用户名: 密码: 验证码:
立方氮化硼晶体电流—电压特性及变色现象的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文介绍了立方氮化硼(cubic boron nitride, cBN)单晶的电流-电压(I-V)特性和变色现象的研究过程和研究结果。cBN晶体在强电场的作用下发生了击穿现象,这使得晶体的I-V特性分成了三个阶段——击穿发生之前,击穿发生瞬间和击穿发生之后。本文对cBN晶体I-V特性的三个阶段分别进行了分析和讨论。通过对击穿前cBN晶体I-V特性曲线的拟合和分析,得出结论,在击穿发生之前cBN晶体的I-V关系主要遵循Poole-Frenkel效应描述的变化规律。并且,在实验所使用的金属-半导体-金属式的电极结构中,肖特基效应的影响可以忽略,这使得利用这种电极结构进行cBN晶体的电学特性的研究时可以不考虑电极与晶体接触处的影响,极大地简化了研究cBN晶体的半导体特性实验。对击穿瞬间和击穿后I-V特性的研究表明,cBN晶体的击穿是在强电场作用下晶体中的浅能级杂质大量电离而引起的。
     在击穿的瞬间,cBN晶体发生了电致变色现象,晶体的颜色由琥珀色变为了黑色。击穿之后,随着电流的增加,cBN晶体颜色改变的程度越来越大。而随着cBN晶体的I-V特性回复到击穿发生之前的状态,其颜色也由黑色变回琥珀色。cBN晶体的这种电致变色现象与传统的电致变色过程有着明显的不同。我们研究并首次报导了cBN晶体的这种电致变色现象。本文详细描述了cBN晶体的电致变色,并且通过一些实验设计和cBN晶体的Raman光谱,研究了cBN晶体电致变色的特点和产生原因。cBN晶体电致变色现象的特点使其可能作为电光调制器和光开关等光电子器件而得到应用。本文介绍了基于cBN晶体的电致变色现象的直、交流电光调制的特性。在研究cBN晶体的电致变色的过程中,我们发现该晶体还具有热致变色的特性。本文在最后对cBN晶体的热致变色做了详细的介绍和研究。立方氮化硼晶体的变色现象的发现,一方面使我们加深了对cBN晶体性质的认识,另一方面,也使cBN晶体的应用前景和应用领域得到进一步的拓展。
Cubic boron nitride (cBN) is a kind of synthetic crystal at high pressure and high temperature (HPHT) with wide band-gap of about 6.4eV, and belongs to the indirect band-gap semiconductor. Inartificial cBN has not been found in nature so far. Although the cBN crystal is the simplest III-V compound, it has a high hardness, which is next to diamond and its thermal and chemical stability against ferrous materials is superior to that of diamond. Therefore, cBN has been utilized for the industrial application as cutting tools and abrasives.
     cBN has zinc blende structure with 4 3m symmetry and second-order nonlinear optical susceptibility, so the cBN crystal is a kind of nonlinear optical materials. cBN can be made into both p- and n-type semiconductors when suitable impurities are doped. Furthermore, cBN is transparent within the range of all visible light, most infrared and ultraviolet spectra. Therefore it will have wide applications in optoelectronics and microelectronics.
     The synthesis of the cBN crystal is extremely difficult, and the synthesized monocrystal is very small, whose maximal size is only about 3mm. So the studies and applications on the semiconducting and optical properties of cBN crystals are infrequent. We have researched the electronic and optical properties of cBN single crystals under high voltage, measured the nonlinear voltage-current (I-V) curve and observed the electrochromism and thermochromism of cBN crystals.
     According to the characteristics of the I-V curve, we divide it into three parts, which are the conditions before breakdown, under breakdown and after breakdown. Before breakdown, the I-V curve of the cBN single obeys the rule of Poole-Frankel effect. Then, when the voltage on the cBN crystal raise up to a threshold, lots of electrons on the impurity energy levels are ionized and come into conduction band of the crystal. Resulting from the increasing of the free electrons in the conduction band, the resistance of the crystal decreases, and so the voltage on the cBN crystal decreases. As the current increase, the voltage on the crystal decrease after breakdown. At the same time, we also studied on the electronic properties of cBN crystal depending on the temperature, measured the I-V and I-T curves under different temperatures, and then obtained the location of the shallow donor-energy level——about 0.4eV below conduction band.
