用户名: 密码: 验证码:
船舶航向运动非线性自适应及优化控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶运动具有本质非线性、模型不确定、干扰难以精确测量等特点,所以船舶运动控制属于典型的非线性系统控制理论的研究范畴。此外,船舶运动控制的执行机构具有饱和、死区、迟滞等一系列的硬非线性特性,需要在控制器设计时考虑这些影响。船舶运动控制是船舶自动化的核心,直接关系到船舶航行的操纵性、经济性,航行的安全性和舰艇的战斗力,基于不确定性非线性数学模型设计航向控制器并在设计中考虑执行器非线性特性是有必要的,具有较重要的理论价值和现实意义。为此,本文系统的分析了船舶航向控制的特点,基于无源理论研究了海浪滤波问题,基于反步控制方法研究了船舶航向运动的非线性自适应控制和非线性鲁棒优化控制等问题,具体研究内容如下:
     第一,为实现船舶航向运动的状态重构和海浪滤波,基于无源理论设计了船舶航向运动非线性观测器。首先给出了带有海浪扰动成形滤波器的船舶航向运动系统模型、状态观测器和估计误差系统的非线性方程,进而通过对估计误差系统无源化得到状态观测器的参数设计方法。为适应不同海况和航行条件,应用递推最小二乘方法对海浪扰动频率进行在线辨识以实现这种无源状态观测器参数的自动调整。最后利用一单螺旋桨集装箱船的四自由度模型进行仿真,结果表明这种基于无源理论的状态观测器能较好的实现海浪滤波和状态重构。
     第二,针对船舶航向运动的非线性、参数不确定性问题,设计了船舶自适应反步控制器,并综合前文提出的无源状态观测器,给出了输出反馈控制算法。为了补偿常值稳态误差和应对未建模动态、参数不准确性的影响,在反步和自适应反步控制中引入积分作用,然后参照PID控制给出了反步控制器的参数调整方法。综合第3章给出的无源状态观测器和反步控制及自适应反步控制方法,分别给出了船舶航向输出反馈控制器和自适应输出反馈控制器,并证明系统是输入-状态稳定的。最后我们引入了死区方法以避免自适应控制器的参数漂移。仿真结果表明,所提出的控制算法提高了控制性能,对船舶航向运动的不确定性参数具有良好的自适应性。
     第三,为考虑船舶舵机饱和特性问题,基于AWBT(anti-windup and bumpless transfer)控制思想提出了一种抗饱和反步控制方法。首先描述了船舶航向运动的抗饱和控制问题,并将此问题扩展为一类参数不确定非线性严格反馈系统的抗饱和反步控制问题。针对这类系统,我们分两步设计抗饱和反步控制器,先不考虑执行器饱和特性,利用自适应反步法设计非线性控制器,再在此基础上以执行器输入输出之差为输入设计抗饱和补偿器,将抗饱和补偿机制引入到控制器中。然后,将这种抗饱和反步控制方法应用于船舶航向运动控制,降低了舵机饱和对系统稳定性和控制性能的影响。仿真结果表明,船舶航向反步控制中引入抗饱和补偿器,可有效降低系统能耗、提高控制性能。
     第四,基于Norrbin模型,综合考虑了加入状态观测器所带来的观测误差和船舶运动的模型参数不确定性等因素,为实现船舶航向运动的非线性优化控制,引入了一种基于反步法的非线性H_∞优化控制方法。首先对带有状态观测器的船舶航向控制问题进行了分析,给出了控制的局部和全局优化性能指标。然后将问题归结为一类典型非线性严格反馈系统的H_∞优化控制问题,利用反步法将这类系统进行转化,并采用逆优化方法进行求解,设计了满足H_∞干扰抑制的非线性优化控制器。然后基于这种方法设计了船舶航向非线性H_∞优化控制器。由仿真结果可以看出,与LQR方法相比较,非线性H_∞优化控制器具有更好的控制性能和鲁棒性。
Ship motion has the characteristics of nonlinearity in nature, model uncertainties, anddisturbances are different to measure accurately etc. Thus, the ship motion control belongs tothe theory of nonlinear system control. Besides, the actuator of ship motion control has aseries of hard nonlinear characteristics such as the saturation, dead zone and hysteresis and soon and these characteristics must be considered in the process of controller designed. The shipcourse control is the core of ship automation and it has the direct bearing on themaneuverability, economy, safety of navigation and the fighting capacity. Therefore, it isnecessary to design course control and consider the nonlinear characteristics of the actuatorbased on the uncertainty nonlinear model. It has important theoretical value and practicalsignificance. To this end, based on the methods of nonlinear adaptive control and nonlinearrobust optimal control, the course control problem with characteristics of the actuator isinvestigated. The research work as follows:
     Firstly, for the realization the state reconstruction and wave filtering of ship coursemotion, a nonlinear observer is designed based on passivity theory. The system model withwave disturbance shaping filter of ship course motion, state observer and an estimation errorsystem of nonlinear equations are given at first. Then the parameter design method of stateobserver is obtained by estimating the passivity of the error system. In order to adapt todifferent sea conditions and navigation conditions, the recursive least squares method isapplied to identify the wave disturbance frequency online. This method makes the passivestate observer parameter adjust automatic. Finally, simulation experiment with the4-DOFmodel of a container ship shows that the proposed controller can realize the wave filtering andstate reconstruction better.
