用户名: 密码: 验证码:
萘降解菌生物降解萘及合成靛蓝研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开展生物降解萘的研究,不仅可以消除环境中残存的萘达到治理环境污染的目的,而且可以实现萘的生物转化和生物降解,对社会的发展和绿色化工产业的建立都有重要的意义。萘是最常见的一种多环芳烃,目前世界上许多水体,包括湖泊甚至地下水中都有萘的存在,鉴于其潜在的毒害作用,其在自然环境中越来越高的浓度已引起人们的密切关注。靛蓝广泛应用于印染、医药和食品工业,然而目前的化学合成靛蓝反应中大量使用的苯胺是一种潜在的致癌物质。因此,采用生物转化法生产靛蓝,在降低生产成本、减少能耗、生产安全及环境安全等方面无疑都具有重要意义。
     为了提高帕氏氢噬胞菌(Hydrogenophaga Palleronii) LHJ38在以茶为唯一碳源和能源的培养基中的生长能力和萘的降解能力,本实验将两相体系技术合理的应用于其中。分别测定了该菌株在单相体系和两相体系中的生长曲线和萘降解曲线,同时对经两相体系培养后的油相细胞和水相细胞的生长能力和降解能力进行了深入研究。研究结果表明:最佳的两相体系是由石蜡油和金属盐培养基(3:100)组成的反应系统,其中萘的最佳浓度为2g/L。Hydrogenophaga Palleronii LHJ38在此两相体系中培养72h后最大生物量达到4.248g/L是单相反应系统的4倍。而且该两相体系中反应96h后92%的萘被降解掉,132h内浓度为2g/L萘完全被降解,萘的降解能力比在单相系统中的降解能力高出两倍还多。经两相体系培养后的细胞萘降解能力也大大提高,而且从油相中获得的细胞的萘降解速率比从水相中获得的细胞要快2.7倍。
     萘降解菌株Hydrogenophaga Palleronii LHJ38在液体培养摹和固体琼脂培养基上能够利用吲哚生物合成靛蓝。在LB培养基中不加其他诱导剂就能迅速合成靛蓝,以LB培养基为能源和碳源的Hydrogenophaga Palleronii LHJ38生物合成靛蓝的最大数率为25.3mg min'g(dry weight)'。Hydrogenophaga Palloronii LHJ38在金属盐培养基中有微弱的生物合成能力,但是在金属盐培养基中加入水杨酸钠,经过两天的诱导培养,Hydrogenophaga Palleronii LHJ38整细胞生物合成靛蓝的能力比没有经过水杨酸钠诱导大为提高,其生物合成靛蓝的最大浓度达9.99mg/L。经过水杨酸钠诱导的Hydrogenophaga Palleronii LHJ38整细胞生物合成靛蓝的能力提高了77倍。Hydrogenophaga Palleronii LHJ38在LB培养基中培养两天,在缓冲溶液中合成靛蓝的最高浓度为19.71mg/L,其生物合成靛蓝的能力为加入水杨酸钠时的2.80倍。与其最适生长pH值不同,Hydrogenophaga Palleronii LHJ38生物合成靛蓝的最佳pH范围是8.45-9.45,在pH为8.95的情况下生物合成靛蓝的能力是其在pH值为6.95的情况下的两倍。
The biodegradation of naphthalene can eliminate naphthalene in environment to decrease pollution. In addition, as catalyst, enzyme or cells in biodegradation process which may involve in biotransformation of naphthalene, have important significance to social development and green chemical industry. Naphthalene is the most familiar polycyclic aromatic hydrocarbon and exists in all of the waters in the world. Due to the potential toxicity, and the higher and higher concentration in environment, naphthalene has evoked abroad attention in the world range. Indigo is a traditional pigment extensively used in the printing and dyeing, pharmaceutical and food industry. Aniline is a latent carcinogenic substance which is vastly used in the reaction of chemosynthesis of indigo. Biosynthesis of indigo has signality in reduce operating costs and decrease energy consumption and enhance the manufacture security and environment security.
