. Liu and J. Heo, Mater. Lett. 61 (2007) 3751.
    
    [16]. D. L. Zhao, X. S. Qiao, X. P. Fan and M. Q. Wang, Physica B 395 (2007) 10.
    
    [17]. C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang and J. M. Zavada, Appl. Phys. Lett.89(2006)151903.
    
    [18]. G. Ehrhart, B. Capoen, O. Robbe, F. Beclin, P. Roy, S. Turrell and M. Bouazaoui,Opt. Mater. 30 (2008) 1595.
    
    [19]. A. Camenzind, R. Strobel, F. Krumeich and S. E. Pratsinis, Adv. Powder Technol.18(2007)5.
    
    [20]. S. Dabboussi, H. Elhouichet, H. Ajlani, A. Moadhen, M. Oueslati and J. A.Roger, J. Lumin. 121 (2006) 2006.
    
    [21]. D. Robert, T. P. Spaniol and J. Okuda, Eur. J. Inorg. Chem. 2008 (2008) 2801
    
    [22]. A. G. Gurek, T. Basova, D. Luneau, C. Lebrun, E. Koltsov, A. K. Hassan and V.Ahsen, Inorg. Chem. 45 (2006) 1667.
    
    [23]. A. J. Kenyon, Prog. Quant. Electron. 26 (2002) 225.
    
    [24]. X. Orignac, D. Barbier, X. M. Du and R. M. Almeida, Appl. Phys. Lett. 69 (1996)895.
    
    [25]. J. G Li, X. H. Wang, H. Kamiyama, T. Ishigaki and T. Sekiguchi, Thin Solid Films 5006-507 (2006) 292.
    
    [26]. H. Y. Wang, Y. Wang, Y. Yang, X. Li and C. Wang, Mate. Res. Bull. 44 (2009)408.
    
    [27]. B. K. Moon, J. H. Jeong, S. S. Yi, S. E. Choi, P. S. Kim, H. Choi and J. H. Kim,J. Lumin. 122-123 (2007) 873.
    
    [28]. H. Wu, D. D. Lin and W. Pan, Appl. Phys. Lett. 89 (2006) 133125.
    
    [29]. H. Y. Guan, C. L. Shao, S. B. Wen, B. Chen, J. Gong and X. H. Yang, Inorg.Chem. Commun. 6 (2003) 1302.
    [30]. D. D. Lin, W. Pan and H. Wu, J. Am. Ceram. Soc. 90 (2007) 71.
    
    [31]. S. H. Zhan, D. R. Chen and X. L. Jiao, Journal of Colloid and Interface Science 318(2008)331.
    
    [32]. X. H. Li, C. L. Shao, Y. C. Liu, X. T. Zhang and S. K. Hark, Mater. Lett. 62(2008) 2088.
    
    [33]. A. Yang, X. M. Tao, K. H. Pang and G. G. Siu, J. Am. Ceram. Soc. 91 (2008)257.
    
    [34]. S. H. Lee, C. Tekmen, W. M. Sigmund, Mater. Sci. Eng. A 398 (2005) 77.
    
    [35]. X. F. Lu, L. L. Li, W. J. Zhang, C. Wang, Nanotechnology 16 (2005) 2233.
    
    [36]. T. Umebayasgi, T. Yamaki, H. Itoh and K. Asai, Appl. Phys. Lett. 81 (2002) 454.
    
    [37]. D. K. Sarkar, D. Brassard, M. A. El Khakani and L. Ouellet, Appl. Phys. Lett.87(2005)253108.
    
    [38]. Y. H. Zhang, C. K. Chan, J. F. Porter and W. Guo, J. Mater. Res. 13 (1998) 2602.
    
    [39]. U. Diebold, Surf. Sci. Rep. 48 (2003) 53.
    
    [40]. H. Tang, H. Berger, P. E. Schmid and F. Levy, Solid State Commun. 87 (1993)847.
    
    [41]. H.Tang, K. Prasad, R. Sanjines, P. E. Schmid and F. Levy, J. Appl. Phys. 75(1994)2945.
    
    [42]. R. Plugaru, A. Cremades and J. Piqueras, J. Phys.: Condens. Matter 16 (2004)S261.
    
    [43]. A. K. Ghosh, F. G. Wakim, R. R. Addiss Jr., Phys. Rev. 184 (1969) 979.
    
    [44]. S. K. Mohanta, R. K. Soni, S. Tripathy, C. B. Soh, S. J. Chun and D. Kanjilal Physica E 35(2006)42.
    