     During the studying on the I-V properties of the crystal, we discovered the electrochromism of the cBN single crystal, which is different from the typical one. The colour of the cBN crystal changed into black from amber after breakdown. We observed the phenomenon of the cBN crystal carefully and described it in detail in this paper. We measured the dependence of the difference of the absorption coefficient of the cBN crystal which came from the electrochromism of the crystal on the wavelength and the current, and characterized the crystal by confocal microscopy Raman spectra. The origin of the electrochromism is considered to be resulted from the impurities in the cBN crystal. Moreover, the coloration of the cBN also occurred under a high temperature. As the temperature rises up, the color of the cBN crystal becomes darker and darker. And when it increases above 700K, the crystal changes black finally. This is the thermochromism of the cBN single crystal. Both the eletrochromism and the thermochromism of the cBN are repeatable.
     Due to the electrochromism, the absorption coefficient of the cBN crystal is increased in visible region and infrared region. The large wavelength range of the absorption enhancement induced by the electrochromism of the cBN crystals indicates a wider region of operation wavelength than other electro-optic (EO) modulators. After the breakdown and electrochromism occur, the change of the absorption coefficient of the cBN crystal increases linearly with the current rising. The property of the absorption coefficient relevant to the breakdown is just suitable to fabricate optical switches. Furthermore, the absorption of the cBN crystal induced by the electrochromism is almost independent of the polarization of the incident light. These characteristics ensure the potential applications of cBN crystal in EO modulators, optical switches, and other optoelectronic devices.
引文
[1] EVANS D A, MCGLYNN A G, TOWLSON B M, et al. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using lumenscence excitation spectroscopy [J]. J. Phy.: Condens. Matter, 2008, 20: 075233.
    [2] RODRIGUEZ-HERMANDCZ P, GONZALES-DIAZ M, MUNOZ A, Electronic and Structural Properties of Cubic BN and BP [J]. Phy. Rev. B, 1995, 51(20): 14705.
    [3] FERHAT M, ZAOUI A, CERTIER M, et al. Electronic Structure of BN, BP and Bas [J]. Physica B, 1998, 252: 229.
    [4] VEL L, DEMAZEAU G, ETOURNEAU J, Cubic boron nitride: synthesis, physicochemical properties and applications [J]. Mater. Sci. Eng. B, 1991, 10: 149-164.
    [5] MIYAKE S, WATANABE S, MURAKAWA M, Tribological Study of Cubic Boron Nitride Film [J], Thin Solid Films, 1992, 212: 262-266.
    [6] HEBIG K H, Fundamentals of the tribological behavior of diamond, diamond- like caron and boron nitride coatings [J]. Surf Coat Techno. 1995, 76-77: 540-547.
    [7] LITVINOV D, TAYLOR C A, CLARKE R, Semicoducting cubic boron nitride [J]. Diamond Related. Mater., 1998, 7: 360-364.
    [8] BARTH K L, LUNK A, ULMER J, Influence of the deposition parameters on boron nitride growth mechanisms in a hollow cathode arc evaporation device [J]. Surf. Coat. Technol., 1997, 92: 96-103.
    [9] WENTORF R F, Cubic Form of Boron Nitride [J]. J.Chem.Phys., 1957,26(4): 956.
    [10] CHRENKO R M, Ultraviolet and infrared spectra of cubic boron nitride [J]. Solid Statd Communications., 1974, 14:511-515.
    [11] ZUNGER A, FREEMAN A J, Ab initio self-consistent study of the electronic structure and properties of cubic boron nitride [J]. Physical Review B, 1978, 17: 2030-2042
    [12] MISHIMA O, YAMAOKA S, FUKUNAGA O, Crystal growth of cubic boron nitride by temperature difference method at ~55 kbar and ~1800°C [J]. J.Appl. Phys.,1987, 61: 2822-2825.
