用户名: 密码: 验证码:
ZnO功能化薄膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究氧化锌功能化薄膜的湿化学法制备工艺、显微形貌和性能关系。以乙酸锌、硝酸锌、氢氧化钠、六亚甲基四胺和聚乙二醇等为原料,采用化学溶液沉积法、水热合成法和电泳沉积法构筑具有疏水性的氧化锌薄膜材料。利用XRD分析薄膜的晶体结构和化学组成;利用SEM观测薄膜的显微结构、晶粒大小及形态;利用拉曼光谱分析Co2+掺杂前后微结构的变化,并研究薄膜材料的结构与疏水性能等之间的关系。所得氧化锌薄膜经硅烷偶联剂处理后与水的接触角可达到165°。本文的研究主要包括以下内容:
     (1)化学溶液沉积法制备氧化锌纳米棒阵列膜。研究缓冲层厚度、氢氧化钠浓度、反应速度及反应温度等条件对氧化锌薄膜形貌的影响。结果表明,增加ZnO缓冲层厚度(六层对比两层)可以提高衬底的均匀性以及缓冲层的结晶性,使ZnO纳米棒更多的沿c轴方向生长。氢氧化钠浓度的提高使得溶液pH值增大,导致ZnO纳米棒生长得更细更致密。化学反应速度的提高显著降低了纳米棒的均匀度和规则性。沉积时间为75mins所得氧化锌薄膜经硅烷偶联剂处理后与水的接触角可达到165°。
     (2)水热法制备氧化锌阵列膜。研究缓冲层基底及六亚甲基四氨、乙酸钴含量等对合成薄膜的影响。当六亚甲基四氨浓度为0.1M时,水热合成的氧化锌纳米棒生长致密,沿c轴的取向性较好。以乙酸锌为原材料合成的氧化锌缓冲层薄膜比较致密、均匀,晶粒较小,因而水热合成的氧化锌阵列膜的取向度较高。Co2+的掺杂改变了各晶面的生长速度,降低了氧化锌阵列膜沿c轴的择优生长,导致正六角棒状结构的对称性降低,甚至出现开裂。
     (3)电泳沉积法制备氧化锌薄膜。以片式颗粒的悬浮液为电泳液,研究电流强度、沉积时间和缓冲层对薄膜的晶相、显微结构、透光度和润湿性的影响。结果表明:电流强度对薄膜的形貌影响较大,当沉积电流较小时,片状颗粒平铺在ITO基片上;当沉积电流较大时,片状颗粒垂直于基片排列,所得薄膜由纳米尺度的网状结构以及微米尺度的球状物组成。ZnO缓冲层显著改善了薄膜的均匀性。低温热处理可大大提高ZnO薄膜的比表面积,对进一步改善其疏水性和气敏性十分有利。
The fabrication processes, microstructure and properties of ZnO functionalized films are investigated. Hydrophobic ZnO films are constructed by chemical solution deposition (CSD), hydrothermal method and electrophoretic deposition, respectively, with zinc acetate, zinc nitrate, NaOH, urotropine and Polyethylene Glycol (PEG) as raw materials. Crystal structure and chemical composition of ZnO films are analyzed by XRD. Microstructure, grain size and morphology are observed by SEM. Microstructural variation resulting from Co2+ dopants is studied by Laman spectroscopy. The relationship between structure and hydrophobic properties is investigated. ZnO films with water contact angle of 165o are achieved after treatment with alkylsilicane.
     (1) ZnO nanorod array films are fabricated by CSD. The effect of buffer layer, the concentration of NaOH, rate of reaction, and temperature on morphology of ZnO films is investigated. The result indicates that the increase in thickness will improve the uniformity and crystallization of buffer layer, and more and more ZnO nanorods grow along c axis. The increase in concentration of NaOH increases pH value, which results in the growth of narrower and denser nanorods. The increase in rate of reaction decreases the uniformity and regularity of nanorods. ZnO films with water contact angle of 165o are achieved at a deposition time of 75mins after treatment with alkylsilicane.
