用户名: 密码: 验证码:
保护性耕作对塿土碳氮分布及性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球气候和环境的变化,保护性耕作及土壤碳氮研究成为了目前全世界广泛关注的问题。本文以关中地区小麦玉米轮作条件下,历时7年不同耕作方式(深松、旋耕、免耕、传统耕作)的定位试验为研究对象,研究了保护性耕作方式对塿土有机碳含量、活性、结合形态的影响;对土壤结构体分布以及土壤结构体中碳氮含量、有机碳氧化稳定性的影响;对土壤可溶性有机碳氮含量及腐殖化性质的影响。主要结论如下:
     1.研究了不同耕作处理下(深松、旋耕、免耕、秸秆还田+传统耕作、传统耕作)不同土层土壤的总有机碳,高、中活性有机碳含量以及松结态、稳结态、紧结态有机碳含量,并计算了松结态有机碳与紧结态有机碳的比值(松/紧)。与传统耕作比较,在小麦秸秆高留茬情况下,无论玉米秸秆是否还田,旋耕、深松和免耕处理均既能提高土壤有机碳含量,又能提高土壤的活性有机碳和松结态有机碳含量,提高松结态有机碳与紧结态有机碳的比值,且深松和旋耕的效果比免耕更明显。
     2.研究了保护性耕作对土壤团聚体分布及团聚体中碳氮含量和有机碳氧化稳定性的影响。在各处理中,>5 mm粒级的团聚体含量最多,占团聚体总量的62.3 %~70.2 %,0.5~0.25 mm粒级的团聚体含量最小,占团聚体总量的1.10 %~1.80 %。与传统耕作相比,深松、旋耕、免耕以及秸秆还田+传统耕作均提高了>5mm粒级团聚体的含量。随着土壤团聚体粒径的增大,团聚体有机碳含量逐渐减小,其中有机碳含量在<0.25 mm团聚体中含量最大,平均为10.87 g.kg-1。在>5 mm团聚体中最小,平均值为9.57 g.kg-1。,在>0.25 mm的各粒级团聚体中,全氮含量也随着团聚体粒径的增加而减小。在0.5~0.25 mm粒级的团聚体中全氮含量最大,平均为1.18 g.kg-1,在>5 mm粒级的团聚体中全氮含量最小,平均为0.99 g.kg-1。深松和旋耕处理较免耕和传统耕作更有利于团聚体中有机碳、氮含量的增加。深松、旋耕、免耕及秸秆还田+传统耕作均提高了各粒级团聚体中易氧化有机碳含量,且深松和旋耕效果达到显著水平,免耕作用不显著;深松、旋耕、免耕对难氧化有机碳含量的影响均不明显。各保护性耕作对土壤团聚体总有机碳含量的提高主要是通过团聚体中易氧化有机碳含量的提高来实现。各保护性耕作降低了团聚体有机碳的氧化稳定系数(Kos),但未达到显著水平。土壤较小粒级(0.5~0.25 mm和<0.25 mm)团聚体中的总有机碳,易氧化、难氧化有机碳含量均比大粒级团聚体中(>0.5 mm)的高,且其氧化稳定系数(Kos)较低。
     3.研究了保护性耕作对土壤微团聚体分布及微团聚体碳氮含量及有机碳氧化稳定性的影响。秸秆粉碎旋耕、秸秆覆盖深松处理提高了特征微团聚体的组成比例,而秸秆还田+传统耕作和免耕处理对特征微团聚组成比例的影响较小。与传统耕作比较,旋耕、深松处理均能提高较大粒级微团聚体中(0.05~0.25 mm和0.01~0.05 mm)有机碳及全氮含量,而免耕使0.01~0.05 mm微团聚体中的有机碳和全氮含量有所降低;旋耕、深松和免耕对小粒级微团聚体(<0.01mm)中的有机碳和全氮含量影响较小。旋耕和深松使总有机碳、易氧化有机碳、难氧化有机碳含量在0.05~0.25和0.01~0.05 mm微团聚体中显著增加,而在<0.01 mm微团聚体中有所降低;深松和旋耕对微团聚体有机碳氧化稳定性的影响未达到显著水平,免耕明显降低了各粒级微团聚体有机碳的氧化稳定性。塿土微团聚体有机碳含量和氧化稳定性主要取决于0.05~0.25 mm微团聚体,深松、旋耕有利于微团聚体中有机碳含量的积累及有机碳氧化稳定性的降低。
     4.研究了秸秆还田结合不同耕作方式对土壤可溶性有机碳、氮含量及腐殖化性质的影响。塿土可溶性有机碳、氮含量分别在44.40~66.67 mg/kg和2.64~6.16 mg/kg之间。与传统耕作相比,深松、旋耕、免耕和秸秆还田+传统耕作处理均提高了土壤可溶性有机碳含量。除裸地免耕外,各耕作措施也均增加了可溶性有机氮含量,且深松和旋耕对提高土壤可溶性有机碳、有机氮的效果更大。与传统耕作比较,在玉米秸秆还田的情况下,深松、旋耕处理均使土壤可溶性有机物的UV280值升高,反映出可溶性有机物中芳香类化合物增多,腐殖化作用加强;旋耕、深松、免耕以及秸秆还田+传统耕作均使可溶性有机物的腐殖化指数(HIXem)有所升高,且以秸秆覆盖浅松的最大。相关分析表明,土壤可溶性有机碳、氮和可溶性总碳、氮以及土壤总有机碳、全氮含量之间均显著相关。
Conservational tillage measures, organic carbon and nitrogen are concerned intensively at present in the world because of the changes of climate and environment. In this paper, a seven years’location experiment of different tillage modes (sub-soiling, rotary tillage, no-tillage and conventional tillage ) in the condition of wheat-corn rotation of Lou soil in Guanzhong plain was conducted. We studied that the effects of conservational tillage measures on the content of soil organic carbon, activity and bound forms of soil organic carbon; on the content of organic carbon and nitrogen and the oxidation stability of soil organic carbon in soil aggregates; on the content and the humification properties of soil soluble organic carbon and nitrogen, The main conclusions are as follows:
     1. The content of total soil organic carbon, highly labile organic carbon, mid-labile organic carbon, loosely combined organic carbon, stably combined organic carbon and tightly combined organic carbon in different soil layers of different tillage modes (sub-soiling, rotary tillage, no-tillage, conventional tillage with straw return and conventional tillage) were analysed, The ratios of loosely to tightly combined organic carbon also was calculated. Compared to the conventional tillage, Rotary tillage, sub-soiling and no-tillage all increase the content of soil organic carbon, loosely combined organic carbon, labile organic carbon and the ratios of loosely to tightly combined organic carbon in the condition of wheat high stubble mulching with core stubble mulching or not. The comparison between several cultivation measures indicated that the effect of rotary tillage and sub-soiling were more significantly than no-tillage.