     Naphthalene-degradaing bacteria Hydrogenophaga Pallcronii LHJ38 can grow on naphthalene as sole energy and carbon source. The growth and naphthalene degradation curve of the strain were determined in biphase and monophase system respectively. The growth and naphthalene degradation activity of cells from oil phase and aqueous phase were compared carefully. It is higher more than 4 fold, the maximum biomass of 4.248g/l. was achieved after 72h incubation under the optimum conditions of 3mL paraffin oil and 0.2g naphthalene in 100mL mineral salt medium (MSM), than the MSM monophase system. In the biphasc system, the naphthalene degradation capacity of Hydrogenophaga Palleronii LHJ38 was higher more than 2 times than that in the monophase system. The naphthalene (2g/l.) can be degraded completely in 132h by adding 10mL·cell suspension (0.2mg dry weight cell/mL). The naphthalene degradation rate of cells from oil phase was 2.7 fold as fast as that of cells from aqueous phase.
     The biosynthesis of indigo by naphthalene-degradaing bacteria Hydrogenophaga Palleronii LHJ38 from indole in mineral medium and on solid agar medium has been studied. Indigo formation capacity by Hydrogenophaga Palleronii LHJ38 cell growing in mineral salts medium in the presence of salicylate greatly increased. Contrarily. indigo formation capacity by Hydrogenophaga Palleronii LHJ38 cell growing in LB medium in the presence of salicylate decreased by 2 fold. The optimum pH ranges for biosnythesis of indigo formation by Hydrogenophaga Palleronii LHJ38 growing in LB medium at pH 8.95 increased 2 fold compared with that at pH 6.95.
引文
[1]Edwards N T. Reviews and analysis:Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment—A review. Environ and Quality.1983,12:427-441
    [2]Jacob J, Karcher W, Belliardo J J. Polycyclic aromatic hydrocarbons of environmental and occupational importance. Fresen.J. Anal.Chem.1986,323:1-10
    [3]方世纯,郝瑞霞,鲁志强.枯草芽孢杆菌(Bacillus subtilis)降解萘的动力学研究.高校地质学报,2007,13(4):682-687
    [4]田蕴,郑天凌,胡忠.海洋环境中多环芳烃的微生物降解研究进展.应用与环境生物学报,2003,(9):439-443
    [5]丁克强,骆永明.多环芳烃污染土壤的生物修复.土壤.2001,(4):169-178
    [6]陆悦飞.中空海藻酸钙微胶囊固定化大肠杆菌表达P450BM-3催化吲哚生成靛蓝的研究.浙江大学博士论文.2006:12-24
    [7]任吉元,王文涛,李红.近期靛蓝生产工艺的研究进展.染料工业.1997,34(4):22-24
    [8]Martin H, Thi N, Phuong B. Synthesis of the first deprotected indigo N-glycosides (blue sugars) by reductive glycosylation of dehydroindigo. Tetrahedron Letters.2006,47(32):5741-5745
    [9]李崇瑛,王安,杨涛等.食用天然色素的纯化与研究进展.中国调味品.2007,(9):19-22
    [10]曹雁平.我国天然食用色素研究现状.食品发酵与工业.2007,33(1):80-83
    [11]马沛,丁建江.微生物降解多环芳烃(PAHs)的研究进展.生物加工过程.2003,(1):42-46
    [12]Elena A, Mordukhova T. Involvement of Naphthalene Dioxygenase in Indole-3-acetic Acid Biosynthesis by Pseudomonas putida. FEMS Microbiology Letters.2000,190:279-285
    [13]Chang B V, Shiung L C, Yuan S Y. Anaerobic Biodegradation of Polycyclic Aromatic Hydrocarbon in Soil. Chemosphere.2002,48:717-724