    [13] MISHIMA O, TANAKA J, YAMAOKA S, et al. High-Temperature Cubic Boron Nitride P-N Junction Diode Made at High Pressure [J]. Science, 1987,238 (9): 181-182.
    [14] MISHIMA O, ERA K, TANAKA J, et al. Ultraviolet light-emitting diode of a cubic boron nitride pn junction made at high pressure [J]. Appl, Phys.Lett., 1988, 53(11): 962-964.
    [15] MIYATA N, MORIKI K, Optical constants of cubic boron nitride, [J]. Phys. Rev. B, 1989, 40(17):12028-12029.
    [16] TANIGUCHI T, TANAKA J, MISHIMA O, et al. High pressure synthesis of semiconducting Be-doped polycrystalline cubic boron nitride and its electrical properties [J]. Appl. Phys. Lett., 1993, 62-6:576-578
    [17] SOLOZHENKO V L, Thermodynamics of dense boron nitride modifications and a new phase P, T diagram for BN [J]. Thermochim Acta, 1993, 218: 221-227.
    [18] TROZEK T, SZMIDT J, JAKUBOWSKI A, Electrical behaviour and breakdown in plasma deposited cubic BN layers [J]. Diamond and Related Materials, 1994, 3: 720-724.
    [19] TANIGUCHI T, TERAJL T, KOIZUMI S, et al. Appearance of n-Type Semiconducting Properties of cBN Single Crystals Grown at High Pressure [J], Jpa. J. Appl. Phys. 2002, 41(2A): 109.
    [20] TANGUCHI T, WATANABE K, KOIZUMI S, et al., Ultraviolet light emission from self-organized p-n domains in cubic boron nitride bulk single crystals grown under high pressure [J], Appl. Phys. Lett., 2002, 81(22): 4145-4147.
    [21] SHISHONOK E M, TANKGUCHI T, WATANABE K, et al. Raman Investigations of Be-doped Cubic Boron Nitride [J]. Journal of Wide Bandgap Materials, 2002, 10: 53-68.
    [22] TANIGUCHI T, KOIZUMI S, WATANABE K, et al. High pressure synthesis of UV-light emitting cubic boron nitride single crystals [J]. Diamond and RelatedMaterials, 2003, 12: 1098-1102.
    [23] WANG C X, YANG G W, ZHANG T C, et al. High-quality heterojunction between p-type diamond single-crystal film and n-type cubic boron nitride bulk single crystal [J]. Applied Physics Letters, 2003, 83: 4854-4856.
    [24] ERASMUS R M, COMINS J D, Photoluminescence spectroscopy of electron- irradiation induced defects in cubic boron nitride [J]. Phys. Stat. Sol.(c)1, 2004, 9: 2269-2273.
    [25]陈光华,朱秀红,邓金祥,et al.高质量宽带隙立方氮化硼薄膜的研究进展[J].物理,2004,33:823-825.
    [26] TANIGUCHI T, WATANABLE K, KOIZUMI S, Defect characterization of cBN single crystals grown under HP/HT [J]. Phys. Stat. Sol. (a), 2004, 201: 2573-2577
    [27]张铁臣,立方氮化硼触媒多样性及生长特性研究[J].金刚石与磨料磨具工程,2004,139 :27-30.
    [28] SHISHONOK N A, GATAL’SKIL G V, EROSH A Y, Crystallography Reports, Vol.50, Suppl.1, 2005, pp.s58-s61.
    [29] DOU Q P, MA H T, JIA G, et al. Light emission from cBN crystal synthesized at hight pressure and high temperature [J]. Appl. Phys. Lett., 2006, 88 (15): 154102-1-3.
    [30]杜勇慧,张铁臣,在hBN-Li3N-B体系中合成黑色立方氮化硼[J].材料研究学报,2007,21: 669-672.
    [31] SHISHONOK E M, LEONCHIK S V, STEEDS J W, et al. Strong ultraviolet luminescence from cerium- and gadolinium-doped cubic boron nitride [J]. Diamond and Related Materials, 2007, 16: 1602-1607.