     2. The effects of conservational tillage measures on distributions of soil aggregates, the content of organic carbon and nitrogen and the oxidation stability of soil organic carbon in soil aggregates are studied. Among all the soil aggregates under different tillage treatments, the content was the highest in >5 mm fractions of aggregates and the lowest in 0.5~0.25 mm soil aggregates. The >5 mm size fraction occupied 62.3 %~70.2 % of the total soil aggregates and 0.5~0.25 mm size fraction occupied 1.10 %~1.80 %. Compared to the conventional tillage, sub-soiling, rotary tillage and no-tillage all increased the content of >5 mm aggregates. With aggregates sizes increasing, the content of organic carbon and total N in aggregates decreased. The organic carbon content averaged 10.87 g.kg~1 in the <0.25 mm fraction, being highest among all soil aggregates. In >5 mm soil aggregates, the content of soil organic carbon was 9.57 g.kg~1, being the lowest. Sub-soiling and rotary tillage increased the content of organic carbon and total nitrogen in soil aggregates significantly than conventional tillage and no-tillage. The effect of conservational tillage on the storage of organic carbon in soil aggregates were more significant than that on the storage of total nitrogen.Sub-soiling, rotary tillage, no-tillage and conventional tillage with straw incorporated all increased the content of readily oxidizable organic carbon in soil aggregates. The effects of sub-soiling and rotary tillage were significant, but no-tillage have a little effect, Effects of sub-soiling, rotary tillage and no-tillage on the content of difficultly oxidizable organic in soil aggregates were insignificant. The increase of total organic carbon in soil aggregates by conservational tillage measures was mainly by enhancing the content of readily oxidizable organic carbon. The oxidation stablility coefficient (Kos) of organic carbon in soil aggregates was decreased by conservational tillage measures, but the effect was insignificant. The content of total organic carbon, readily oxidizable organic carbon and difficultly oxidizable organic carbon in smaller sizes (0.5~0.25 mm and <0.25 mm) of soil aggregates were higer than that in lager sizes (>0.5 mm) of soil aggregates. But the oxidation stablility coefficients (Kos) of organic carbon in smaller sizes of soil aggregates were lower than that in lager sizes of soil aggregates.
     3. The effects of conservational tillage measures on distributions of soil microaggregates, the content of organic carbon and nitrogen and the oxidation stability of soil organic carbon in soil microaggregates are studied. The compositional proportions of soil characteristic micro-aggregates are increased under the rotary tillage with straw pulverizing and the subsoiling with straw mulching, while there are little effects on the proportion under the conventional tillage (plow and rotary tillage) with straw incorporated and no-tillage. Compared with the conventional tillage, the subsoiling and rotary tillage could increase the contents of organic carbon and nitrogen in 0.05~0.25 mm and 0.01~0.05 mm micro-aggregates, and the no-tillage could decrease the contents of organic carbon and nitrogen in 0.01~0.05 mm micro-aggregates. The rotary tillage, subsoiling and no-tillage have little effects on the contents of organic carbon and nitrogen in <0.01 mm micro-aggregates. Sub-soiling and rotary tillage increased significantly the content of total organic carbon, readily oxidizable organic carbon and difficultly oxidizable organic carbon in 0.05~0.25 mm and 0.01~0.05 mm micro-aggregates, but decreased the content of them in <0.01mm soil micro-aggregates. The effects of sub-soiling and rotary tillage on the oxidation stability of soil organic carbon in micro-aggregates were insignificant. No-tillage decreased significantly the oxidation stability of soil organic carbon in micro-aggregates.The content and the oxidation stability of soil organic carbon in micro-aggregates mainly depended on the 0.05~0.25 mm micro-aggregates. Rotary tillage, sub-soiling can increase the content of soil organic carbon and decreased the oxidation stability of soil organic carbon in micro-aggregates.