    [45]. R. Schmechel, M. Kenndy, H. V. Seggem, H. Winkler, M. Kolbe, R. A. Fischer,X. Li, A. Benker, M. Winterer and H. Hahn, J. Appl. Phys. 89 (2001) 1679.
    [1]. M. P. Mcdanicl, M. B. Welch, J. Catal. 82 (1983) 98.
    [2]. C. J. Brinker and G. W. Scherer, Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990.
    [3]. E. I. Ko, J. P. Chen and J. G. Weissman, J. Catal. 105 (1987) 511.
    [4]. O. Hanaizumi, K. Ono, Y. Ognawa, T. Matsumoto, H. Yoda and K. Shiraishi, Appl. Phys. Lett. 84 (2004) 3843.
    [5]. D. M. Pickup, G. Mountjoy, G. W. Wallidge, R. Anderson, J. M. Cole, R. J. Newport and M. E. Smith, J. Mater. Chem. 9 (1999) 1299.
    [6]. M. Zaharescu, A. Barau, L. Predoana, M. Gartner, M. Anastasescu, J. Mrazek, I. Kasik and V. Matejec, J. Non-Cryst. Solids 354 (2008) 693.
    [7]. K. Guan, Surf. Coat. Tech. 191 (2005) 155.
    [8]. I. Z. Grodz, W. Mista, W. Strek, E. Bukowaka, K. Hermanowicz and K. Maruszewaki, Opt. Mater. 26 (2004) 207.
    [9].李娜,张余,沈培康,纳米TiO_2/SiO_2复合薄膜修饰医用小骨元针的电化学研究,化工新型材料,34(2006)72.
    [10]. H. P. You and M. Nogami, J. Phys. Chem. B 108 (2004) 120003.
    [11]. J. C. Castaneda-Contreras, M. A. M. Nava, O. B. Garcia R. A. R. Rojas and M. V. Felix, Opt. Mater. 29 (2006) 38.
    [12]. I. Z. Zareba-Grodz, R. Pazik, W. Tylus, W. Mielcarek, K. Hermanowicz, W. Strek and K. Maruszewski, Opt. Mater. 29 (2007) 1103.
    [13]. E. Pabon, J. Retuert, R. Quijada and A. Zarate, Micropor. Mesopor. Mat. 67 (2004) 195.
    [14]. M. Houmard, D. Riassetto, F. Roussel, A. Bourgeois, J. C. Joud and M. Langlet, Surf. Sci. 602 (2008) 3364.
    [15]. T. Ohno, S. Tagawa, H. Itoh, H. Suzuki and T. Matsuda, Mater. Chem. Phys. 113 (2009) 119.
    [16]. A. R. Oki, Q. Xu, B. Shpeizer, A. Clearfield, X. Qiu, S. Kirumakki and S. Tichy, Catal. Commun. 8 (2007) 950.
    [17]. P. K. Doolin, S. Alerasool, D. J. Zalewski and J. F. Hoffman, Catal. Lett. 25(1994) 209.
    [18]. C. B. Khouw, C. B. Dartt, J. A. Labinger and M. F. Davis, J. Catal. 149 (1994)195.
    [19]. B. M. Reddy, E. P. Reddy and B. Manohar, Appl. Catal. A 96 (1993) L1.
    [20].. A. Y. Stakheev, E. S. Shpiro and J. Apijok, J. Phys. Chem. 97 (1993) 5668.
    [21]. V. M. Gunko, V. I. Zarko, V. V. Turov, R. Leboda, E. Chibowski, L. Holysz, E. M. Pakhlov, E. F. Voronin, V. V. Dudnik and Y. I. Gornikov, J. Colloid Interface Sci. 198 (1998) 141.
    [22]. Z. J. Li, B. Hou, Y. Xu, D. Wu, Y. H. Sun, W. Hu and F. Deng, J. Solid State Chem. 178 (2005) 1395.
    [23]. R. N. Viswanath and S. Ramasamy, Colloids Surf. A 133 (1998) 49.
    [24].王世敏,许祖勋,傅晶编 纳米材料制备技术 北京:化学工业出版社 2002.
    [25]. R. N. Viswanath, A. Chandra Bose and S. Ramasamy, J. Phys. Chem. Solids 62 (2001) 1991.
    [26]. H. K. Nair, K. Maeda, Y. Kiyozumi and E Mizukami, Mate. Res. Bull. 32 (1997) 1303.
    [27]. C. Li, G. Xiong, J. Liu, P. Ying, Q. Xin and Z. Feng, J. Phys. Chem. B 105 (2001)2993.
    [28]. T. Sekiya, S. Ohta, S. Kamei, M. Hanakawa and S. Kurita, J. Phys. Chem. Solids 62 (2001 ) 717.
    [29]. M. Nogami, T. Yamazaki and Y. Abe, J. Lumin. 78 (1998) 63.
    [30]. W. Y. Jia, H. M. Liu, S. R Felofilov, R. Meltzer and J. Jiao, J. Allo. Comp. 311(2000) 11.
    [31]. A. Beeby, L. M. Bushby, D. Maffeo and J. A. Gareth Williams, J. Chem. Soc., Perkin Trans. 2 (2000) 1281.
    [32]. Q. Su, J. Lin and B. Li, J. Allo. Comp. 225 (1995) 120.
    [1]. J. W. Zhai, T. Yang, L. Y. Zhang and X. Yao, Ceram. Int. 25 (1999) 667.
    [2]. X. R. Wang, H. Masumoto, Y. Someno and T. Hirai, Appl. Phys. Lett. 72 (1998) 3264.
    [3]. H. Sankur and W. Gunning, J. Appl. Phys. 66 (1989) 4747.
    [4]. K. Guan, Surf. Coat. Tech. 191 (2005) 155.
    [5]. X. T. Zhang, A. Fujishima, M. Jin, A. V. Emeline and T. Murakami, J. Phys.Chem.B 110(2006) 25142S.
    
