用户名: 密码: 验证码:
文蛤线粒体基因组序列测定及进化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文蛤(Meretrix meretrix)属软体动物门(Mollusca)、双壳纲(Lamellibranchia)、异齿亚纲(Heterodonta)、帘蛤目(Veneroida)、帘蛤科(Veneridae)、文蛤属(Meretrix)。文蛤是一种天然资源丰富的滩涂贝类,具有较高的营养和药用价值,是重要的海水增养殖优良品种,也是主要出口的鲜活水产品之一。本研究采用PCR扩增和基因克隆等常规分子生物学手段,并结合生物信息学方法对文蛤线粒体基因组全序列进行测定与分析。同时,探讨了双壳类线粒体基因的重排,采用NJ和MP法构建了双壳类的系统进化树。所获得的主要结论如下:
     1.本研究所测定的文蛤线粒体基因组全序列长度为19,826bp,编码37个基因,包括2个rRNA基因、23个tRNA基因和12个蛋白质编码基因,所有的基因都由H链编码。与典型的后口动物相比,缺失了ATP8。
     2.文蛤线粒体起始密码子包括ATG、ATA和TTG,终止密码子包括TAA和TAG。
     3.文蛤mtDNA编码23个tRNA,长度在62 bp到71 bp之间,二级结构保守,全部能够折叠成典型的三叶草结构。缺少tRNA~(Ser(AGN)),但含有两个tRNA~(Gln)的拷贝,这在双壳类中是首次发现。
     4.比较分析了双壳类线粒体基因的重排,在帘蛤科内,菲律宾蛤仔与文蛤和中华文蛤在基因排列上共享3个基因框:5’-COI-tRNA~(Leu(CUN))-ND1-ND2-ND4L- tRNA~(Ile)-3’,5’-COII-tRNA~(Pro)-Cyt b-16S rRNA-ND4- tRNA~(His)- tRNA~(Glu)-tRNA~(Ser(UCN))- ATP6-ND3-ND5-3’, and 5’- tRNA~(Asn)- tRNA~(Thr)-3’。。
     5.应用ClustalX1.83和Mega4.0采用NJ法和MP法构建双壳纲系统进化树。所有物种分成4支,牡蛎科和扇贝科聚为一支;贻贝科和蚌科各自聚为一支;帘蛤科的三个物种聚为一支,置信度为100;然后和鸟蛤科聚为一支。
Hard clam (Meretrix meretrix) belongs to Mollusca, Lamellibranchia, Heterodonta, Veneroida, Veneridae, Meretrix, which is a natural resource-rich shellfish, and possess high nutritional and medical value. In this research, after amplifying mtDNA using Long-PCR and normal PCR methods, the complete mitochondrial genomes of Meretrix meretrix was determined and analyzed through directly sequencing PCR products or sequencing cloned PCR products. The organization and characteristic of the mitogenome, including gene order, base compositon, 13 protein coding genes, rRNA genes, 22tRNA genes, codon usage and amino-acid composition were surveyed. Finally, the rearrangement of mitochondrial genes in Bivalvia was analyzed and phylogenetic tree was constructed based on amino acid data. The conclusions drawn from the study as follows.
     1. The entire mitochondrial (mt genome) sequence of M. meretrix is 19,826 bp in length, and contains 37 genes including 12 protein-coding genes, 2 ribosomal RNAs, and 23 tRNAs. All genes are encoded on the heavy strand. In contrast to the typical animal mitochondrial genome, it lacks the protein-coding gene ATP8.
     2. Mt genes commonly use several alternatives to ATG as start codons. Eight of twelve protein-coding genes (COII,COIII, ATP6, ND1, ND2, ND3, ND4, ND4L) of the clam initiate with ATG start codon, while Cyt b, ND5 and ND6 start with ATA and cox1 with TTG. Eight protein-coding genes use TAA as stop codon(COI, COII, ND2, ND3, ND4, ND4L, cob, atp6), and the remaining four genes terminate with TAG.
     3. The clam mtDNA encodes 23 tRNA genes, ranging in size from 62(trnH) to 71(trnA) nucleotides. All 23 tRNAs have the typical clover-leaf structure. In contrast to the standard complement of 22 tRNA genes, the clam mt genome lacks tRN~(ASer(AGN)), and has two duplication of tRNA~(Gln), that is the first report in Bivalvia.