     4. Effect of tillage methods with straw returning on the content and the humification Properties of soil Soluble Organic Carbon and Nitrogen are studied. The content of soluble organic carbon was 44.40~66.67 mg/kg , the content of soluble organic nitrogen was 2.64~6.16 mg/kg in Lou soil. Compared with conventional tillage, sub-soiling, rotary tillage, no-tillage and conventional tillage with straw incorporated all increased the content of soluble organic carbon. Except no-tillage without corn straw returned, other conservational tillage measures all increased the content of soluble organic nitrogen. Effects of sub-soiling and rotary tillage on increasing the content of soluble organic carbon, nitrogen all more significant. Compared with conventional tillage, at the condition of corn straw return to field, sub-soiling and rotary tillage all increased UV280 value that reflect the content of aromatic compounds in soluble organic matter increased and humification strengthened. Rotary tillage, no-tillage and conventional tillage with straw incorporated all increased HIXem value of soluble organic matter, the value in the treatment of surface tillage with straw mulching was highest. The correlation analysis demonstrated that soil soluble organic carbon, soluble organic nitrogen were significantly correlated with soil soluble carbon, soluble nitrogen, soil organic carbon and soil nitrogen.
引文
安韶山,张玄,张扬,等. 2007.黄土丘陵区植被恢复中不同粒级土壤团聚体有机碳分布特征[J].水土保持学报, 21(6 ): 109~113.
    鲍士旦. 2000.土壤农化分析[M].中国农业出版社
    蔡立群,齐鹏,张仁陟. 2008.保护性耕作对麦—豆轮作条件下土壤团聚体组成及有机碳含量的影响.水土保持学报, 22(2):141~145.
    常旭虹. 2004.保护性耕作技术的效益和应用前景分析[J].耕作与栽培, 1(1):1~3.
    陈翠玲,蒋爱凤,介元芬,等. 2003.土壤微团聚体与土壤有机质及有效氮、磷、钾的关系研究[J].河南职业技术师范学院学报, 31(4):7~9
    陈恩凤,关连珠,汪景宽,等. 2001.土壤特征微团聚体的组成比例与肥力评价[J].土壤学报, 38 (1): 49~53.
    陈恩凤,周礼恺,武冠云. 1994.微团聚体的保肥供肥性能及其组成比例在评判土壤肥力水平中的意义[J].土壤学报, 31(1): 18~25.
    陈恩凤. 1990.土壤肥力物质基础及其调控[M ].北京:科学出版社, 38~53.
    陈全胜,李凌浩,韩兴国,等. 2003.水分对土壤呼吸的影响及机理[J ].生态学报, 25 (5): 972~978.
    陈尚洪,刘定辉,朱钟麟,等. 2008.四川盆地秸秆还田免耕对土壤养分及碳库的影响.中国水土保持科学, (6)(增刊:54~56.
    陈素英,张喜英,裴冬,等.2004.秸秆覆盖对夏玉米田棵间蒸发和土壤温度的影响.灌溉排水学报, (4):32~36.
    窦森,李超,张继宏,等. 1995.持续发展农业与土壤培肥[A ].张继宏,颜丽,窦森.农业持续发展的土壤培肥研究[C].沈阳:东北大学出版社, 119~231.
    窦华亭,张福锁,刘全清. 1993.土壤中有机态氮对作物的有效性及其在推荐施肥中的作用[J].北京农业大学学报, 19(3):71~78.
    窦森,张继宏,须湘成,等. 1992.棕壤不同粒级微团聚体中有机质特性的研究[J].土壤通报, 23(2): 52~54.
    方华军,杨学明,张晓平. 2003.农田土壤有机碳动态研究进展[J].土壤通报, 34(6):563~568.
    傅积平, 1983.土壤结合态腐殖质分组的测定.土壤通报, 12(2):36~37
    高焕文,李洪文,李问盈. 2008.保护性耕作的发展.农业机械学报, (39):43~47.
    高焕文. 2004.保护性耕作技术与机具[M].北京:化学工业出版社.
    高旺盛. 2007.论保护性耕作技术的基本原理与发展趋势[J].中国农业科学, 40(12):2702~2708
    关文玲,王旭东,李利敏,等. 2002.长期不同施肥条件下土壤腐殖质动态变化及存在状况研究.干旱地区农业研究, 20(2):32~35
    韩冰,王效科,逯非,等. 2008.中国农田土壤生态系统固碳现状和潜力.生态学报, 28(2):612~619
    韩宾,徐尚起,张海林,等. 2010.耕作方式对土壤腐殖质结合状态及组成的影响.中国农业大学学报,15(1):72~78
    韩志卿,张电学,陈洪斌,等. 2004.长期施肥对褐土有机无机复合性状演变及其与肥力关系的影响[J].土壤通报, 35 (6):720~723
    韩志卿,韩志才,张电学,等. 2008.不同施肥制度下褐土微团聚体碳氮分布变化及其对肥力的影响[J].华北农学报, 23( 4 ):190~195.
    韩志卿,张电学,王秋兵,等. 2008.不同施肥制度下褐土微团聚体有机碳活性变化[J].水土保持学报, 22(4):138~142.
    何进,李洪文,高焕文. 2006.中国北方保护性耕作条件下深松效应与经济效益研究[J].农业工程学报, 22(10): 62~67.
    胡国成,章明奎,韩常灿. 2000.红壤团聚体力学和酸碱稳定性的初步研究.浙江农业科学, (3):125~127.