    [14]王岳五,马生武.铜绿假单胞菌AS1.860萘降解质粒的转化.遗传学报,1985,12(4):257-261
    [15]蔡宝立,苏同芳,高才昌.萘降解质粒ND1.860和NAH7DNA的同源性研究.生物化学杂志.1988,4(6):552-556
    [16]Andrea E K, Andreas S, Hans J K. Metabolism of naphthalene by the biphenyl-degrading bacterium Pseudomonas paucimobilis Q1. Biodegradation.1991,2:115-120
    [17]Philip M D, Henry K J M. Dynamic response of naphthalene biodegradation in a continuous flow soil slurry reactor. Biodegredation.1991,2:81-91
    [18]吴云,马国华,王方.短芽孢杆菌(Bacillus breuis) J74降解萘和靛蓝形成的研究.环境科学学报,1992,12(2):249-252
    [19]王岳五,张蓓.铜绿假单胞菌PIC-N的萘降解基因的研究.微生物学通报,1994,21(1):11-15
    [20]蔡宝立,王淑芳,黄今勇.黄杆菌ND3菌株的分离和降解萘的研究.环境化学.1998,17(5):434-438
    [21]潘继伦,启健洁,蔡宝立.降解蔡的黄杆菌菌株ND3菌株的固定化研究.离子交换与吸附.1999,15(1):49-53
    [22]张心平,岳晓含,黄今勇.萘降解质粒pND6的分离和鉴定.应用与环境生物学报,2000,6(2):187-190
    [23]蔡宝立,刘斌,马琳.萘降解质粒pND621中萘趋化基因nahY的克隆和核苷酸序列分析.应用与环境生物学报,2002,8(6):662-665
    [24]潘学芳,倪秀珍,王浩.菌株8-A-2对萘降解特性的初步研究.东北师大学报自然科学版,2003,35(1):70-73
    [25]蔡宝立,李永君,梁靖.降解萘的假单胞菌ND24菌株的分离和萘污染土壤的生物修复.食品与生物技术学报,2005,24(4):6-9
    [26]温洪宇.菌株P-3处理炼油废水与N-1降解萘的研究.中国科学院,2005.
    [27]杨春,杨琦,杨素银.萘好氧降解菌的筛选及降解特性的初步研究.环境科学与技术.2005, 28(6):19-21
    [28]宋昊,邱森,章俭.高活性萘降解细菌Hydrogenophaga Palleron ii LHJ38的研究.化工环境.2006,26(2):87-90
    [29]刘海珠.好氧生物处理法降解蔡的研究.中国地质大学博十了论文.2006
    [30]赵璇,陶雪琴,卢桂宁.蔡降解菌的筛选及降解性能的初步研究.广东化工.2006,33(156):37-39
    [31]温洪宇,廖银章,李旭东.菌株N21对萘的降解特性研究.应用与环境生物学报,2006.12(1):96-98
    [32]蔡宝立,丁蕊,任河山.萘降解细菌的分离及其降解和转座基因的分子检测.食品现生物技术学报,2006,25(6):1-6
    [33]张春杨,崔艳梅.萘降解菌NAP222的16SrRNA基因克隆和系统发育分析.安徽农业科学.2007,35(30):9472-9473
    [34]张春杨,彭振兴.萘降解菌NAP_A的分离、降解性能和分子系统学研究.生态环境.2008.17(1):109-112
    [35]贾燕,尹华.假单胞菌N7的萘降解特性及其降解途径研究.环境科学.2008,29(3):756-761
    [36]刘怡辰,曹娟,高国庆等.萘降解菌N19-3的分离鉴定和蔡双加氧酶基因的检测.环境科学学院,2008,21(5):27-31
    [37]Yen K M, Serdar C M. Genetics of naphthalene catabolism in Pseudomonas. Crit Rev Microbiol. 1988,15:247-268
    [38]Dunn N, Gunsalus I C. Transmissible plasmids coding early enzymes of naphthalene oxidation in Pseudomonas putida. Bacteriol.1973,114:974-979
    [39]Eaton R W. Organization and evolution of naphthalene catabolic pathways:sequence of the DNA encoding 2-hydroxychromene-2-carboxylate isomerase and trans-o-hydroxybenzylidenepyruvate hydratase-aldolase from the NAH7 plasmid. Bacteriol.1994,176:7757-7762
    [40]Platt A, Shingler V, Taylor S C. The 4-hydroxy-2-oxovaleratealdolase and acetaldchyde dehydrogenase (acylating) encoded by the nahM and naho genes of the naphthalene catabolic plasmid pWW60-22 provide futher evidence of conservation of meta-cleavage pathway gene sequences. Microbiology.1995,141:2223-2233
    [41]Bosch R, Moore E R B, Garcia V E. NahW, a novel, inducible salicylate hydroxylate involved in mineralization of naphthalene by Pseudomonas stutzeri AN 10. Bactreiol.1999.181:2315-2322
    [42]李永君,赵化冰,任河山.萘降解细菌的分离及其降解基因的分子检测.生物学杂志.2006,25(7):738-742