     4. Comparing the gene arrangement among M. meretrix, M. petechialis and Venerupis philippinarum, we observed that the gene arrangement between M. petechialis and M. meretrix are the same except for one more tRNA~(Gln) gene in M. meretrix mt genome than in M. petechialis and the gene arrangement between two species of the genus Meretrix and V. philippinarum share three completely large identical gene blocks. 5. Phylogenetic analyses based on amino acid data show that twenty three bivalve species are divided into 4 clades. The M. meretrix is placed in a clade containing of Veneridae, Solenidae, Cardiidae and Saxicavidae, which places the grouping composed with Ostridae and Pectinidae as the sister groups.
引文
[1]邢晶晶.分子遗传标记及其技术在水产生物中的研究与应用[J].水产学杂志, 2002, 14(2):61-70.
    [2] Chinnery PE, Schon EA. Mitochondria[J]. Neurol Neurosurg Psychiatry, 2003, 74: 1188-1199.
    [3] Nass MMK, Nass S. Intramitochondrial fibers with DNA characteristics[J]. J Cell Biol, 1963, 19: 593-611.
    [4]牛屹东,李明,魏辅文,等.线粒体DNA用作分子标记的可靠性和研究前景.遗传, 2001, 23(6): 593-598.
    [5] Bridge D, Cunningham CW and Schierwater B. Class-lever relationships in the phylum Cnidaria, evidence from mitochondrial genome structure[J]. Proc Natl Acad Sci. USA, 1992, 89: 8750-8753.
    [6] Ojala D, Montoya J and Attardi G. tRNA punctuation model of RNA processiong in human mitochondria[J]. Nature, 1981, 290: 470-474.
    [7]陈复生,付承玉,汪泰初.动物线粒体基因分子系统学研究进展[J].安徽农业科学, 2003, 31(4):596-598.
    [8]廖顺尧,鲁成.动物线粒体基因组研究进展[J].生物化学与生物物理进展, 2000, 27(5): 509-512.
    [9] Boore JL, Brown WM. Complete DNA Sequence of the Mitochondrial Genome of the Black Chiton,Katharina tunicata[J]. Genetics, 1994, 138:423–443.
    [10] Beagley CT, Macfarlane JL, Pont KA. Mitonchondrial genomes of Anthozoa(Cnidaria)[J]. Peogress in Cell Research, 1995, 5:149-153.
    [11] Ren J, Shen X, Sun M, Jiang F, Yu Y, Chi Z Liu B. The complete mitochondrial genome of the clam Meretrix petechialis (Mollusca: Bivalvia: Veneridae). Mitochondrial DNA, 2009, 20:78–87.
    [12] Crozier RH, Crozier YC. The mitochondrial genome of the honeybee apis mellifera: complete sequence and genome organization[J]. Genetics, 1993, 133(1): 97-117
    [13] Boore JL, Brown WM. Complete DNA sequence of the mitochondrial genome of the black chiton, Katharina tunicate[J]. Genetics, 1994, 138(2): 423-443.
    [14] Beagley CT, Macfarlane JL, Pont KA. Mitochondrial genomes of Anthozoa(Cnidaria)[J]. Progress in Cell Research, 1995, 5: 149-153.
    [15] Breton S, Burger G, Stewart DT, Blier PU. Comparative analysis of gender-associated complete mitochondrial genomes in marine mussels(Mytilus spp.). Genetics, 2006, 172: 1107-1119.
    [16] Yu ZN, Wei ZP, Kong XY, Shi W. Complete mitochondrial DNA sequence of oyster Crassostrea hongkongensis-a case of“Tandem duplication-random loss”for genome rearrangement in Crassostrea[J]. BMC Genomics, 2008, 9: 477.
    [17] Orti G, Petry P, Porto JIR. Patterns of nucleotide change in mitochondrial ribosomal RNA genes and the phylogeny of piranhas[J]. Journal of Molecular Evolution, 1996, 42(2): 169-182.
    [18] Tartar AL, Boucias DG, Becnel JJ. Comparison of plastid 16S rRNA genes from Helicosporidium spp.: evidence supporting the reclassification of Helicosporidia as green algae (Chlorophyta)[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53: 1719-1723.
    [19]李爱玲,张志芳,潘沈元.昆虫线粒体DNA A+T富集区的研究及其在分子进化中的应用[J].中国蚕业, 2004, 25(1): 70-72.
    [20] Southern SO, Southern PJ, Dizon AE. Molecular characterization of a cloned dolphin mitochondrial genome[J]. J Mol Evol, 1989,28(2): 32-42.
    [21] Sbisa E, Tanzariello G, Reyes A, et al. Mammalian mitochondrial D-loopregion structural analysis: Identification of new conserved sequence and their functional and evolutionary implications[J]. Gene, 1997, 205(1-2): 125-140.