    [32] EVANS D A, MCGLYNN A G, TOWLSON B M, et al. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy [J]. J.Phys.:Condens.Matter, 2008, 20: 075233(7pp)
    [33] ZHANG W J, CHONG Y M, BELLO I, et al. Nucleation, growth and characterization of cubic boron nitride (cBN) films [J]. J. Phys. D: Appl. Phys., 2007, 40: 6159-6174
    [34] SHANFIELD S, WOLFSON R, Ion beam synthesis of cubic boronnitride [J]. J.Vac. Sci. Technol. A, 1983, 1: 323-325.
    [35] DWORSCHAK W, JUNG K, EHRHARDT H, Growth mechanism of cubic boron nitride in a r.f. glow discharge [J]. Thin Solid films, 1995, 254:65-74.
    [36] PAISLEY M J, BOURGET L P, DAVIS R F, Boron nitride thin films by microwave ECR plasma chemical vapor deposition [J]. Thin Solid films, 1993, 235:30-40
    [37] KESTER D J, AILEY K S, LICHTENWALNER D J, et al. Growth and characterization of cubic boron nitride thin films [J]. Vacuum Science & Technology A, 1994, 12: 3074-3081
    [38] BADI N, BOUSETTA A, LU M, et al. Effect of the Growth Process on Boron Nitride Thin Films Electrical Properties [J]. Applications of Diamond Films and related Materials: Third International Conference, 1995, pp849-853.
    [39] MURAKAWA M, TAKEUCHI S, Forming of a Grinding Wheel Using a Dresser With Brazed Diamond Films [J]. Materials Science Engineering,1991,A140: 759-763
    [40] LUTHJE H, BEWILOGUA K, DAAUD S, et al. Preparation of cubic boron nitride films by use of electrically conductive boron carbide targets [J]. Thin Solid films, 1995, 257:40-50.
    [41] MASAHIRO M, TOYONOBU Y, Preparation of cubic boron nitride films by radio frequency bias sputtering [J]. 1992, 52: 87-92.
    [42] SOLTANI, BARKAD H A, MATTALAH M, et al. 193nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors [J]. Applied Physics Letters, 2008, 90: 053501.
    [43] LIAN G, ZHANG X, ZHU L L, et al. Inducing effect of halide species in the hydrothermal synthesis of cubic boron nitride [J], Journal of Crystal Growth, 2009, 311: 1600-1606.
    [44] TANIGUCHI T, TANAKA J, MISHIMA O, et al. High pressure synthesis of semiconducting Be-doped polycrystalline cubic boron nitride and its electrical properties [J]. Appl. Phys. Lett., 1993,62(6):576-578.
    [45] ERASMUS R M, COMINS J D, FISH M L, Raman and photoluminescence spectra of indented cubic boron nitride and polycrystalline cubic boron nitride [J].Diamond and Related Materials, 2000,9: 600-604.
    [46] WANG B, WANG R Z, ZHOU H, et al. Field emission mechanism from nanocrystalline cubic boron nitride films [J]. Microelectronic Journal, 2004, 35: 371-374.
    [47] CUMINGS J, ZETTL A, Field emission and current-voltage properties of boron nitride nanotubes [J]. Solid state communications, 2004, 129: 661-664.
    [48] REN C, CHEN Z G, JIA G et al. Absorption Related to Electrochromism in Cubic Boron Nitride Single Crystals [J]. CHIN. PHYS. LETT., 2009, 26: 067804.
    [1]张铁臣,邹广田,立方氮化硼[M],吉林大学出版社,1993.
    [2] EDGAR J H, Prospects for device implementation of wide band gap semiconductors [J]. Journal of Materials Research, 1992, 7: 235-252.
    [3] SOLAZHENKO V L , WILL G, HUPEN H, et al. Isothermal compression of thombohedral boron nitride up to 14GPa [J]. Solid State Commun. 1994, 90: 65-67.
    [4] RIEDEL R, Novel ultrahard materials [J]. Adv. Mater., 1994, 6: 549-560.
    [5] TOSHITSUGU M, NAOKI U, HIROYUKI N, et al. Synthesis and structure of chemically vapour-deposited boron nitride [J], Journal of Materials Science, 1986, 21 (2): 649– 658.