    [43]Bosch R, Garcia-aldes E, Moore E R. Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene degradation upper pathway from Pseudomonas s utzeri AN10. Gene.1999,236:149-157
    [44]Bosch R, Garcia V E, Moore E R. Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10. Gene.2000,245:65-7
    [45]Li W, Shi J, Wang X. Complete nucleotide sequence and organization of the naphthalene catabolic plasmid pND621 from Pseudomonas sp. strain ND6. Gene.2004.336:231-240
    [46]王庆红.固定化细胞与低强度长声波干预下的固定化细胞降解萘的比较实验.重庆大学.2004
    [47]Zhong B L, Annette M, Jacobson L. Biodegradation of Naphthalene in Aqueous Nonionic Surfactant Systems. Applied and Environmental Microbiology.1995,61(1):145-151
    [48]Andreas T. Degradation of Polycyclic Aromatic Hydrocarbons in the Presence of Synthetic Surfactants. Applied and environmental microbiology.1994,60(1):258-263
    [49]Frank V, Anton M B, Johan G, Van A. Influence of Nonionic Surfactants on Bioavailability and Biodegradation of Polycyclic Aromatic Hydrocarbons. Applied and environmental microbiology. 1995,61(5):1699-1705
    [50]Volkering F, Breure A M, Rulkens W H. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation.1998,8:401-417
    [51]San M V, Peinadoa C. Catalina F. Bioremediation of naphthalene in water by Sphingom(?) paucimobilis using new biodegradable surfactants. International Biodeterioration and Biodegradation.2009,2(63):217-223
    [52]Richard S W, David L. Diphenylmethane and Naphthalene-Heptamethylnonane Mixtures. Applied and environmental microbiology.1977,33(3):660-665
    [53]Rebecca A, Efroymson, Martin A. Biodegradation by an Arthrobacter Species of Hydrocarbons Partitioned into an Organic Solvent. Applied and environmental microbiology 199(?).57(5):1441-1447
    [54]El Aalam S, Pauss A, Lebeault J M. High efficiency styrene biodegradation in a biphasic organic/water continuous reactor. Applied and environmental microbiology.1993,39:696-699
    [55]Collins L D, Daugulis A J. Use of two phase partitioning bioreactors for the biodegradation of phenol. Biotechnol Tech.1996,10:643-648
    [56]Collins L D, Daugulis A J. Biodegradation of phenol at high initial concentrations in two-phase partitioning batch and fed-batch bioreactors. Biotechnol. Bioeng.1997,55:155-162
    [57]Collins L D, Daugulis A J. Characterization and optimisation of a two-phase partitioning bioreactor for the biodegradation of phenol. Applied and environmental microbiology.1997. 48:18-22
    [58]Munro D R, Daugulis A J. The use of an organic solvent and integrated fermentation for improved xenobiotic degradation. Res. Environ. Biotechnol.1997,1:207-225
    [59]Vanneck P, Beeckman M, De Saeyer N, D'Haene S, Verstraete W (1995) Biodegradation of polycyclic aromatic hydrocarbons in a two-liquid-phase system. In:Hinchee RE, Anderson DB & Hoeppel RE (eds), Bioremediation of recalcitrant organics, Vol.7 (pp.55-62), Battelle Press. Columbus OH