     (2) ZnO array films are fabricated by hydrothermal method. The effect of buffer layer, urotropine and the content of cobalt acetate on deposited films are investigated. ZnO nanorods by hydrothermal method grow along c axis at a concentration of 0.1M of urotropine. ZnO buffer layer with zinc acetate as raw material is dense and uniform. Therefore, ZnO array films by hydrothermal method have a preferential orientation. The doping of Co2+ changes the rate of growth of ZnO crystalline faces and hinders the preferential orientation along c axis, which results in the low symmetry of hexagonal structure.
     (3) ZnO films are fabricated by electrophoretic deposition. The effect of current density, deposition time and buffer layer on crystalline phase, microstructure, transmittance and wettability is investigated with flake-shaped particles suspension as electrophoretic solution. The result indicates that the current density has a large effect on the morphology of films. Flake-shaped particles align parallel to ITO substrate at a small deposition current, and these particles align normal to the substrate at a large deposition current. The deposited films consist of nano-scaled reticular structure and micro-scaled spheres. The uniformity of ZnO films is improved by adding buffer layer. The specific surface area is increased by the heat treatment at a low temperature, which provides an opportunity for improving hydrophobicity and gas-sensitivity.
引文
[1] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58.
    [2] Huang M H, Wu Y, Feick H, et al. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport [J]. Advanced Materials, 2001, 13(2): 113-116.
    [3] Huang M H, Mao S, Feick H, et al. Room-Temperature Ultraviolet Nanowire Nanolasers [J]. Science, 2001, 292: 1897-1899.
    [4] Shi G, Mo C M, Cai W L, et al. Photoluminescence of ZnO nanoparticles in alumina membrane with ordered pore arrays [J]. Solid state communications, 2005, 115(5):253-256.
    [5] Baruah S, Thanachayanont C, Dutta J. Growth of ZnO nanowires on nonwoven polyethylene fibers [J]. Science and Technology of Advanced Materials, 2008, 9(2):025009.
    [6] Huang Y, Zhang Y, Bai X, et al. Bicrystalline Zinc Oxide Nanocombs [J]. Nanoscience and Nanotechnology, 2006, 6:2566-2570.
    [7] Hughes W L, Wang Z L. Controlled synthesis and manipulation of ZnO nanorings and nanobows [J]. Applied Physics Letters, 2005, 86:043106.
    [8] Kong X Y, Wang Z L. Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts[J]. Nano Letters, 2003, 3(12):1625.
    [9] Hughes W L, Wang Z L. Formation of Piezoelectric Single-Crystal Nanorings and Nanobows [J]. Journal of the American Chemical Society, 2004, 126(21):6703-6709.
    [10] Sun T, Qiu J, Liang C. Controllable Fabrication and Photocatalytic Activity of ZnO Nanobelt Arrays [J]. The Journal of Physical Chemistry C, 2008, 112:715-721.
    [11] Snure M, Tiwari A. Synthesis, Characterization, and Green Luminescence in ZnO Nanocages [J]. Journal of Nanoscience and Nanotechnology, 2007, 7(2):481-485.
    [12] Wang Z L. Zinc oxide nanostructures: growth, properties and applications [J]. Journal of Physics: Condensed Matter, 2004, 16(25): R829
    [13] Emanetoglu N W, Gorla C, Liu Y, et al. Epitaxial ZnO piezoelectric thin films for saw filters [J]. Materials Science in Semiconductor Processing, 1999, 2(3): 247-252.
    [14] Chen Y, Bagnall D, Yao T. ZnO as a novel photonic material for the UV region [J]. Materials Science and Engineering: B, 2000, 75(2-3):190-198.
    [15] Liang S, Sheng H, Liu Y, et al. ZnO Schottky ultraviolet photodetectors [J]. Journal of Crystal Growth, 2001, 225(2-4): 110-113.
    [16] Saito N, Haneda H, Sekiguchi T, et al. Low-Temperature Fabrication of Light-Emitting Zinc Oxide Micropatterns Using Self-Assembled Monolayers [J]. Adv Mater, 2002, 14(6): 418-421.