    [6] SU Y X, Vacuum-ultraviolet reflectance spectra and optical properties of nanoscale wurtzite boron nitride [J]. Phys. Rew. 1994, 50(24): 18637-18639.
    [7] ROTHER B, WEISSMANTEL C, Structure and chemical composition of RF-sputtered boron nitride films [J]. Phys. Status Solid, 1985, A 87: K119-K121.
    [8] LU Z W, BARRY M K, FONG C Y, Electronic structure of defects and impurities in III-V nitrides :Vacancies in cubic boron nitride [J]. Phys. Rev. B, 1996, 53(8): 4377
    [9] EVANS D A, MCGLYNN A G, TOWLSON B M, et al. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using lumenscence excitation spectroscopy [J]. J. Phys.: Condens. Matter, 2008, 20: 075233(7pp).
    [10] VEL L,DEMAZEAU G, ETOURNEAU J, Cubic boron nitride :synthesis,physicochemical properties and application [J]. Materials Science Engineering: B, 1991, 10:149-164.
    [11] YU Z,LINAGAWA K, JIN Z,Tribological properties of cBN coating in vacuum at high temperature [J]. Surf. Coat. Technol. 1994, 70: 147.
    [12] PARK P T, TERAKURA T , HAMMADA H, BAND-STRUCTURE CALCULATIONS FOR BORON NITRIDES WITH THREE DIFFERENT CRYSTAL STRUCTURES [J]. J. Phys. C, 1987, 20:1241.
    [13] GARDINIER C F, PHYSICAL PROPERTIES OF SUPERABRASIVES [J]. Cer. Bul. 1988, 67: 1006.
    [14] WAKATSUKI M,ICHINOSE K,AOKI T,SYNTHESIS OF POLYCRYSTALLINE CUBIC BN [J]. Mater Res Bull,1972, 7: 999.
    [15] ICHINOSE K, WAKATSUKI M , AOKI T , et al. SYNTHESIS OF POLYCRYSTALLINE CUBIC BN [J]. Rev Phys Chem Jpn,1975,436.
    [16] DEVRIES R C,Cubic boron nitride:handbook of properties [M]. Rep 72 CRD 178,Gereral Electric Company,1972
    [17] SOLOZHENKO V L, Dokl. Akad. Nauk. SSSR 1988, 301: 147.
    [18] LANDOLT-BORNSTEIN, New Series [M]. editor. Berlin:Springer;1972.
    [19] WENTORF R H Jr. Synthesis of the Cubic Form of Boron Nitride [J]. Journal of Chemical Physics, 1961, 34(3): 809-812.
    [20] TANI E,SOMA T,SAWAOKA A,et al. Jpn J Appl Phys, 1971, 10: 1605.
    [21] KOBAYASHI T ,SUSA K,Taniguchi S. PRESSURE AND TEMPERATURE STABILITY REGION OF CUBIC IN THE PRESENCE OF AMMONIUM BORATE [J]. Mater Res Bull, 1977, 12: 847.
    [22] REDDY RR,REDDY A S R,RAO T V R, Physica C,1985, 132: 373.
    [23] KUHN H G,Dissociation energies and spectra of diatomic molecules [J]. Journal of Modern Optics, 1969, 16: 265.
    [24] DARENT B B,Bond dissociation energies in simple molecules [J]. NBS Natl Stand Ref Data Ser,1970,30
    [25] HILDENBRAT D L, MURAT E, Dissociation Energy and Ionization Potential of Silicon Monoxide [J]. J. Chem. Phys., 1969, 51: 807.
    [26] HULTGREN R, ORR R L, KELLY K K, Supplement to selected values of thermodynamic properties of metals and alloys [M]. Berkeley,CA:University of California, 1967.
    [27] GHODGAONKAR A M, RAMINI K,Acta Phys Pol A,1982, 61: 151.
    [28] WENTZCOVITCH R M,CHANG K J,COHEN M L, Electronic and structural properties of BN and BP [J]. Phys Rev B,1986, 34: 1071.