    [6]. X. R. Wang, H. Masumoto, Y. Someno and T. Hirai, Thin Solid Films 338 (1999)105.
    
    [7]. K. S. Lee and S. H. Lee, Mater. Lett. 61 (2007) 3516.
    
    [8]. F. Mei, C. Liu, L. Zhang, F. Ren, L. Zhou, W. K. Zhao and Y. L. Fang, J. Cryst.Growth 292 (2006) 87.
    
    [9]. T. V. Nguyen, H. C. Lee, M. A. Khan and O. B. Yang, Solar Energy 81 (2007) 529
    
    [10]. F. Bosc, A. Ayral and C. Guizard, Thin Solid Films 495 (2006) 252.
    
    [11]. D. Y. Lee, D. Omolade, R. E. Cohen and M. F. Rubner, Chem. Mater. 19 (2007)1427.
    
    [12]. M. Houmard, D. Riassetto, F. Roussel, A. Bourgeois, G. Berthome, J. C. Joud and M. Langlet, Surf. Sci. 602 (2008) 3364.
    
    [13]. M. Nagami, K. Suzuki, Adv. Mater. 14 (2002) 923.
    
    [14]. H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, C. Buchal and S.Mantl, Nanotechnology 18 (2007) 395707.
    
    [15]. O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko and A. M. Dmytruk, J. Phys.Chem. Solids 69 (2008) 1615.
    
    [16]. F. Gourbilleau, R. Madelon and R. Rizk, Opt. Mater. 27 (2005) 868.
    
    [17]. F. Auzel, J. Non-Cryst. Solids 354 (2008) 4765.
    
    [18]. M. J. de Castro, A. S. Garcia, R. Serna, C. N. Afonso and J. G. Lopez, Opt.Mater. 29 (2007) 539.
    
    [19]. X. J. Wang and M. K. Lei, Thin Solid Films 476 (2005) 41.
    
    [20]. A. Kailer, K. G. Nickel, Y. G. Gogotsi, J. Raman Spectrosc. 30 (1999) 939.
    
    [21]. A. A. Ismail and H. Matsunaga, Chem. Phys. Lett. 447 (2007) 74.
    
    [22]. H. Kochkar and F. Figueras, J. Catal. 171 (1997) 420.
    
    [23]. H. P. You and G. Y. Hong, J. Phys. Chem. Solids 60 (1999) 325.
    
    [24]. I. Z. Grodz, R. Pazik, W. Tylus, W. Mielcarek, K. Hermanowicz, W. Strek and K.Maruszewski, Opt. Mater. 29 (2007) 1103.
    [25].贺蕴秋,王德林,林健,玻璃与陶瓷,28(2000)15.
    [26]. L. E. Depero, L. Sangaletti, B. Allieri, E. Bontempi, R. Salari, M. Zocchi, C. Casale, M. Notaro, J. Mater. Res. 13 (1998) 1644.
    [27]. C. Anderson and A. J. Bard, J. Phys. Chem. 99 (1995) 9882.
    [28]. S. S. Hong, M. S. Lee, S. S. Park and G. D. Lee, Catal. Today 87 (2003) 99.
    [29].赵敬哲,杨少风,王子枕等,高等学校化学学报,21(2000)292.
    [30]. M. Yoshikawa, K. Iwagami, N. Morita, T. Matsunobe and H. Ishida, Thin Solid Films 310 (1997) 167.
    [31]. C. Coutier, M. Audier, J. Fick, R. Rimet and M. Langlet, Thin Solid Films 372 (2000) 177.
    [32]. S. Okuzaki, K. Okude and T. Ohishi, J. Non-Cryst. Solids 265 (2000) 61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700