    [60]Jimenez I, Bartha R. Solvent-augmented mineralization of pyrene by a Mycobacterium sp.. Appl. Environ. Microbiol.1996,62:2311-2316
    [61]Harms H, Bosma T N P. Mass-transfer limitation of microbial growth and pollutant degradation. J. Ind. Microbiol. Biotechnol.1997,18:97-105
    [62]Luthy R G, Aiken G R, Brusseau M L, Cunningham S D, Gschwend P M, Pignatello J J, Reinhard M, Traina S J, Weber J W, Westall J C. Sequestration of hydrophobic organic contaminants by geosorbents. Environ. Sci. Technol.1997,31:3341-3347
    [63]Ensley B D, Ratzkin B J, Osslund T D. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science.1983,222(4620):167-169
    [64]Mermod N, Harayama S, Timmis K N. New route to bacterial production of Indigo. Bio/Technology.1986,4(4):321-324
    [65]Eaton R W, Chapman P J. Formation of indigo and related compounds from indolecarboxy licacids by aromatic acid-degrading bacteria:chromogenic reactions for cloning genes encoding dioxygenases that act on aromatic acids. Journal of Bacteriology.1995,177(23):6983-6988
    [66]吴云,张素琴,马国华.萘质粒转移到大肠杆菌中合成靛蓝的研究.遗传学报.1989.16(4):318-312
    [67]Doukyu N, Aono R. Biodegradation of indole at high concentration by persolvent fermnentation with Pseudomonas SP.ST-200. Extremophiles.1997,1:100-105
    [68]Doukyu N, Nakano N, Okuyama T. Isolation of an Acinetobacter sp. ST-550 which produces a high level of indigo in a water-organic solvent two-phase system containing high levels of indole. Applied Microbiol and Biotechnol.2002,58(4):543-546
    [69]Hartmans S, Kevin, Connor S. Indigo formation by aromatichy drocarbon-degrading bacteria. Biotechnology Letter.1998,120(3):219-223
    [70]Board of Trustees operating Michigan State University. Method for production of indigo and indirubin dyes:US,5834297.1998-11-10
    [71]Bhushan B. Indigo production by naphthalene degradingbacteria. Letters Applied Microbiology and Biotechnology.2000,31(1):5-9
    [72]宋晶,王义琴,张利明等.色素基因工程与棉花纤维色泽改良.高技术通讯.2002.(7):103-107
    [73]Hack S C, Jin K K, Eun H C. A novel flavin-containing monooxygenase from Methylophaga sp.strain SKI and its indigo synthesis in Escherichia coli. Biochemical and Biophysical Research Communications.2003,306:930-236
    [74]Jose L R, Emilia M R, Angel C. Stable long-term indigo production by overexpression of dioxygenase genes using a chromosomal integrated cascade expression circuit. Journal of Biotechnology.2005,116:113-124.
    [75]李红梅,梅乐和,Urlacher V.催化吲哚生成靛蓝的细胞色素P450 BM-3定向研究.生物化化学与生物物理进展.2005,32(7):1-6
    [76]陆燕.重组P450 BM-3工程菌制备靛蓝过程优化、P450 BM3-GDH共表达体系建立及其在靛蓝制备中的应用研究.浙江大学博士了论文.2007
    [77]Doukyu N, Arai T, Aono R. Effects of organic solvents on Indigo formation by Pseudomonas S P.strain ST-200 growm with High Levels of Indole. Biosci Biotechnoi Biochem.1998. 62(6):1075-1080
    [78]邱森,章俭,宋昊等.萘降解菌LHJ38生物合成靛蓝的研究.分子催化.2007,21(5):453-457
    [79]肖兴国,刘建兵,袁利娟等.生物合成靛蓝的方法:中国,200610114484.2006-10-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700