     Secondly, for the problems of nonlinearity and parameter uncertainty of ship coursemotion, an adaptive backstepping controller is investigated. Furthermore, considering theproposed passive nonlinear state observer, an actual usable output feedback control algorithmis given. To compensate the constant steady-state error and deal with unmodelled dynamics,the integral action is introduced in backstepping and adaptive backstepping. Then theparameter adjustment method is given with reference to PID control. Combine passive stateobserver with backstepping and adaptive backstepping control method proposed in chapter4,the output feedback backstepping and the output feedback adaptive backstepping controller ofship course motion are given, respectively. And we proved that the controlled system is input-state stability. Finally, a dead zone method is employed to avoid the parameter drift inadaptive backstepping control. Simulation results show that the proposed control algorithmimproved the performance and has good adaptability for the uncertainty parameters in the shipcourse motion.
     Thirdly, for dealing with the problem of steering gear saturation characteristic, ananti-windup backstepping control algorithm is proposed based on the anti-windup andbumpless transfer (AWBT) method. The anti-windup control problem of ship course motionis given at first. Then this problem is extending to investigate anti-windup backsteppingcontrol of a class of uncertainties nonlinear strict-feedback system. The controller designedhas two steps. One step is design adaptive backstepping control without considering the effectof actuator saturation characteristics. Then put the difference of controller output and input asthe input to design anti-windup compensator. This anti-windup backstepping control methodapplied in ship course motion can reduce the effects of steering gear saturation to the systemstability and control performance. Simulation results show that the ship course backsteppingcontroller by employing anti-saturation compensator can reduce the system energyconsumption and improved the control performance effectiveness.
     Finally, for realizing the nonlinear optimal control of ship course motion, consider theobservation error induced by adding state observer and model parameter uncertainty, abackstepping nonlinear H_∞optimal control algorithm is investigated based on Norrbinmodel The ship course control problem with state observer is analyzed and the local andglobal performance indexes are given. Furthermore, this problem can be reduced to optimalcontrol problem of a class of typical nonlinear strict-feedback system. Backstepping is used totransform the system into a particular form and solve it by using the inverse optimizationmethod. An H_∞interference suppression nonlinear optimal controller is designed. Then anew H_∞optimal controller is investigated that satisfies the requirements of ship coursecontrol. From the simulation results, we can see that nonlinear H_∞optimal controller hasstrong robustness and control performance than LQR method.
引文
[1] G.C. Goodwin, S.Grabe, M. Salgado.Control System Design. Prentice-Hall, Inc,2001:27-29
    [2]金鸿章,姚绪梁.船舶控制原理.哈尔滨工程大学出版社,2001:1-71,108-143
    [3] T.I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. JohnWiley&Sons Ltd,2011:1-56,133-148,187-224