    胡立峰,李洪文,高焕文. 2009.保护性耕作对温室效应的影响.农业工程学报, 25(5):308~312.
    化党领,介晓磊,张一平,等. 2005.有机肥对石灰性土壤肥力属性的长期影响[J].生态学杂志, 24(9): 1053~1057.
    黄昌勇. 2000.土壤学[M].北京:中国农业出版社.
    黄昌勇. 2002.土壤学[M].北京:中国农业出版社, 33~34.
    黄耀,刘世梁,沈其荣,等.2002.环境因子对农田土壤有机碳分解的影响[J].应用生态学报,13 (6):709~714.
    黄耀,刘世梁,沈其荣,等.2001.农田土壤有机碳动态模拟模型的建立[J].中国农业科学, 34(5):532~536.
    贾彦宙,王俊英,庞黄亚,等.2002.土壤保护性耕作技术应用研究[J].内蒙古农业科技, (6):12~13.
    接晓辉,杨丽娟,周崇峻,等. 2008.长期定位施肥对保护地土壤腐殖质含量的影响.农业科技与设备, 177(3):32~34
    冷延慧,汪景宽,薛菁芳. 2008.连续施肥20年后棕壤团聚体分布和碳储量变化.土壤通报, 39(4):743~747
    李琳,李素娟,张海林,等.保护性耕作下土壤碳库管理指数的研究.水土保持学报, 2006,20(3):106~109
    李辉信,袁颖红,黄欠如,等. 2006.不同施肥处理对红壤水稻土团聚体有机碳分布的影响.土壤学报, 43(13):422~429.
    李琳,李素娟,张海林,等. 2006.保护性耕作下土壤碳库管理指数的研究.水土保持学报, 20(3):106~109
    李小刚. 2000.甘肃景电灌区土壤团聚体特征研究[J].土壤学报, 37(2):263~270
    李小涵,郝明德,王朝辉,等. 2008.农田土壤有机碳的影响因素及其研究.干旱地区农业研究, 26(3):176~181
    李玉琴,夏建国.土地利用方式对川西低山区土壤腐殖质组成以及结合形态的影响.安徽农业科学,2008, 36(6):2441~2444
    李忠佩,张桃林,陈碧云. 2004.可溶性有机碳的含量和动态及其与土壤有机碳矿化的关系[J].土壤学报, 41(4):543~552.
    梁爱珍,张晓平,杨学明,等. 2006.耕作方式对耕层黑土有机碳库储量的短期影响.中国农业科学, 39(6):1287~1293
    刘毅,李世清,邵明安,等. 2006.黄土高原不同土壤结构体有机碳库的分布[J].应用生态学报, 17(6):1003~1008
    刘京,常庆瑞,李岗,等.2000.连续不同施肥对土壤团聚体影响的研究[J ].水土保持通报, (8):24~26.
    刘梦云,常庆瑞,安韶山,等. 2005.土地利用方式对土壤团聚体及微团聚体的影响.中国农学通报,(21)247~250
    刘淑霞,王宇,周平,等. 2008.不同施肥对黑土有机无机复合及腐殖质结合形态的影响.南京农业大学学报, 31(2):76~80
    刘淑霞,周平,曹国军,等. 2008.耕作方式对黑土有机碳及有机无机复合状况的影响[J].安徽农业科学, 36(28): 12345~12347,12364.
    刘小虎,贾庆宇,安婷婷,等. 2005.不同施肥处理对棕壤腐殖酸组成和性质的影响[J].土壤通报,36(3):328~332
    刘巽浩. 2008.泛论我国保护性耕作的现状与前景.农业现代化研究, 29(2):208~212.
    刘毅,李世清,邵明安,等. 2006.黄土高原不同土壤团聚体有机碳库的分布.应用生态学报, 17(6): 1003~1008
    卢萍,单玉华,杨林章,等. 2006.秸秆还田对稻田土壤溶液中溶解性有机质的影响.土壤学报, 43 (5):736~741
    罗珠珠,黄高宝,辛平,等. 2008.陇中旱地不同保护性耕作方式表层土壤结构和有机碳含量比较分析.干旱地区农业研究, (26):53~58.
    马俊永,陈金瑞,李科江,等. 2006.施用化肥和秸秆对土壤有机质含量及性质的影响.河北农业科学, (10):44~47.
    倪进治,徐建民,谢正苗,等. 2003.不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究.土壤学报, 40(5): 724~730.
    潘根兴. 1999.中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义.南京农业大学学报, 22(1): 51~57.
    彭新华,张斌,赵其国. 2004.土壤有机碳库与土壤结构稳定性关系的研究进展[J].土壤学报, 41 (4) :618~624.
    平立凤,窦森,张晋京,等. 2004.草原及开垦后土壤有机质性质研究[J].应用生态学报, 15(5):824~826
    邱莉萍,张兴昌,张晋爱. 2006.黄土高原长期培肥土壤团聚体中养分和酶的分布.生态学报,(26:364~372
    邵月红,潘剑君,孙波. 2005.不同森林植被下土壤有机碳的分解特征及碳库研究[J].水土保持学报, 19(3):24~28.
    沈宏,曹志宏. 1999.土壤活性有机碳的表征及生态效应[J ].生态学杂志, 18(3):32~38.