    [17] Lee J Y, Choi Y S, Kim J H, et al. Optimizing n-ZnO/p-Si heterojunctions for photodiode applications [J]. Thin Solid Films, 2002, 403:553-557.
    [18] Mitra A, Chatterjee A P, Maiti H S. ZnO thin film sensor [J]. Mater Lett, 1998, 35(1-2): 33-38.
    [19] Gratzel M. Dye-sensitized solid-state heterojunction solar cells [J]. MRS Bulletin, 2005, 30(1): 23-27.
    [20] Baxter J B, Walker A M, van Ommering K, et al. Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells[J]. Nanotechnology, 2006, 17(11): S304
    [21] Lin Y, Zhang Z, Tang Z, et al. Characterisation of ZnO-based varistors prepared from nanometre Precursor powders [J]. Advanced Materials for Optics and Electronics, 1999, 9(5): 205-209.
    [22] M.H.Koch, A.J.Hartmann, R.N.Lamb, et al. Self-Texture in the initial stages of ZnO film growth [J]. The Journal of Physical Chemistry B, 1997, 101(4): 8231-8236.
    [23] H.S.Ku, H.Takashi, K.H.Ju, et al. Control of polarity of ZnO films grown by plasma-assisted molecular-beam epitaxy: Zn-and O-polar ZnO films on Ga-palor GaN Templates [J]. Applied Physics Letters, 2000, 77(22): 3571-3573.
    [24]朱光平,王马华,徐春祥等.纳米氧化锌的紫外自发辐射与受激辐射[J],发光学报,2006,27(4): 602-605.
    [25] M.Chen, Z.L.Pei, X.Wang, et al. Structural,electrical,and optical properties of transparent conductive oxide ZnO: Al films prepared by dc magnetron reactive sputtering [J]. Vac.Sci.Technol.A.2001,19(3): 963-970.
    [26] Kwang Joo Kim, Young Ran Park. Large and abrupt optical band gap variation in In-doped ZnO [J]. Appl Phys Lett, 2001, 78(4): 475-477.
    [27]徐小亮,施朝淑.纳米微晶结构ZnO及其紫外激光[J].物理学进展, 2000, 20(4): 357-368.
    [28]张福学.《现代压电学》[M],北京:科学出版社, 2002.
    [29] Brilis N, Romesis P, Tsamakis D, et al. Influence of pulsed laser deposition ( PLD) parameters on the H2 sensing properties of zinc oxide thin films [J]. Superlattices and Microstructures, 2005, 38: 283-290.
    [30] P Mitra, H S Maiti. A wet-chemical process to form palladium oxide sensitiser layer on thin film zinc oxide based LPG sensor [J]. Sensors and Actuators B, 2004, 97(1): 49-58.
    [31]沈茹娟,贾殿赠,乔永民等.纳米ZnO的固相合成及其气敏特性[J],无机材料学报, 2001, 16 (4): 625-629.
    [32] Bhooloka Rao B. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour[J]. Materials Chemistry and Physics, 2000, 64: 62-65.
    [33]李健,白素杰等.稀土Nd掺杂纳米ZnO薄膜气敏特性[J].传感器技术, 2004, 23 (5): 9-14.
    [34] Chang J F, Kuo H H, et al. The effect s of thickness and operation temperature on ZnO:Al thin film CO gas sensor[J]. Sensors and Actuators B, 2002, 84: 258-264.
    [35]薛天峰,胡季帆等.掺铝ZnO纳米粉的制备与气敏特性研究[J].金属功材料, 2003, 10 (4): 20-23.
    [35] Zhu B L, Xie C S, et al. Influence of Sb, In and Bi dopant s on the response of ZnO thick films to VOCs [J]. Materials Chemistry and Physics, 2006, 96: 459-465.
    [37] Hu Y, Zhou X H, et al. Sensing properties of CuO/ZnO heterojunction gas sensors[J].Mater Sci Eng B, 2003, 99: 41-43.
    [38] Gong H, Hua J Q, et al. Nano - crystalline Cu - doped ZnO thin film gas sensor for CO[J]. Sensors and Actuators B, 2006, 115: 247-251.