    [29] ZUNGER A,FREEMAN A,J Phys B,1978, 17: 2030.
    [30] DOVESI R,PISANI C, ROETTI C,DELLAROLE P,Exact-exchange Hartree-Fock calculations for periodic systems. IV. Ground-state properties of cubic boron nitride [J]. Phys Rev,1981, 24: 4170.
    [31] PODRIGUEZ-HERNANDEZ P, GONZALEZ-HERNANDEZ P, MUNOZ A, Electronic and structural properties of cubic BN and BP [J]. Phys Rev B,1995, 51: 10705.
    [32] ZHANG X W,BOYON H G,DEYNEKA N,ZIEMANNN P,et al. Epitaxy of cubic boron nitride on (001)-orinented diamond [J]. Nature Materials,2003, 2: 312.
    [33] DEVRIES R C,General Electric Company Corporate Research and Development Report [R]. No.72CRD178,1972
    [34] Zhang W J, KANDA H, MATSUMOTO S, Cathodoluminescence of cubic boron nitride films deposited by chemical vapor deposition [J]. Appl. Phys. Lett., 2002, 81: 3356-3358.
    [35] MANFREDOTTI C, VITTONE E, LOGIUDICE A, et al. Ionoluminescence in CVD diamond and in cubic boron nitride [J]. Diamond and Related Materials, 2008, 10: 568-573.
    [36] DOU Q P, MA H T, JIA G, et al. Light emission from cBN crystal synthesized at high pressure and high temperature [J]. Appl. Phys. Lett. 2006, 88: 154102(3pp).
    [37] TANIGUCHI T, WATANABE K, KOIZUMI S, et al. Ultraviolet light emission from self-organized p-n domains in cubic boron nitride bulk single crystals grown under high pressure [J]. Appl.Phys.Lett. 2002, 81: 4145-4147.
    [38] ZHANG W J, CHONG Y M, BELLO I, et al. Nucleation, growth and characterization of cubic boron nitride (cBN) films [J]. J. Phys. D: Appl. Phys. 2007, 40: 6159-6174.
    [39] WENTORF R H, Cubic Form of Boron Nitride [J]. J. Chem. Phys. 1957, 26(4): 956.
    [40] WENTORF R H, Synthesis of the Cubic Form of Boron Nitride [J]. The Journal of Chemical Physics, 1961, 34: 809-811.
    [41] TAKASHI T, SHINOBU Y, Spontaneous nucleation of cubic boron nitride single crystal by temperature gradient method under high pressure [J]. Journal of Crystal Growth, 2001, 222: 549-557.
    [42] LIAN G, ZHANG X, ZHU L L, et al. Inducing effect of halide species in the hydrothermal synthesis of cubic boron nitride [J]. Journal of Crystal Growth, 2009, 311: 1600-1606.
    [43]望贤成,张铁臣,贾晓鹏,et al. MgO在Mg-hBN体系中对合成cBN晶体的影响[J].高压物理学报,2002, 16(3): 227-230.
    [44] MISHIMA O, TANAKA J, YAMAOKA S, et al. High-temperature cubic boron nitride p-n junction diode made at high pressure [J]. Science, 1987, 238: 181-183.
    [45] MISHIMA O, ERA K, TANAKA J, et al. Ultraviolet light-emitting diode of a cubic boron nitride pn junction made at high pressure [J]. Appl. Phys. Lett. 1988, 53(11): 962-964.
    [46] SOLTANI A, BARKAD H A, MATTALAH M, et al. 193nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors, Appl. Phys. Lett. 2008, 92: 053501(3pp).
    [47] CAO K, CHEN Z G, REN C, et al. Measurement of second-order nonlinear optical susceptibility of cBN crystal synthesized at high pressure and high temperature, Microelectronics Journal, doi:10.1016/j.mejo.2008.07.016
    [1] BN-Boron Nitride, Band structure and carrier concentration [J/OL], http://www.ioffe.rssi.ru/SVA/NSM/Semicond/BN/bandstr.html
    [2] MISHIMA O, TANAKA J, YAMAOKA S, et al. High-Temperature Cubic Boron Nitride P-N Junction Diode Made at High Pressure [J]. Science, 1987, 238: 181-183.