    史吉平,张夫道,林葆. 2002.长期定位施肥对土壤腐殖质结合形态的影响.土壤肥料, (6):8~12
    史奕,陈欣,沈善敏. 2002.土壤团聚体的稳定机制及人类活动的影响.应用生态学报, 13(11):1491~1494.
    苏永中,赵哈林. 2002.土壤有机碳储量、影响因素及其环境[J].中国沙漠, 22 (3): 220~228
    孙天聪,李世清,邵明安. 2005.长期施肥对褐土有机碳和氮素在团聚体中分布的影响.中国农业科学, 38(9):1841~1848
    唐晓红,邵景安,高明,等. 2007.保护性耕作对紫色水稻土团聚体组成和有机碳储量的影响.应用生态学报, 18(5):1027~1032.
    汪景宽,李丛,于树,等. 2008.不同肥力棕壤溶解性有机碳、氮生物降解特性.生态学报, 12(28): 6165~6171
    汪文霞,周建斌,严德翼,等. 2006.黄土区不同类型土壤微生物量碳、氮和可溶性有机碳、氮的含量及其关系.水土保持学报, 20 (6) :103~106
    王彩霞,王旭东,朱瑞祥. 2010.保护性耕作对土壤结构体碳氮分布的影响.自然资源学报, 25(3):386~395.
    王春燕,黄丽. 2008.几种侵蚀红壤有机无机复合状况及其与土壤养分的关系.土壤学报, (45):510~517
    王清奎,汪思龙,冯宗炜. 2005.杉木人工林土壤可溶性有机质及其与土壤养分的关系[J].生态学报, 25(6):1299~1305.
    王淑平,周广胜,高素华,等. 2003.中国东北样带土壤活性有机碳的分布及其对气候变化的响应.植物生态学报, 27(6): 780~785
    魏朝富,陈世正,谢德体. 1995.长期施用有机肥料对紫色水稻土有机无机复合性状的影响[J].土壤学报, 32 (2):159~166
    文启孝. 1984.土壤有机质研究法[M].北京:农业出版社, 1~8.
    文启孝. 1989.我国土壤有机质和有机肥料研究现状[J ].土壤学报, 26 (3):255~261.
    文倩,关欣. 2004.土壤团聚体形成的研究进展[J].干旱地区农业研究, 21(4):433~438.
    吴承祯. 1999.不同经营模式土壤团粒结构的分形特征研究[J].土壤学报, 36(2):162~167
    吴金水,童成立,刘守龙. 2004.亚热带和黄土高原区耕作土壤有机碳对全球气候变化的影响[J] .地球科学进展, 19(1):131~137.
    谢瑞芝,李少昆,李小君,等. 2007.中国保护性耕作研究分析—保护性耕作与作物生产.中国农业科学, 40(9):1914~1924.
    熊毅. 1985.土壤胶体(第二册) [M ].北京:科学出版社, 62~67.
    熊毅. 1982.有机无机复合体与土壤肥力[J].土壤, (5):161~167.
    徐华君. 2007.阿尔泰山区土壤有机碳氧化稳定性的初步比较分析[J].水土保持研究, 14(6): 27~29.
    徐建民,袁可能. 1995.我国地带性土壤中有机质氧化稳定性研究[J].土壤通报, 26(1): 1~3.
    徐明岗,于荣,王伯仁. 2006.长期不同施肥下红壤活性有机质与碳库管理指数变化.土壤学报. 43:(5)723~729
    徐阳春,沈其荣,冉炜. 2002.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报, 39(1):89~96.
    徐阳春,沈其荣,雷宝坤,等.2000.水旱轮作下长期免耕和施用有机肥对土壤某些肥力性状的影响[J].应用生态学报, 11(4):549~552.
    徐阳春,沈其荣. 2000.长期施用不同有机肥对土壤各粒级复合体中C, N, P含量与分配的影响.中国农业科学, 33(5): 65~71.
    许嗥. 1989.施用有机物料对潮土及其微团聚体性能的影响Ⅰ.对微团聚体组成及其磷素吸持能力的影响[J ].河北农业大学学报, 12(3):28~33.
    薛少平,杨青,朱瑞祥,等. 2003.黄土高原地区机械化保护性耕作的回顾与展望,农业工程学报增刊, 19:56~59.
    杨绒,严德翼,周建斌,等. 2007.黄土区不同类型土壤可溶性有机氮的含量及特性.生态学报, 27(4): 1397~1403.
    杨长明,欧阳竹. 2008.华北平原农业土地利用方式对土壤水稳性团聚体分布特征及其有机碳含量的影响.土壤, 40 (1): 100~105.
    杨绒,赵满兴,周建斌. 2005.过硫酸钾氧化法测定溶液中全氮含量的研究.西北农林科技大学学报, 33 (12): 107~111.
    杨学明,张晓平,方华军. 2003.农业土壤固碳对缓解全球变暖的意义[J].地理科学, 23(1):101~106.
    杨玉爱. 1996.我国有机肥料研究及展望[J].土壤学报, 33 (4):414~421.
    姚贤良,于德芬.1985.有机肥料及其利用方式对土壤结构的影响.土壤学报, 22(3):241~249.
    于君宝,刘景双,王金达,等.2004.不同开垦年限黑土有机碳变化规律[J].水土保持学报, 18(1):27~30
    袁可能. 1963.土壤有机矿质复合体研究. I.土壤有机矿质复合体中腐殖质氧化稳定性的初步研究[J].土壤通报, 11(3):286~292.