    [4] E. Sperry. Directional stability of automatically steered bodies. Journal of theAmerican Society of Naval Engineers.1992,42(1):2-13
    [5] N.A. Witt, R. Sutton and K.M. Mille. Recent technological advances in the controland guidance of ships. Journals of Navigation.1994,47(2):236-258
    [6] T.P. Hughes, E. Sperry. Inventor and Engineer. Baltimore: Johns Hopkins UniversityPress,1993:63-102
    [7] E. Sperry. Automatic Steering. Transaction of SNAME,1922,30:53-57
    [8] C.J. Harris, S.A. Bilings. Self-tuning and Adaptive Control Theory and Applications.Peter Peregrinus,1981:20-33
    [9] N. Minorsky. Directional stability of automatically steered bodies. J. Amer. Soc ofNaval Engineers.1922,34(2):280-309
    [10] N. Mort, D.A. Linkens. Self-tuning controllers for surface ship course track-keeping.Proeeedings of5th Symposium on Ship Steering Automatic Control, Genoa,1980:225-243
    [11] J.K. Zuidweg. Optimal and suboptimal feedforward in automatic track keepingsystems, Proeeedings of6th Ship Control Systems Symposium, Ottawa,1981: l-18
    [12]张薇.船舶运动智能PID控制研究.哈尔滨工程大学硕士学位论文.2009:1-15
    [13]杨盐生,于晓利,贾欣乐.船舶航向自适应鲁律PID自动舵设计.武汉交通科技大学学报.1999,23(6):594-598
    [14]罗伟林,邹早建,李铁山.基于神经网络和L2增益的船舶航向自动舵设计.中国造船.2009,50(2):40-45
    [15] A. Sugimoto. A new autopilot system with condition adaptability. Proceedings of the5th Ship Control System Symposium Annapolis, Maryland. USA,1978:105-111
    [16] N. Mort. Autopilot design for surface ship steering using self-tuning controlleralgorithms. University of Sheffield PhD Thesis. Uk.1983:6-27
    [17] T. Arie, M. Itoh, A. Senoh et al. An adaptive steering system for a ship. IEEE ControlSystem Magazine.1986,10:3-7
    [18] J.V. Amerongen. Adaptive steering of ships-a model reference approach. Automatica.1984,20(1):3-14
    [19] M. Denis. The motion of ships in confused seas. Trans. SNAME.1953,13(2):125-135
    [20] C.C. Lim, W. Forsythe. Autopilot for ship control, Part I: Theoretical design.Proceedings IEE (part-D).1983,130(2):147-158
    [21] D.W. Clarke, P.J. Gawthrop. Self-tuning controll. Proceedings IEE (part-D).1979,126(6):633-640.
    [22] M.R. Katebi. LQG adaptive ship autopilot. Trans Inst MC.1988,10(4):187-197
    [23] F.A. Papoulias. Path control of surface ship using sliding modes. Journal of ShipResearch.1992,36(2):141-153
    [24] W. Brown. Factors to consider in developing acknowledge-based autopilot expertsystem for ship maneuvering simulation. Proceedings of the14th Ship Technologyand Research Star Symposium, SNAME, New Orleans, USA,1989,1-11
    [25] J.V. Amerongen. An autopilot for ships designed with fuzzy sets. Proc IFACConference on Digital Computer Applications to Process Control, Hague, USA,1977:101-106
    [26] R.L. Jeffery. Fuzzy model reference learning control for cargo ship steering. IEEEControl System.1993,13(5):23-34
    [27] G.E. Hearn, Y. Zhang, P. Sen. Comparison of SISO and SIMO neural controlstrategies for ship track keeping. IEE Proc. Control Theory Appl.1997,144(2):153-165
    [28]蒋丹东,贾欣乐.神经网络控制器的海上验证.大连海事大学学报.1998,24(l):13-17
    [29] R. Sutton, I.M. Jess. A design study of a self-organizing fuzzy autopilot for shipcontrol. Proceedings of the Institution Mechanical Engineers,(part I),1991,205:35-47
    [30] R. Sutton. Neuro-fuzzy techniques applied to a ship autopilot design. Journal ofNavigation.1996,49(3):410-430