    [22]黄原.分子系统学-原理方法及应用[M].北京:中国农业出版社, 1998.
    [23]夏得全,王文君.动物线粒体DNA研究及其在鱼类种群遗传结构中的应用[J].水产学报, 1998, 22(4): 364-369.
    [24] Afonson J M. Mitochondrial DNA variation and genetic structure in old-world populations of Drosophila subobura[J]. Mol Bio Evol, 1990, 7(20):123-142.
    [25] Avise J C, Saunders N C.Hybridization and introgression among species of sunfish(Lepoomis): analysis by mtDNA and allozyme markers[J]. Genetics, 1984, 108(8): 237-255.
    [26] Densmore LD, Wright JW, et al. Length variation and heteroplasmy are frequent on mitochondrial DNA from parthenogenetic and bisexual lizards(genus cnemidophorus). Genetics, 1985, 110(4): 689-707.
    [27] Kennedy P, Nachman MW. Deletenous mutation at the mitochondrial ND3 gene in South American Marsh Rats(Holochilus).Genetics, 1998, 150(1): 359-368.
    [28]肖武汉,张亚平.鱼类线粒体DNA的遗传与进化[J].水生生物学报, 2000, 24(4): 384-391.
    [29]沈兴家,赵巧玲,张志芳,等。家蚕mtDNA EcoRI 1.9kb片段的克隆及序列分析[J]。蚕业科学,2000,26(2): 87-90.
    [30]殷文莉,戴建花,杨代淑,等.鳜及大眼鳜线粒体DNA比较研究[J].水产生物学报, 1998, 22(3): 257-264.
    [31]邵红光,严健,庚镇城,等.新疆荒漠束颈蝗及其近缘种的线粒体DNA RFLP与系统进化[J].昆虫学报, 1999, 42(2): 132-139.
    [32]崔雨新,王小明,梁云媚,等.在线粒体DNA细胞色素B基因序列水平上对鬣羚系统发育的研究[J].兽类学报, 2001, 21(4): 251-258.
    [33] Douglas AE, Earl GZ, Philip DS, et al. A new subspecies of pocket gopher(genus geomys) from the Ozark Mountains of Arkansas with comments on its historical biogeography[J]. Journal of Mammalogy, 2000, 81(3): 852-864.
    [34]张代臻,唐伯平,孙红英.中华绒螯蟹线粒体ND5基因序列变异分析[J]. 2007, 24(4): 21-23.
    [35]邱高峰.中国对虾16S rRNA基因序列多态性研究[J].动物学研究, 2000, 21(1): 35-40.
    [36] Cantatore P, Gadaleta MN, Roberti M, Saccone X, Wilson AC. Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature, 1987, 329: 853-855.
    [37] Wolstenholme, DR. Animal mitochondrial DNA: structure and evolution. Int. Rev.Cytol, 1992, 141:173-216.
    [38] Zardoya R, Meyer A. Mitochondrial evidence on the phylogenetix position of ceacilians[J]. Genetics, 2000, 155: 765-775.
    [39] Rasmussen AS, Arnason U. Molecular studies suggest that cartilaginous fishes have an apocal position in the piscine tree[J]. Proc. Natl. Acad. Sci. USA, 1999, 96: 2177-2182.
    [40] Avise JC, Hybridization and introgression among species of sunfish(Lepomis): analysis by mtDNA and allozayme markers[J]. Genetics, 1984, 108: 237-255.
    [41] Johnson WE, Culver M, Iriarte JA, et al. Tracking the evolution of the elusive Andean mountain cat(Oreailurus jacobita)from mitochondrial DNA[J]. J Hered, 1998, 89(3): 227-232.
    [42] Mackie IM, Pryde SE, Gonzales-Sotelo C, et al.Challengesin the identification of species of anned fish[J]. Trends Food Sci Tech, 1999, 10:9-14.
    [43]张万隆。我国文蛤Meretrix meretrix Linnaeus增养殖技术现状及其发展前景[J]。现代渔业信息, 1993, 8(6):18-24.
    [44]张锡佳,杨建敏,房椒珍,王希升,张汉文,李金明,汤宪春。浅海滩涂宫蛤病害防治技术[J]。齐鲁渔业,2007,24(11): 34-35.
    [45]任素莲,王德秀,绳秀珍,等。“红肉病”文蛤中发现的一种球型病毒的形态发生与细胞病理学[J]。水产学报,2002,26(3):265-269.