    [39] L. Jiang, R. Wang, B. Yang. Binary cooperative complementary nanoscale interfacial materials[J]. Pure and Applied Chemistry, 2000, 72(1):73-81.
    [40] Cassie A, Baxter S. Wettability of porous surfaces [J]. Transactions of the Faraday Society, 1944, 40: 546-561.
    [41] Bi Xu, Zaisheng Cai. Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification[J]. Applied Surface Science, 2008, 254(18): 5899-5904.
    [42]章会良,曹全喜,宋建军等.高能氧化锌压敏元件研究[J].电子元件与材料, 2007, 26(10): 51-53.
    [43]李汉军,施尔畏等.水热条件下氧化物枝蔓晶的形成[J].人工晶体学报, 1999, 28 (1): 54-57.
    [44]李汉军,施尔畏等.氧化物晶体的成核机理与晶粒粒度[J].无机材料学报, 2000, 15(5): 777-785.
    [45]欧阳桂仓,叶志清,吴木生. ZnO薄膜的物理性质与制备方法研究[J].江西科学, 2008, 26(1): 161-164.
    [46]刘玉华. ZnO薄膜的磁控溅射法制备及特性研究[D].中国优秀博硕士学位论文全文数据库(硕士), 2004.
    [47]赵嘉学,童洪辉.磁控溅射原理的深入探讨[J].真空, 2004, 41 (4) : 74-79.
    [48]黄飞,孙仲亮,孟凡明等.射频磁控溅射ZnO薄膜的微结构与光学特性[J].真空电子技术, 2008, 2.
    [49]刘著光,杨伟锋,吕英等.氩气压强对射频磁控溅射ZnO:Al薄膜结构和性能的影响[J].光谱实验室, 2008, 25(3): 425-427.
    [50]徐步衡,薛俊明,赵颖等. MOCVD制备用于薄膜太阳电池的ZnO薄膜研究[J].光电子激光, 2005, 16 (5): 515-518.
    [51]马艳,张宝林,高福斌等. NH3掺杂ZnO薄膜的生长及特性[J].半导体技术, 2009,34(2): 119-122.
    [52] Paul E. Luscher. Crystal growth by molecular beam epitaxy[J]. Solid State Tech, 1977, 20: 43.
    [53]梁红伟,吕有明,申德振等.等离子体增强分子束外延生长ZnO薄膜及光电特性的研究[J].人工晶体学报, 2003, 32 (6): 579-584.
    [54] Ma X, Zhang H, Ji Y, et al. Sequential occurrence of ZnO nanopaticles, nanorods, and nanotips during hydrothermal process in a dilute aqueous solution [J]. Materials Letters, 2005, 59(27): 3393-3397.
    [55] Kohls M, Bonnani M, Spanhel L. Green ErIII luminescence in fractal ZnO nanolattices [J]. Applied Physics Letters, 2002, 81(20): 3858-3860.
    [56] Xu H Y, Wang H, Zhang Y C, Wang S, et al. Asymmetric twinning crystals of Zinc oxide formed in a hydrothermal process [J]. Crystal Research and Technology, 2003, 38(6): 429-432.
    [57] Spanhel L. Colloidal ZnO nanostructures and functional coatings: A survey [J]. Journal of Sol-Gel Science and Technology, 2006, 39(1): 7-24.
    [58]兰伟,朋兴平,刘雪芹等.溶胶凝胶法制备ZnO薄膜及性质研究[J].兰州大学学报(自然科学版), 2006, 42 (1): 67-71.
    [59]陈志钢,唐一文,张丽莎等.氧化锌薄膜的电化学制备和性能研究[J].物理化学学报, 2005, 06.
    [60]Cui-Hong Wang, Yan-Yan Song, Jian-Wei Zhao. Semiconductor supported biomimetic superhydrophobic gold surfaces by the galvanic exchange reaction. Surface Science, 2006,600: 38-42.