    [31] R. Sutton. A fuzzy autopilot optimized using a genetic algorithm. Journal ofNavigation.1997,50(1):120-131
    [32] N.A. Witt, K.M. Miller. A neural network autopilot for ship control. Proceedings ofMaritime Communications and Control Conference, Marine Management (Holdings)Ltd, London, UK,1993:13-19
    [33] R.S. Burns. The use of artificial neural networks for the intelligent optimal control ofsurface ships. IEEE Journal Oceanic Engineering.1995,20(1):65-72
    [34] Y. Zhang. A neural network approach to ship track-keeping control. IEEE JournalOceanic Engineering.1996,21(4):513-527
    [35]刘胜,王宇超,傅荟璇.船舶航向保持变论域模糊-最小二乘支持向量机复合控制.控制理论与应用.2011,28(4):85-90
    [36]张松涛,任光.基于反馈线性化的船舶航向保持模糊自适应控制.交通运输工程学报.2005,5(4):72-76
    [37]程金.水面船舶的非线性控制研究.中国科学院研究生院博士学位论文.2007:29-33
    [38]宋立忠,李红江,陈少昌.滑模预测离散变结构控制用于船-舵伺服系统.中国电机工程学报.2003,23(11):260-163
    [39]吴汉松,黄凯,徐袭.舰船航向保持的变结构控制及仿真.海军工程大学学报.2004,16(3):27-31
    [40]杨盐生,贾欣乐.船舶航向的变结构控制自动舵设计,大连海事大学学报.1998,24(l):14-20
    [41]丁玲玲,刘胜,等.舰船主舵/襟翼舵广义预测联合控制规律研究.哈尔滨工程大学学报.2000,21(3):1-6
    [42]胡耀华,贾欣乐.具有约束条件的船舶运动预测控制.控制理论与应用.2000,17(4):532-537
    [43]胡耀华,贾欣乐.广义预测控制应用于船舶航向和航迹保持.中国造船.1998,140(l):36-41
    [44]智力,王树青.一类基于模型预测的船舶自动舵控制策略研究.船舶工程.2007,29(2):38-41
    [45]卜仁祥,刘正江,李铁山.迭代滑模增量反馈及在船舶航向控制中的应用.哈尔滨工程大学学报.2007,25(3):268-272
    [46]郑云峰,杨盐生,李铁山.带有执行器的船舶航向控制反馈线性化设计.大连海事大学学报.2004,30(3):14-17
    [47]袁士春,郭晨,史成军.基于线性变参数的船舶运动H∞控制及仿真.大连海事大学学报.2007,33(2):89-91
    [48]张显库,赵翔宇.船舶转向的鲁棒控制及其优化设计.哈尔滨工程大学学报.2006,27(3):319-322
    [49]贾欣乐,张显库. H∞控制器应用于船舶自动舵.控制与决策.1995,10(3):250-254
    [50]张显库,贾欣乐. H∞积分控制在船舶自动舵中的应用.大连海事大学学报.1998,24(4):44-47
    [51]王兴成,姜晓红,张健.船舶航向控制器非线性Backstepping设计.控制工程.2002,9(5):63-65
    [52]张显库.船舶航向保持的非线性逆推鲁棒控制算法.大连海事大学学报.2007,33(2):80-83
    [53]孔令涛,杜佳璐,王玉杰.基于逆推-非线性阻尼算法的船舶航向控制器设计.大连海事大学学报.2006,32(4):61-64
    [54]杨盐生.不确定系统的鲁棒控制及其在船舶运动控制中的应用.大连海事大学博士学位论文.1999:1-3
    [55] H.K. Khalil. Nonlinear Systems. US: Prentice Hall.2002:152-167
    [56]杨盐生.不确定系统的鲁棒控制及其应用.科学出版社,2004:35-47
    [57] T.I. Fossen. A survey on nonlinear ship control: From theory to practice. Proceedingof the5th IFAC. Maneuvering Control Marine Crafts, Aalborg,2000:1-16
    [58]杨盐生,贾欣乐.船舶航向的变结构控制自动舵设计.大连海事大学学报.1998,24(1):13-17
    [59]关巍.基于Backstepping的船舶运动非线性自适应鲁棒控制.大连海事大学博士学位论文.2010:49-77
    [60]孙元章,焦晓红,申铁龙著.电力系统非线性鲁棒控制.清华大学出版社,2007:47-60
    [61] D.C. Donha, D.S. Desanj, M.R. Katebi, M.J. Grimble. H∞adaptive controllers forautopilot applications. International Journal of Adaptive Control and SignalProcessing.1998,12(8):623-648
    [62] C.N. Hwang, J.M. Yang, C.Y. Chiang. The design of fuzzy collision-avoidance expertsystem implemented by autopilot. Journal of Marine Science and Technology.2001,9(1):25-37
    [63] P.H. Yang, S.S. Hu, J.Y. Juang. Design of a nonlinearH∞controller applied to a shipcontrol system. Proceeding of the2000IEEE International Conference on ControlApplications, Anchorage, Alaska, USA,2000:349-354
    [64] S.S. Hu, P.H. Yang, J.Y. Juang et al. Robust nonlinear ship course-keeping controlby H∞I/O linearization and μ synthesis. International Journal of Robust andNonlinear Control.2003,13(1):55-70
    [65] F.Y. Tan, H. Yamato, T. Koyama. H∞control design to include nonlinearities.Second report: Nonlinearities inequations of motion. Jourmal of Marine Seience andTechnology.2002,6(3):148-157
    [66]李铁山,杨盐生,洪碧光,秦永祥.船舶航迹控制鲁棒自适应模糊设计.控制理论与应用,2007,24(3):445-448.