    [46] Zouros E, Ball AO, Saavedra C, Freeman KR. An unusual type of mitochondrial DNA inheritance in the blue mussel Mytilus[J]. Proc Natl Acad Sci USA, 1994, 91:7463-7467.
    [47] Liu HP, Mitton JB, Wu SK. Paternal mitochondrial DNA differentiation far exceeds maternal mitochondrial DNA and allozyme differentiation in the freshwater mussels, Anodonta grandis[J]. Evolution, 1996, 50: 952-957.
    [48] Passamonti M, Scalim V. Gender-associated mitochondrial DNA heteroplasmy in the venerid clam Tapes philippinarum(Mollusca Bivalvia). Curr Genet, 2001, 39: 117-124.
    [49] Wu XY, Xu XD, Yu ZN, Kong XY. Comparative mitogenomic analyses of three scallops (Bivalvia: Pectinidae) reveal high level variation of genomix organization and a diversity of transfer RNA gene sets[J]. BMC Research Notes, 2009, 2:69.
    [50] Yu ZN, Wei ZP, Kong XY, Shi W. Complete mitochondrial DNA sequence of oyster Crassostrea hongkongensis-a case of“Tandem duplication– random loss”for genome rearrangement in Crassostrea[J]? BMC Genomics, 2008, 9:477.
    [51] J Sambrook, DW Russell. Molecular cloning: a laboratory manual[M]. 2001.
    [52]卢圣栋.现代分子生物学实验技术[M].北京:高等教育出版社,1993.
    [53]郑仲承.寡核苷酸的优化设计[J].生命的化学, 2001, 21: 254-256.
    [54] Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255
    [55] Lowe TM, Eddy SR (1997) tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964
    [56] Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5: 150-163
    [57] Dreyer H, Steiner G (2006) The complete sequence and gene organization of the mitochondrial genomes of the heterodont bivalves Acanthocardia tuberculata and Hiatella arctica-and the first record for a putative Atpase subunit 8 gene in marine bivalves. Front Zool 3:13.
    [58] Serb JM, Lydeard C (2003) Complete mtDNA sequence of the North American freshwater mussel, Lampsilis ornata (Unionidae): An eximination of the evolution and phylogenetic utility of mitochondrial genome organization in Bivalvia (Mollusca). Mol Biol Evol 20:1854–1866
    [59] Shen X, Ma X, Ren J, Zhao F (2009) A close phylogenetic relationship between Sipuncula and Annelida evidenced from the complete mitochondrial genome sequence of Phascolosoma esculenta. BMC Genomics 10:136
    [60] Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 410:353–358
    [61]
    [62] Jacobs HT, Elliott DJ, Math VB, Farquharson A (1988) Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol 202:185–217
    [63] Wolstenholme DR. Animal mitochondrial DNA: Structure and evolution. Int Rev Cytol, 1992, 141:173–216
    [64] Tomita K, Yokobori S, Oshima T, Ueda T, Watanabe K. The cephalopod Loligo bleekeri mitochondrial genome: Multiplied noncoding regions and transposition of tRNA genes. J Mol Evol, 2002, 54:486–500.
    [65] Yokobori S, Fukuda N, Nakamura M, Aoyama T, Oshima T. Long-term conservation of six duplicated structural genes in cephalopod mitochondrial genomes. Mol Biol Evol, 2004, 21:2034–2046.
    [66] Maynard BT, Kerr LJ, Mckiernan JM, Jansen ES, Hanna PJ. Mitochondrial DNA sequence and gene organization in the Australian blacklip abalone Haliotis rubra (leach). Mar Biotechnol, 2005, 7:645–658.
    [67] Boore JL, Brown WM (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev 8: 668–674
    [68] Cope JCW (1997) The early phylogeny of the class Bivalvia. Palaeontology 40: 713–746.
    [69] Giribet G, Carranza S (1999) What can 18S rRNA do for bivalve phylogeny? J Mol Evol 48: 256–261
    [70] Hoeh WR, Black MB, Gustafson RG, Bogan AE, Lutz RA, Vrijenhoek RC (1998) Testing alternative hypotheses of Neotrigonia(Bivalvia: Trigonioida) phylogenetic relationships using cytochrome c oxidase subunit I DNA sequences. Malacologia 40:267–278
    [71] Weir BS. Genetic data analysis. Sinauer Associates, Massachusetts,USA
    [72] Huelsenbeck JP. Performance of phylogenetic methods in simulation. Syst Biol, 1995, 44:17-18
    [73] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406-425.
    [74] Felsenstein J. An alternative least-squares approach to inferring phylogenies from pairwise distances. Syst Biol, 1997, 46: 101-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700