    袁颖红,李辉信,黄欠如,等. 2004.不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响[J] .生态学报, 24(12):2961~2966
    张春霞,郝明德,魏孝荣,等. 2004.黑垆土长期轮作培肥土壤有机质氧化稳定性的研究[J].土壤肥料, (3):10~16.
    张电学,韩志卿,王秋兵,等. 2006.不同施肥制度下褐土结合态腐殖质动态变化.沈阳农业大学学报, 37(4): 597~601
    张付申. 1996.长期施肥条件下娄土和黄绵土有机质氧化稳定性研究.土壤肥料, 6 :32~36
    张国盛,黄高宝, YIN Chan. 2005.农田土壤有机碳固定潜力研究进展.生态学报, (25):351~357
    张海林,高旺盛,陈阜,等. 2005.保护性耕作研究现状、发展趋势及对策.中国农业大学学报, 10(1):16~20
    张鸿龄,梁成华,杜立宇,等. 2006.长期定位施肥对保护地土壤腐殖质结合形态的影响.应用生态学报. 17(5): 831~834
    张甲坤,陶澍,曹军. 2000.土壤中水溶性有机碳测定中的样品保存于前处理方法[J].土壤通报, 31(4):174~176.
    张洁,姚宇卿,金轲,等. 2007.保护性耕作对坡耕地土壤微生物量碳、氮的影响.水土保持学报. 21(4):126~129
    张洁,姚宇卿,吕军杰,等. 2007耕作对旱区坡耕地土壤碳素转化及冬小麦产量的影响.土壤通报, (38):882~886
    张奇春,王光火. 2006.施用化肥对土壤腐殖质结构特征的影响.土壤学报, 43(4): 618~623.
    章明奎,何振立,陈国潮,等. 1997.利用方式对红壤水稳性团聚体形成的影响[J].土壤学报, 34 (4): 359~365.
    章明奎,何振立. 1997.成土母质对土壤团聚体形成的影响.热带亚热带土壤科学[J], 6(3):198~202.
    章明奎,郑顺安,王丽平. 2007.利用方式对砂质土壤有机碳、氮和磷的形态及其在不同大小团聚体中分布的影响[J].中国农业科学, 240(8):1703~1711.
    赵海涛,师帅兵. 2006.机械化保护性耕作技术的效益分析[J].农机化研究, (8): 74~76.
    赵满兴, Kalbitz Karsten,周建斌. 2008.黄土区几种土壤培养过程中可溶性有机碳、氮含量及特性的变化.土壤学报, 45(3):476~484
    赵满兴,周建斌,陈竹君,等. 2008.不同类型农田土壤对可溶性有机氮、碳的吸附特性.应用生态学报, 19 (1): 76~80
    赵其国. 1991. 90年代的土壤科学[J].土壤, 236(4):169~173.
    赵世伟,苏静,吴金水,等. 2006.子午岭植被恢复过程中土壤团聚体有机碳含量的变化[J].水土保持学报, 20(3):121~125.
    赵廷祥.农业保护性耕作与生态环境保护[J ].农村牧区机械化, 2002(4) :7~8
    郑立臣,谢宏图,张威,等. 2006.秸秆不同还田方式对土壤中溶解性有机碳的影响.生态环境, 15(1): 80~83
    中国科学院南京土壤研究所. 1977.土壤理化分析[M].上海:上海科学技术出版社, 518~522
    周虎,吕贻忠,杨志臣,等. 2007.保护性耕作对华北平原土壤团聚体特征的影响.中国农业科学,40(9):1973~1979
    周震峰. 2008.循环农业的发展模式研究.农业现代化研究. 29 (1):61~64
    庄恒扬,刘世平,沈新平,等. 1999.长期少免耕对稻麦产量及土壤有机质与容重的影响.中国农业科学. 32 (4):39~44.
    Al-Kaisi M M, Yin X H. 2005. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. Journal of Environmental Quality, 34: 437~445.
    Alvarez R, Russo M E, Prystupa P, et al. 1998. Soil carbon pools under conventional and no-tillage systems in the argentine rolling pampa. Agronomy Journal, 90: 138~143.
    Andersson S, Nilsson SI, Saetre P. 2000. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biology & Biochemistry, 32: 1~10
    Batjes N H, Sombroek W G. 1997. Possibilities for carbon sequestration in tropical and sub-tropical soils [J].Global Change Biology, 3 :161~173.
    BenkeMB, MermutAR, Shariatmadari H. 1999. Retention of dissolved organic carbon from vinasse by a tropical soil,kaolinite,and Fe-oxides. Geoderm a, 91: 47~63
    Biederbeck. V. O. Janzen, H.H.Campbell, C. A. and Zentner, P. 1994. Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biol.Biochem.26:1647~1656.
    Blair GJ, Lefroy R D B1. 1995. Soil C fractions based on their degree of oxidation and the development of a C management index for agricultural systems [J] Aust. J Agri1 Res1, 46: 1459~1466
    Blevins R L. T.1990. tillage effects on sediment and soluble nutrient losses from a Maury silt loam soil [J]. J Environ Qual, 19(4):683~686
    Bolan, N.S., Baskaran, S., Thiagarajan, S. 1996. An evaluation of the methods of measurement of dissolved organic carbon in soils manures,sludges and stream water[J]. Communications in Soil Science and Plant Analyses, 27(13& 14 ):2723~2737.