    [67] G.S. Hu, H. Xiao. The design of ship course intelligent controller based on adaptiveneural fuzzy interference system. Applied Mechanics and Materials.2012,135-136:1037-1043
    [68]黄继起.自适应控制理论及其在船舶系统中的应用.国防工业出版社,1992:23-58
    [69] S.H. Browns, J.G. Dimmick. Simulation analysis of steering control during underwayreplenishment. J.S.R.1983,27(4):236-251
    [70] T.I. Fossen. Guidance and control of ocean vehicles, New York: John Willey andSons Ltd,1994:70-135
    [71] J.G. Balchen, N.A. Jenssen, S. Saelid. A dynamic positioning system based onKalman filtering and optimal control. Modeling Identification and Control.1980,1(3):135-163
    [72] T. Lauvdal, T.I. Fossen. A globally stable adaptive ship autopilot with wave filterusing only yaw angle measurements, J. Contr. Eng. Prac.1996,4(3):359-368
    [73] S. Saelid, N.A. Jenssen. Adaptive autopilot with wave filter. Modeling Identificationand Control.1983,4(1):33-46
    [74] R.E. Reid, A.K. Tugcu, B.C. Mears. The use of wave filter design in Kalman filterstate estimation of the automatic steering problem of a tanker in a seaway. IEEETransactions on automatic control.1984,29(7):577-584
    [75] T. Holzhuter, H. Strauch. A commercial adaptive autopilot for ships: Design andexperimental experience. Proceedings of the10th IFAC World Congress, Munich,Germany,1987:226-230
    [76]张显库,王新屏.一种具有鲁棒性的海浪干扰滤波器.中国造船.2004,45(4):17-22
    [77]慕春棣,梅生伟,申铁龙.非线性系统鲁棒控制理论的一些新进展.2001,18(1):1-6
    [78]程代展.应用非线性控制.机械工业出版社.2009:72-88
    [79]刘斌,王常虹,李伟,等.非线性系统的多模型鲁棒控制器设计.哈尔滨工业大学学报.2012,1(44):31-35
    [80]王坚浩,胡剑波.控制增益符号未知的不确定非线性系统鲁棒自适应控制.控制与决策.2012,27(2):252-265
    [81] W. Meng, C. Guo, Y. Liu. Robust adaptive path following for underactuated surfacevessels with uncertain dynamics. Journal of Marine Science and Application.2012,11:244-250
    [82] V. Hassani, A.J. S rensen, A.M. Pascoal. Robust dynamic positioning of offshorevessels using mixed-μ synthesis part II: Simulation and experimental results. IFACProceedings Volumes1(Part1),2012:183-188
    [83] W. Liu, Q. Sui, H. Xiao et al. Sliding backstepping control for ship course withnonlinear disturbance observer. Journal of Information and Computational Science.2011,8(16):3809-3817
    [84] J. Tsinias. Sufficient Lyapunov-like conditions for stabilization. Mathematics ofcontrol, signals and systems.1989,2:343-357
    [85] I. Kanellakopoulos, P.V. Kokotovic, A.S. Morse. Systematic design of adaptivecontrollers for feedback linearizable systems. IEEE Transctions on Automatic Control.1991,36(11):1241-1253
    [86] E.D. Sontag, H.J. Sussmann. Further comments on the stabilizability of the angularvelocity of a rigid body. Systems and Control letters.1989,12(3):213-217
    [87] P.V. Kokotovic, H.J. Sussman. A positive real condition for global stabilization ofnonlinear systems, Systems and Control Letters.1989,13:125-133
    [88] M. Krstic, I. Kanellakopoulos, P.V. Kokotovic. Nonlinear designof adaptivecontrollers for linear systems. IEEE Transctions on Automatic Control.1994,39(8):738-752
    [89] R. Marino, P. Tomei. Robust stabilization of feedback linearizable time-varyinguncertain nonlinear systems. Automatica.1993,29(l):181-189
    [90] M. Krstic, etc. Nonlinear and adaptive control design. New York: John Wiley Sons,1995
    [91]杨俊华,吴捷,胡跃民.反步方法原理及在非线性鲁棒控制中的应用.控制与决策.2002,17:641-647
    [92]董文瀚,孙秀霞,林岩.反推自适应控制的发展及应用.控制与决策.2006,21(10):1081-1086
    [93] T.I. Fossen, J.P. Strand. Tutorial on nonlinear backstepping: applications to shipcontrol. Modeling, Identification and control.1999,20(2):83-134
    [94] J.P. Strand, T.I. Fossen. Nonlinear output feedback and locally optimal control ofdynamically positioned ships: experimental results. Proceedings of the IFACConference on Control Applications in Marine Systems, Barcelona, IFAC,2002:89-95