    [3] TANIGUCHI T, WATANABE K, KOIZUMI S, et al. Ultraviolet light emission from self-organized p-n domains in cubic boron nitride bulk single crystals grown under high pressure [J]. Applied Physics Letters, 2002, 81: 4145-4147.
    [4] SOLTANI A, BARKAD H A, MATTALAH M, et al. 193nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors [J], Applied Physics Letters, 2008, 92: 053501.
    [5] CAO K, CHEN Z G, REN C, et al. Measurement of second-order nonlinear optical susceptibility of cBN crystal synthesized at high pressure and high temperature [J]. Microelectronics Journal, doi: 10.1016/j.mejo.2008.07.016
    [6] DOU Q P, CHEN Z G, JIA G, et al. Nonlinear Current-Voltage Characteristics and Electroluminescence of cBN Crystal [J]. Chinese Journal of Semiconductors, 2006, 27: 609-612.
    [7]刘海波,立方氮化硼单晶半导体特性及电致发光现象的研究[D].长春:吉林大学电子科学与工程学院,2008.
    [8] SHISHONOK N A, GATAL’SKII G V, EROSH A Y, Flow of Space-Charge- Limited Currents in Cubic Boron Nitride [J], Crystallography Reports, 2005, 50: S58-S61.
    [9] SIMMONS J G, Poole-Frenkel Effect and Schottky Effect in Metal-Insulator- Metal Systems [J]. Physical Review, 1967, 155: 657-660.
    [10] FRENKEL J, Tech.Phys.USSR 5, 685 (1938); Phys. Rev. 1938, 54: 647.
    [11] Poole-Frenkel Effect, http://en.wikipedia.org/wiki/Poole-Frenkel_effect
    [12] TANIGUCHI T, TERAJI T, KOIZUMI S, et al. Appearance of n-typesemiconducting properties of cBN single crystals grown at high pressure [J]. Jpn. J. Appl. Phys. Vol. 2002, 41, L109-L111.
    [13]张铁臣,邹广田,立方氮化硼[M],吉林大学出版社,P17
    [14]王立模.本征击穿电场与禁带宽度的关系[J].微电子学, 2006, 36(6): 702~706.
    [15] BROZEK T, SZMIDT J, JAKUBOWSKI A, Electrical behaviour and breakdown in plasma deposited cubic BN layers [J]. Diamond Relat Mater, 1994, 3: 720-724.
    [16] TANIGUCHI T, YAMAOKA S, Spontaneous nucleateon of cubic boron nitride single crystal by temperature gradient method under high pressure [J]. Journal of Crystal Growth, 2001, 222: 549-557.
    [17] ORELLANA W, CHACHAM H, Energetics of carbon and oxygen impurities and their interaction with vacancies in cubic boron nitride [J], Physical Review B, 2000, 62: 10135-10141.
    [18] PIQUINI P, MOTA R, SCHMIDT T M, et al. Theoretical studies of native defects in cubic boron nitride [J]. Physical Review B, 1997, 56: 3556-3559.
    [1]饶凯,全固态电致变色器件的研究[D],硕士学位论文,西南师范大学
    [2]沈庆月,陆春华,许仲梓,电致变色材料的变色机理及其研究进展[J],材料导报,2007, 21: 284-292.
    [3] DEB S K, Reminiscences on the discovery of electrochromic phenolmena in transition metal oxides [J]. Solar Energy Materials and Solar Cells, 1995, 39: 191-201.
    [4]丘思畴,黄汉尧,舒兴胜,电致变色材料及应用[J].功能材料,1994, 25: 104-110.
    [5] SACHDEV H, Influence of impurities on the morphology and Raman spectra of cubic boron nitride [J]. Diamond and Related Materials, 2003, 12: 1275-1286.
    [6] DOLL G L, in: J.Edgar (Ed.), Properties of Group III Nitrides [M], Inspec, London, 1994, p.241.
    [7]王光祖,张奎,张相法,立方氮化硼的颜色与其内部杂质的关系[J],技术与产品,2008, 209: 1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700