    [61]Shirtcliffe N J, McHale G, Newton M I et al. Wetting and Wetting Transitions on Copper-Based Super-Hydrophobic Surfaces. Langmuir, 2005, 21:937-943.
    [62] Renee B.P, Clark L.F, Brain A.G. Epitaxial Chemical deposition of ZnO nanocolumns from NaOH solutions [J]. Langmuir, 2004, 20: 5114.
    [63]罗志强,张孝彬,程继鹏等.化学溶液沉积法制备单分散氧化锌纳米棒阵列[J].化学学报, 2005, 63(18): 1656-1660.
    [64]刘长友,李焕勇,介万奇.水热法制备菜花状氧化锌[J].功能材料, 2005, 11(36): 1753-1756.
    [65] Vayssieres L, Keis K, Lindquist S E. Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO [J]. The Journal of Physical Chemistry B, 2001, 105(17): 3350-3352.
    [66] Vayssieres L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions [J]. Adv Mater, 2003, 15(5): 464-466.
    [67] Sun Y, Riley D J, Ashfold M. Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates [J]. The Journal of Physical Chemistry B, 2006, 110(31): 15186-15192.
    [68]靳福江,李珍,李飞. ZnO纳米棒水热法制备及其发光性能[J].功能材料与器件学报, 2007, 13(5): 453-458.
    [69] Andres-Vergés M, Mifsud A, Serna C. Formation of rod-like zinc oxide microcrystals in homogeneous solutions [J]. Journal of the Chemical Society, Faraday Transactions, 1990, 86: 959-964.
    [70] Vayssieres L, Keis K, Lindquist S E. Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO [J]. The Journal of Physical Chemistry B, 2001, 105(17): 3350-3352.
    [1] Nakajima A, Fujishima A, Hashimoto K, et al. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate[J]. Advanced Materials, 1999, 11(16) : 1365-1368
    [2] Li S H, Li H J, Wang X B, et al. Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes[J]. Journal of physical chemistry B, 2002, 106(36): 9274-9276
    [3] Youngblood J P, McCarthy T J. Ultra-hydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly (tetrafluoroethylene) using radio frequency plasma[J]. Macromolecules, 1999, 32(20): 6800-6806
    [4] Scurto A M, Aki S N V K, Brennecke J F. Carbon dioxide induced separation of ionic liquids and water[J].Chemical Communications, 2003, (5):572-573
    [5] Blossey R. Self-cleaning surfaces-virtual realities[J]. Nature Materials, 2003, 2(5):301-306
    [6] Shi Liyi, Ma Shurui, Feng Xin, et al. The Newest Synthetic Routes of One-dimensional ZnO Nanorods[J]. Materials Review, 2006, 20(11): 86-89.
    [7] Guo Min, Diao Peng, Cai Shengmin. Novel Approach to Preparing Well-oriented ZnO Nanorods on Substrates [J]. Acta Chimica Sinica, 2003 ,61(8): 1165.
    [8] Tak Y, Yong K. Controlled growth of well-aligned ZnO nanorod array using a novel solution method[J]. Journal of physical chemistry B, 2005, 109 (41) : 19263-19269.
    [9] Shi Liwei, Li Yuguo, Wang Qiang, et al. Synthesis of One-Dimensional ZnO Na norods by Oxidating Zinc Films Deposited with Magnetron Sputtering [J]. Chinese Journal of Semiconductors, 2004 , 25(10): 1211
    [10] Zhang Xudong, Xing Yingjie, Xi Zhonghe, et al. Preparation and Characterization of ZnO Nanorods [J]. Vacuum Science and Technology, 2004 , 24 (1) :16
    [11] Renee B.P., Clark L.F., Brain A.G.. Epitaxial Chemical deposition of ZnO nanocolumns from NaOH solutions[J]. Langmuir, 2004, 20: 5114
    [12] Luo Zhiqiang, Zhang Xiaobin, Cheng Jipeng, et al. Synthesis of Monodispersed ZnO Nanorod Array Films by Chemical Solution Deposition[J]. Acta Chimica Sinica, 2005, 63(18): 1656-1660.