    [95] T.I. Fossen,. Gr vlen. Nonlinear output feedback control of dynamically positionedships using vectorial observer backstepping. IEEE Transactions on Control SystemsTechnology.1998,6(1):121-128
    [96] J.M. Godhavn, T.I. Fossen, S.P. Berge. Adaptive backstepping designs for trackingcontrol of ships, International Journal of Adaptive Control and Signal Processing,1998,12(8):649-670
    [97] K.D. Do. Underactuated ship global tracking without measurement of velocities.American Control Conference.2003,3(4):2012-2017
    [98] K.Y. Pettersen. Tracking control of an underactuated ship. IEEE Transactions onControl Systems Technology.2003,11(1):53-61
    [99] K.P. Tee. Control of fully actuated ocean surface vessels using a class of feedforwardapproximators. IEEE Transactions Control Systems technology.2006,14:750-756
    [100] J. Doyle, R. Smith, D. Ennst. Control of plants with input saturation nonlinearities. InProceedings of the American Control Conference, Minneapolis, USA,1987:2147-2152
    [101] H. Glattfelder, W. Schaufelberger. Stability of discrete override and cascade-limitersingle-loop control systems. IEEE Transctions on Automatic Control.1988,33(6):532-540
    [102] B.S. Chen, H.C. Lu. State estimation of large-scale systems. International Journal ofControl.1988,47(6):1613-1632
    [103] M.S. Mahmoud. Dynamic controllers for systems with actuators. International Journalof Systems Seience.1995,26(2):359-374
    [104] A. Saberi, A.A. Stoorvogel. Stabilization and regulation of linear systems withsaturated and rate limited actuators. Proceedings of the American Control Conference.New Mexico,1997:3920-3921
    [105] Z. Lin. Semi-global stabilization of linear systems with position and rate-limitedactuators. Systems and Control Letters.1997,30(l): l-11
    [106] Z.Lin. Robust semi-global stabilization of linear systems with imperfect actuators.Systems and Control Letters.1997,29(4):215-221
    [107] A. Saberi, Z. Lin, A.R.Teel. Control of linear systems with saturating actuators. IEEETransactions on Automatic Control.1996,41(3):368-378
    [108] J. Collado, R. Lozano, A. Alion. Semi-global stabilization of linear discrete-timesystems with bounded input using a periodic controller. Systems and Control Letters.1999,36(4):267-275
    [109] T.S. Hu, Z.L. Lin, B.M. Chen. An analysis and design method for linear systemssubject to actuator saturation and disturbance. Automatica.2002,38(2):351-359
    [110] T. Hu, B. Huang, Z. lin. Absolute stability with a generalized sector condition. IEEETransactions on Automatic Control.2004,49(4):535-548
    [111]周丽明.饱和控制系统理论及应用研究.哈尔滨工程大学博士学位论文,2009:1-18
    [112] S. Graebe, A. Ahlen. Dynamic transfer among alternative controllers. Proceedings ofthe12th IFAC World Congress, Sydney, Australia,1994,8:245–248
    [113] H. Fertik, C. Ross. Direct digital control algorithms with anti-windup feature. ISATransactions.1967,6(4):317-328
    [114] K.J. st m, B. Wittenmark. Computer Controlled Systems. Theory and Practice.Prentice-Hall, Upper Sadle River, New Jersey,2nd edition.1990:1-50
    [115] K.J. st m, L. Rundqwist. Integrator windup and how to avoid it. Proceedings of theAmerican Control Conference. Pittsburgh, Pennsylvania,1989:1693-1698
    [116]吴风,王景成,方小生,等.抗饱和控制的一些新进展.化工自动化及仪表.2007,34(2):1-6
    [117] D. Vrancic, S. Strmcnik, R. Hanus. A new approach to analysing the windupphenomenon and antiwindup protection. International Journal of Systems Sciences.2001,32(7):899-904