    Bronick C J, Lal R. 2005. Soil structure and management: a review. Geoderma, 124: 3~22.
    Chapman P J, Williams B L, Hawkins A. 2001. Influence of temperature and vegetation cover on soluble inorganic and organic nitrogen in a spodosol [J]. Soil Bio. Biochem. , 33 (7&8): 1113~1121.
    Chen C R, Xu Z H, Zhang S L, et al. 2005. Soluble organic nitrogen pools in forest soils of subtropical Australia[J].Plant and Soil, 277:285~297.
    Christou, M., Avramides, E. J., Roberts, J. P., et al. 2005. Dissolved organic nitrogen in contrasting agricultural ecosystems[J].Soil Biology & Biochemistry, 37:1560~1563
    Dalal R C and Mayer R J. 1986. Long-term trends in fertility of soil under continuous cultivation and cereal cropping in southern QueenslandⅢDistribution and kinetics of soil organic carbon in particle~size fractions. Australian Journal of S oil Research, 24:293~300.
    Davidson. E.A., Galloway, L. F.and Strand, M.K..1987.Accessing available carbon: Comparison of techniques across selected forest soils. Comm. Soil Science Plant Anal.18:45~64.
    Dexter A R. 1988. Advances in characterization of soil structure.Soil Till .Res, 11:199~238.
    Domaar J F, Sylver S , Walter D W. 1990. Distribution of nitrogen fractions in grazed and ungrazed fescue grass land Ah horizons[J]. Journal of Rangemangemeng, 43(1):6~9.
    Doran J W,E T Elliott, K Paustian. 1998. Soil microbial activity, nitrogen cycling, and long~term changes in organic carbon pools as related to fallow tillage management[J].Soil & Tillage Research,(49):31~81.
    Elliott E T, Coleman D C. 1988. Let the soil work for us [J]. Ecological Bulletins, 39: 23~32.
    FortinM. C. Rochette P. Pattey E. 1996. Soil carbon dioxide fluxes from conventional and no-tillage small grain cropping systems [J]. Soil Sci. Soc. Am. J, 60:1541~1547
    Freixo A A, de A, Machado P L O, do s Santos H P, et al. 2002. Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil. S oil and Tillage Research, 64 (324) : 221~230.
    Gerzabek M H, Haberhauer G, Kirchmann H. 2001. Soil organic matter pools and carbon-13 natural abundance in particle-size fractions of a long-term agricultural field experiment receiving organic amendments. Soil Sci Soc Am J , 65: 352~358
    Govaerts B, Sayre KD, Lichter K, et al. 2007. Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems. Plant Soil 291:39~54
    Haney, R.L. Franzluebbers, A.J., Hons, F.M., et al. A. 1999. Soil C extracted with water or K2SO4: PH effect on determination of microbial biomass[J].Canadian Journal of Soil Science, 79:529~533.
    Hao Y, L al R, Owens L B, et al. 2002. Effect of crop land management and slope position on soil organic carbon pool at the North Appalachian Experimental Watersheds. Soil and Tillage Research, 68(2): 133~142
    Havlin J L, D E Kissel, L D Maddux, et al. 1990. Crop rotation and tillage effects on soil organic carbon and nitrogen[J]. Soil Science Society of America Journal, (54):448~452.
    Huggins D R, GA Buyanovsky, G H Wanger, et al. 1998. Soil organic C in the tallgrass prairie-derived region of the corn belt: effects of long-term crop management[J]. Soil & Tillage Research, (47):219~234.
    J.L. Hernanz, R. Lopez, L. Navarrete, V. Sanchez-Giron. 2002. Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain, Soil & Tillage Research, 66 129~141
    Johannes L, James K, Dawit S. 2007. Organic matter stabilization in soil micro-aggregates: Implications from spatial heterogeneity of organic carbon contents and carbon forms [J]. Biogeochem, 85: 45~57.
    Johns. M. M. and Skogley. E.O. 1994. Soil organic matter testing and labile carbon identification by carbonaceous resin capsules. Soil Science Society of American Journal.58.751~758.
    Jones, D.L., Willett, V.B. 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J]. Soil Biology & Biochemisty, 38:991~999.
    Kaiser K, Kaupenjohann M, Zech W. 2001. Sorption of dissolved organic carbon in soils: Effects of soil sample storage,soil to solution ratio and temperature. Geoderma, 99: 317~328
    Kalbitz K, Schmerwitz J, Schwesig D, et al. 2003. Biodegradation of soil~derived dissolved organic matter as related to its properties. Geodema, 113:273~291
    Kalbitz K, Schwesig D, Rethemeyer J, et al. 2005. Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biology & Biochemistry, 37: 1~13.
    KayBD.1998. Soil structure and organic carbon: a review .In: Lal R, Kimble J M, Follett R F, Stewart B A (Eds).Soil processes and the carbon cycle. CRC press, Boca Raton, FL.169~197.
    Lal R, R F Follett, J M Kimble, et al. 1999. Managing U.S. crop land to sequester carbon in soil [J].Soil andWater Conservation, (54):374~381.