    [13] Masashi O, Hiromitsu K, Toshinobu Y. Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution[J]. Thin Solid Films, 1997, 306(1): 78-85.
    [14]罗志强,张孝彬,程继鹏等.化学溶液沉积法制备单分散氧化锌纳米棒阵列[J].化学学报, 2005, 63(18): 1656-1660.
    [1] Law M, Goldberger J, Yang P. Semiconductor nanowires and nanotubes [J]. Annual Review of Materials Science, 2004, 34: 83-122.
    [2] Service R F. Materials Science: Will UV Lasers Beat the Blues? [J]. Science, 1997, 276: 895.
    [3] Kong X Y, Wang Z L. Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts [J]. Nano Letters, 2003, 3(12):1625.
    [4] Liu C, Zapien J A, Yao Y, et al. High-Density, Ordered Ultraviolet Light-Emitting ZnO Nanowire Arrays [J]. Advanced Material, 2003, 15(10): 838-841.
    [5] Bai X D, Wang E G, Gao X P, et al. Measuring the Work Function at a Nanobelt Tip and at a Nanoparticle Surface [J]. Nano Letters, 2003, 3: 1147-1150.
    [6] Arnold M S, Avouris P h, Pan Z W, et al. Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts [J]. The Journal of Physical Chemistry B, 2003, 107(3): 659-663.
    [7] Kind H, Yan H, Messer B, et al. Nanowire Ultraviolet Photodetectors and Optical Switches [J]. Advanced Materials, 2002, 14(2): 158-160.
    [8] Demianets L N, Kostomarov D V, Kuz’mina I P, et al. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions [J]. Crystallography Reports, 2002, 47 (suppl.1): S86.
    [9] Vayssieres L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions [J]. Advanced Materials, 2003, 15(5): 464-466.
    [10] Vayssieres L, Keis K, Lindquist S E. Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO [J]. The Journal of Physical Chemistry B, 2001, 105(17): 3350-3352.
    [11] Goldberger J, He R, Zhang Y, et al. Single-crystal gallium nitride nanotubes [J]. Nature, 2003, 422: 599.
    [12] Smit G D J , Rogge S , Klapwijk T M. Scaling of nano-Schottky-diodes [J]. Applied Physics Letters, 2002, 81(20): 3852.
    [13] Jin Li, Huiqing Fan, Xiaohua Jia, et al. Enhanced blue-green emission and ethanol sensing of Co-doped ZnO nanocrystals prepared by a solvothermal route[J]. Applied Physics A: Materials Science & Processing, 2010, 98(3): 537-542.
    [14] Ashfold M N R, Doherty R P. The kinetics of the hydrothermal growth of ZnO nanostructures [J]. Thin Solid Films, 2007, 515(24): 8679-8683.
    [15] J.J. Wu, S.C. Liu, M.H. Yang. Room-temperature ferromagnetism in well-aligned Zn1 xCoxO nanorods [J]. Applied Physics Letters, 2004, 85(6): 1027.
    [16] J.B. Cui, U.J. Gibson. Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays [J]. Applied Physics Letters, 2005, 87(13): 133108.
    [17] C. Bundesmann, N. Ashkenov, M. Schubert, et al. Raman scattering in ZnO thin films doped with Fe , Sb , Al , Ga , and Li [J] . Applied Physics Letters, 2003, 83 (10): 1974-1976.
    [18] Lu H Y, Chu S Y, Cheng S H. The vibration and photoluminescence properties of one-dimensional ZnO nanowires[J]. Journal of Crystal Growth, 2005, 274 (3- 4) :506-511.
    [19] Yanqiu Huang, Meidong Liu, Zhen Li, et al. Raman spectroscopy study of ZnO - based ceramic films fabricated by sol - gel process [J]. Materials Science and Engineering: B, 2003, 97: 111-116.
    [20] Gregory J. E, Aimmee R, Charles F, et al. Spectroscopic characterization of processing– induced property changes in doped ZnO films [J]. Thin Solid Films, 1997,308 - 309:56-62.