    [118] R. Hanus, M. Kinnaert, J.L. Henrotte. Conditioning technique, a general anti-windupand bumpless transfer method. Automatica.1987,23(6):729-739
    [119] K.S. Walgama, S. Roennbaeck, J. Sternby. Generalisation of conditioning techniquefor anti-windup compensators. Control Theory and Applications.1992,139(2):109-118
    [120] R. Hanus, Y. Peng. Conditioning technique for controllers with time delays. IEEETransactions on Automatic Control.1992,37(5):689-692
    [121] K. Walgama, J. Sternby. Inherent observer property in a class of anti-windupcompensators. International Journal Control.1990,52(3):705-724
    [122] M.V. Kothare, P.J. Campo, M. Morari et al. A unified frameworks for the study ofanti-windup designs. Automatica.1994,30:1869-1883
    [123] C. Edwards, I. Postlethwaite. Anti-windup and bumpless transfer schemes. InProceedings of the UKACC International Conference on Control,1996:394-399
    [124] T.S. Hu, A.R. Teel, L. Zaccarian. Regional anti-windup compensation for linearsystems with input saturation. Proceedings of the American Control Conference.Portland, OR, USA,2005:3397-3402
    [125] S. Galeani, S. Onori, A.R. Teel et al. Regional, semiglobal, global nonlinearanti-windup via switched design. European Control Conference, Kos (Greece),2007:5403-5420
    [126] S. Galeani, S. Onori, L. Zaccarian. Nonlinear scheduled control for linear systemssubject to saturation with application to anti-windup control. Decision and Control,2007:1168-1173
    [127] S. Galeani, S. Onori, A.R. Teel et al. Nonlinear L2anti-windup for enlarged stabilityregions and regional performance. Proceedings of7th IFAC Symposium on NonlinearControl Systems, South Africa,2007:687-692
    [128]李殿璞.船舶运动与建模.国防工业出版社,2008:1-24
    [129] T.I. Fossen. High performance ship autopilot with wave filter. Proceedings of the10thInternational Ship Control Systems Symposium. Ottawa, Canada,1993,1-13
    [130] P.G.M. Van der Klugt. Rudder Roll Stabilization, PhD thesis, Delft University ofTechnology, The Netherlands,1987
    [131]魏纳新.水面舰艇在高海情下的横摇运动姿态控制技术研究.哈尔滨工程大学博士学位论文.2006:70-85
    [132]李高云.大型船舶航向\航迹智能容错控制研究.哈尔滨工程大学博士学位论文.2010:20-43
    [133]王先洲.船舶及潜艇操纵中的鲁棒控制研究.华中科技大学博士学位论文.2006:1-32
    [134]倪绍毓.波浪漂移力的数值模拟.海洋工程.1992,10(2):23-31
    [135] M.C. Fang. Second-order-steady forces on a slip advancing in waves. Internationalshipbuilding progress.1991,38(413):73-93
    [136]黄曼磊,鲁棒控制理论及应用,哈尔滨工业大学出版社,2007:104-175
    [137]刘小河.非线性系统分析与控制引论.清华大学出版社,2008:95-104
    [138]廖晓昕.稳定性的理论方法和应用.武汉:华中理工大学出版社,2002:11-32
    [139]孟杰.船舶电力系统的非线性鲁棒控制研究.哈尔滨工程大学博士学位论文.2011:16-25
    [140]胡跃明,非线性控制系统理论与应用.国防工业出版社,2005:36-53
    [141]贺昱曜,闫茂德.非线性控制理论及应用.西安电子科技大学出版社,2007:42-100
    [142]焦晓红,关新平.非线性系统分析与设计.电子工业出版社,2008:48-92
    [143]刘之涛.非线性系统控制理论若干问题研究及其应用.浙江大学博士学位论文.2010:15-20
    [144]张秀华,张庆灵.非线性微分代数系统的控制理论与应用.科学出版社,2007:42-56
    [145]卢强,梅生伟,孙元章.电力系统非线性鲁棒控制.清华大学出版社,2008:
    [146]孙元章,焦晓红,申铁龙.电力系统非线性鲁棒控制.清华大学出版社.2007:47-66
    [147]李殿璞.非线性控制系统.西北工业大学出版社,2009:30-47.
    [148]张正强.不确定非线性系统的Backstepping控制,南京理工大学博士学位论文.2011:1-3
    [149]刘文江.欠驱动水面船舶航向、航迹非线性鲁棒控制研究.山东大学博士学位论文.2012:1-15
    [150]刘芙蓉,陈辉,高海波.滚动时域滤波在动力定位船舶中的应用.武汉理工大学学报.2010,12:117-120
    [151] R.E. Reid, A.K. Tugcu, B.C. Mears. The use of wave filter design in Kalman filterstate estimation of the automatic steering problem of a tanker in a seaway. IEEETransactions on automatic control.1984,29(7):577-584
    [152]贾欣乐,张显库.船舶运动智能控制与H∞鲁棒控制.大连海事出版社,2002:3-18
    [153]卜仁祥.欠驱动水面船舶非线性反馈控制研究.大连海事大学博士学位论文.2007:53-89
    [154] T.I. Fossen, J.P. Strand. Passive nonlinear observer design for ships using Lyapunovmethods: full-scale experiments with a supply vessel. Automatica.1999,35:3-16
    [155]孙红星,李德仁.非线性系统中卡尔曼滤波的一种新线性化方法.武汉大学学报(信息科学版).2004,29(4):346-358