    Logninow W, Wisniewski W, Strony W M, et al. 1987. Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science , 20 :47~52
    McKnight D M, Harnish R , Wershaw R L , et al . 1997. Chemical characteristics of particulate, colloidal and dissolved organic material in Loch Vale Watershed, Rocky Mountain National Park. Biogeochemistry, 16: 99~124
    Meriam J, McDowell, W.H, Currie, W.S. 1996. A high-temperature catalytic oxidation technique for determining total dissolved nitrogen [J]. Soil Science Society of America Journal, 60:1050~1055
    Miko U F K. 1995. The temperature dependence of SOM decomposition and the effect of global warming on soil organic C storage [J] . Soil Biology and Biochemistry, 27(6):753~760.
    Muhammad A, Rattan Lal. 2008. Tillage and drainage impact on soil quality I. Aggregate stability, carbon and nitrogen pools, Soil & Tillage Research 100: 89~98
    Muphy D V, Macdonald A J, Stockdale E A, et a1. 2000. Soluble organic nitrogen in agricultural soil [J].Bi01.Fertil.Soils, 30:374~387.
    Murage E W, Voroney P. 2008. Distribution of organic carbon in the stable soil humic fractions as affected by tillage management [J].Can J Soil Sci, 88(1) : 99~106
    Nelson, P.N. Dictor, M.C., Soulas, G. 1994. Availability of organic carbon in soluble and particle-size fractions from a soil profile [J].Soil Biology& Biochemistry, 26:1549~1555.
    Oades J M, Water A G.1991. Aggregate hierarchy in soils. Australian Journal of Agricultural Research,29:815~823.
    Parlanti E, Wrz K, Geoffroy L, et al. 2000. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthopogenic inputs. Org. Geochem, 31:1765~1781
    Pinney ML, Westerhoff P K, Baker L. 2000. Transformation in dissolved organic carbon through constructed wetlands. Water Res, 34:1897~1911
    Rattan Lal. 2000, Physical management of soils of the tropics: priorities for the 21st century [J]. soil science, 165:191~202.
    Reeder J D, Schuman G E, Bowman R A. Soil C and N changes on conservation reserve program lands in the Central Great Plains. S oil and Tillage Research, 1998, 47(324): 339~349.
    Reicosky D. C., DugasW. A. Torbert H. A. 1997. Tillage induced soil carbon dioxide loss from different cropping systems [J]. Soil & Tillage Research, 41:105~118
    Roberts W P, Chan K Y. 1990. Tillage induced increases in carbon dioxide loss from soil. Soil and Tillage Research, 17: 143~151.
    Roldán A, Caravaca F, Hernández M T, et al. 2003. No-tillage crop residue additions, and legume cover cropping effects on soil quality characteristic under maize in Patzcuaro watershed. Soil and Tillage Research, 172:65~73
    
    Singh R A. 1980. Soil Physical Analysis. New Delhi-Ludhiana: Kalyani Publishers, 52~56.
    Six Elliott E T, Paustian K, et al. 1998. Aggregation and soil organic matter accumulation in cultivated and native grassland soils [J]. Soil Sci. Soc. Am. J 62:1367~1377.
    Six J, Elliott T, Paustian K. 1999. Aggregate and soil organic matter dynamics under conventional and no~tillage systems. Soil Science Society of America Journal, 63:1350~1358.
    Six J, Bossuyt H, Degryze S et al. 2004. A history of research on the link between (micro) aggregates, soil biota , and soil organic matter dynamics [J]. Soil Tillage Res., 79: 7~31.
    Six J, Paustian K, Elliott E T, et al. 2000. Soil structure and soil organic matter:Ⅰ.Distribution of aggregate size classes and aggregate associated carbon [J]. Soil Science Society of America Journal, 64: 681~689.
    Slepetiene A, Slepetys J. Status of humus in soil under various long~term tillage systems [J]. Geoderma, 2005, 127(324):207~215
    Sneh GK, Chander K, MundraMC, et al. 1999. Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions. Biol Fertil Soils, 29: 196~200
    Tisdall J M, Oades J M. 1982. Organic matter and water stable aggregates in soils [J]. Soil Sci, 33:141~163.
    Tisdall J M. 1994. Possible role of soil microorganisms in aggregation in soils [J]. Plant Soil, 117: 145~153.
    Wang Q K, Wang S L, Fen ZW. 2005. A study on dissolved organic carbon and nitrogen nutrients under Chinese fir p lantation: Relationship swith soil nutrients. Acta Ecologica Sinica, 25(6): 1299~1305.
    West T O, Marland G. 2002. A synthesis of carbon sequestration, carbon emission , and net carbon flux from agriculture: comparing tillage practices in the United States [J].Agriculture Ecosystems Environment , 91:217~232.
    Whitbread, A.M., Lefory, R.D.B., and Blair, G.J. 1998. A survey of the impact of cropping on soil physical and chemical properties in north western New South Wales. Australian Journal of soil research.36:669~681
    Winsome T, McCool J G. 1998. Changes in chemistry and aggregation of a California forest soil worked by the earthworm Argilophilus papillifer eisen[J].Soil Biology&Bio-chemistry, 30(13):1677~1687.
    Xu Q F,Jiang P K. 2004. Study on active organic carbon of soils under different types of vegetation. Journal of soil and water conservation, 18: 84~87
    Zhong Z, Makeschin F.2003. Soluble organic nitrogen in temperate forest soils.Soil Biology &Biochemistry, 35: 333 338.
    Zsolnay A, Baigar E, Jimenez M, et al. 1999. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 8: 45~50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700