    [21] C. J . Youn, T. S. Jeong, M. S. Han, et al. optical properties of Zn - terminated ZnO bulk [J]. Journal of Crystal Growth, 2004, 261(2): 526-532.
    [22]郭敏,刁鹏,蔡生民.一种在固体基底上制备高度取向氧化锌纳米棒的新方法[J].化学学报, 2003, 61(8): 1165-1168.
    [1]肖张莹.电泳沉积制备氧化锌薄膜的研究[D].中国优秀硕士学位论文全文数据库, 2007.
    [2]陈志钢;唐一文;张丽莎;陈正华;贾志杰;氧化锌薄膜的电化学制备和性能研究[J].物理化学学报, 2005年06期.
    [3] Nakajima A, Abe K, Hashimoto K et al. Preparation of hard super-hydrophobic films with visible light Transmission[J].Thin Solid Films, 2000, 376: 140-143.
    [4] Li X, Cao Z, Liu F, Zhang Z et al. A Novel Method of Preparation of Superhydrophobic Nanosilica in Aqueous Solution[J]. Chem Lett, 2006, 35(1): 94-95.
    [5] Sun C, Ge L, Gu Z. Fabrication of super-hydrophobic film with dual-size roughness by silica sphere assembly[J]. Thin Solid Films, 2007, 515: 4686–4690.
    [6] Nakajima A., Hashimoto K., Watanabe T.. Transparent Superhydrophobic Thin Films with Self-Cleaning Properties[J], Langmuir, 2000, 16: 7044-7047.
    [7] Li M., Zhai J., Liu H. et al. Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films[J], J. Phys. Chem. B, 2003, 107: 9954-9957.
    [8] Wu X., Zheng L., Wu D.. Fabrication of Superhydrophobic Surfaces from Microstructured ZnO-Based Surfaces via a Wet-Chemical Route[J]. Langmuir, 2005, 21: 2665-2667.
    [9] Feng X., Feng L., Jin M. et al. Reversible Super-hydrophobicity to Super hydrophilicity Transition of Aligned ZnO Nanorod Films[J]. J. Am. Chem. Soc. 2004, 126: 62-63.
    [10] Chen A., Peng X., Koczkur K. et al. Super-hydrophobic tin oxide nanoflowers[J]. Chem.Commun., 2004, 1964-1965.
    [11] Tadanaga K, Kitamuro K, Matsuda A et al. Formation of Superhydrophobic Alumina Coating Films with High Transparency on Polymer Substrates by the Sol-Gel Method[J]. J Sol-Gel Sci Tech, 2003, 26: 705–708.
    [12] M Verde, A C Caballero, Y Iglesias, M Villegas, B Ferrari, Electrophoretic deposition of flake-shaped ZnO nanoparticles, J Electrochem Soc, 2010, 157(1): h55-59.
    [13] Wang Y C, Leu I C and Hon M H, Dielectric property and structure of anodic alumina template and their effects on the electrophoretic deposition characteristics of ZnO nanowire arrays, J. Appl. Phys. 2004, 95(3): 1444-49
    [14] Ohyama M, Kozuka H, Yoko T. Sol-gel preparation of transparent and conductive aluminum-doped zinc oxide films with highly preferential crystal orientation[J]. J Am Ceram Soc, 1998, 81: 1622-1632.
    [15] Mahamuni S, Borgohain K, Bendre B S et al. Spectroscopic Characterization of Electrochemically Grown ZnO Quantum Dots[J]. J Appl Phys, 1999, 85: 2861.
    [16] Peulon S, Lincot D, Cathodic electrodeposition from aqueous solution of dense or open structured zinc oxide films [J ] . Adv Mater , 1996 , 8 2): 1662170.
    [17] Zhang L, Chen Z, Tang Y, et al . Low temperature cathodic electrodeposition of nanocrystalline zinc oxide thin film [J ],Thin Solid Films , 2005 , 492 (122):24229.
    [18] Renee B P, Clark L F, Brain A G. Epitaxial Chemical deposition of ZnO nanocolumns from NaOH solutions[J]. Langmuir, 2004, 20: 5114-5118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700