    [156] M. Botltayeb, D. Aubyr. A strong tracking extended kalman obsevrer for nonlneardiserete-time systems. IEEE Trans. Automat. Control.1999,44(8):1550-1556
    [157]杨桂芳.不确定系统的耗散性和无源性问题研究.南京理工大学博士学位论文.2005,13-22
    [158]沈坷婷.几类时滞神经网络的无源性分析.南京理工大学硕士学位论文.2012:5-17
    [159] C. Li, X. Liao. Passivity analysis of neural networks with time delay. IEEETransactions on Circuits and Systems-II.2005,(52):471-475
    [160] R.W. Osborne, Y. Bar-Shalom, P. Willett et al. Design of an adaptive passive collisionwarning system for UAVs. IEEE Transactions on Aerospace and Electronic Systems.2011,47(3):2169-2189
    [161] X.Y. Lou, B.T. Cui. Passive control of uncertain multiple input-delayed systems usingreduction method. Mathematics and Computers in Simulation.2010,(80):2258-2271
    [162]陈虹丽.基于π型舵船舶纵向多变量随机控制方法研究.哈尔滨工程大学博士学位论文.2004:3-34
    [163] T.I. Fossen, O.E. Fjellstad. Nonlinear modeling of marine vehicles in six degrees offreedom. Journal of Mathematical Modeling of Systems.1995,1(1):17-27
    [164] V. Bertram. Practical Ship Hydrodynamics. Butterworth-Heinemann. Oxford, UK.2004:6-27
    [165]林永屹,杜佳璐,牛杰.基于Backstepping的船舶航向自适应鲁棒非线性控制器设计.船舶工程.2007,29(1):24-27
    [166]张显库.船舶航向保持的非线性逆推鲁棒控制算法.大连海事大学学报.2007,33(2):80-83
    [167]朱齐丹,周芳,赵国良,包卫卫.基于反步法和滑模观测器的船舶航向控制.华中科技大学学报.2009,37(4):122-125
    [168]周丽明,刘胜.船舶航向保持静态抗饱和控制.船舶力学.2011,15(7):757-762
    [169]黄显林,葛东明.输入受限线性系统鲁棒抗饱和控制.哈尔滨工程大学学报.2010,12(31):1613-1618
    [170]汪庆,王永,彭程,缪礼锋.直升机两步法抗饱和控制.北京航空航天大学学报.2011,7(37):888-900
    [171] E.G. Gilbert, K.T. Tan. Linear systems with state and control constraints: the theoryand application of maximal output admissible sets. IEEE Transactions on AutomaticControl.1991,36(9):1009-1020
    [172]史忠科.饱和系统鲁棒控制及其在飞行控制中的应用.控制与决策.2005,5(20):589-591
    [173] A. Zheng, M.V. Kothare, M. Morari. Anti-windup design for internal model control.International Journal of Control.1994,60(5):1015-1024
    [174] K.C. Koh, H.S. Cho. A smooth path tracking algorithm for wheeled mobile robotswith dynamic Constraints. Journal of Intelligent and Robotic Systems.1999,24(4):367-385
    [175] N. Marchand, A. Hably. Global stabilization of multiple integrators with boundedcontrols. Automatica.2005,41(12):2147-2152
    [176] E.F. Mulder, M.V. Kothare, I.M. Morar. Multivariable anti-windup controllersynthesis using linear matrix inequalities. Automatica.2001,37(9):1407-1416
    [177] T. Peni, B. Kulcsar, J. Bokor. Model recovery anti-windup control for linear discretetime systems with magnitude and rate saturation. Proceedings of the AmericanControl Conference, Montréal, Canada,2012:1543-1548
    [178]盛振邦,刘应中.船舶原理.上海交通大学出版社,2003:316-317
    [179]刘胜,方亮.舰船舵/鳍联合减摇鲁棒控制研究.哈尔滨工程大学学报.2007,10:1109-1115
    [180] J. Lisowski. Optimal and game ship control algorithms for avoiding collisions at sea.WIT Transactions on Information and Communication Technologies.2008,39:525-534
    [181] W.H. Ho, C.H. Hsieh, J.H. Chou. Optimal course handling control for nonlinear shipmaneuvering systems. International Journal of Innovative Computing, Informationand Control.2010,6(10):4379-4388
    [182]彭秀艳,李小军,沈艳,赵希人.大型船舶航迹多变量随机最优控制.船舶工程.2003,25(3):41-45
    [183] K.T. Nomoto, K. Honda, S. Hirano. On the steering qualities of ships. Internationalshipbuilding Progress,1957,4(35):354-370
    [184] K. Ezal, Z. Pan, P.V. Kokotovic. Locally optimal backstepping design. Proceedings ofthe36th Conference on Decision and Control. San Diego, California, USA,1997:1767-1773
    [185] C.H. Shih, P.H. Huang, S. Yamamura, C.Y. Chen. Design optimal control of shipmaneuver patterns for collision avoidance: A review. Journal of Marine Science andTechnology.2012,20(2):111-121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700