用户名: 密码: 验证码:
黄土丘陵沟壑区农田土壤有机碳和作物产量动态变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原地区作为我国典型的雨养旱作农业区,贫瘠的土壤和严重匮乏的水资源,严重制约着农业生产的稳定及可持续发展。研究如何使土壤碳库增汇(土壤培肥)、农作物增产,这不仅对该区乃至我国农业的可持续发展有重要意义,而且对全球大气CO2减排也起着不可忽视的作用。前人通过实地观测的常规方法,证明了增加肥料投入是土壤增汇、粮食增产的关键措施。因此,研究不同施肥措施对农田土壤碳循环规律和SOC含量长期变化趋势的影响,及对农作物产量变化趋势的影响,有助于揭示农田土壤碳源汇的特征,对土壤培肥和保障粮食安全作出相应的贡献。本研究采用DNDC模型模拟的方法,主要研究了黄土丘陵沟壑区坡耕地、梯田和川地三种农田类型在单施化肥、单施有机肥、化肥有机肥配施三种施肥措施,以及不施肥条件下土壤碳循环规律、SOC含量变化趋势、农作物产量变化趋势等基本特征,取得了以下主要结果:
     (1)DNDC模型模拟结果的可信度,只有与实测数据进行比较才能确定,本文利用安塞试验站三个养分长期定位试验场上的实测结果,从模型模拟SOC含量及作物产量动态变化方面进一步验证DNDC模型在黄土丘陵沟壑区的适用性。验证结果表明:验证选用的实测数据与DNDC模型模拟数据间均达到了极显著相关,表明DNDC模型可用来模拟和预测该地区农田SOC含量及作物产量的动态变化。
     (2)环境影响因子中,SOC年均变化量对的土壤初始有机碳含量升降的响应最为敏感,且均促进土壤的“碳源”效应;而在耕作管理措施中,则对秸秆还田率与有机肥施用量增减的响应最为敏感,且均促进土壤的“碳汇”效应。通过DNDC模型对各参数因子值增减后响应敏感度的分析,结果一方面说明土壤碳库的维持较为敏感的受初始SOC含量等环境因子的影响,另一方面也揭示了为提高土壤固碳能力,通过改良耕作管理措施具有很大的潜力。
     (3)在三种耕地类型上,施肥能显著提高作物残体与根系分泌物的外源C携入量,也能提高土壤异氧呼吸对内源C的消耗量,即能同时提高土壤碳库的“碳汇”与“碳源”能力,且单施有机肥、有机肥配施氮肥提高效果极显著。在坡耕地与川地上,不施肥,由于土壤亏缺土壤肥力持续下降,而在梯田上,由于豆科作物黄豆的引入,促进了土壤肥力的累积;单施氮肥,在坡耕地与川地上,虽能保证作物生产,但表层土壤肥力增加不明显,甚至会有降低趋势;在三种耕地类型上,单施或配施有机肥,均能极显著提高SOC含量,且氮肥配施有机肥的培肥效果较好。
     (4)在坡耕地与川地上,不施肥,由于土壤亏缺土壤肥力持续下降,作物产量也持续降低,而在梯田上,由于豆科作物黄豆的引入,促进了农作物增产;单施氮肥,在坡耕地与川地上,基本能保证作物生产,但对土壤肥力有不良影响。在三种耕地类型上,氮肥配施有机肥对作物增产效果较好,宜予以推广。因此,生产管理中,为实现粮食增产的目标,在黄土丘陵沟壑区坡耕地、梯田与川地上,应大力推广有机肥配施氮肥的措施。
     (5)在贫瘠的土壤上采取必要措施提升土壤肥力,能极显著的促进作物产量。然而,当土壤肥力上升后,其他因素,如年降水量、年均温或作物自身生产力差异则会取代土壤肥力,成为制约作物生产的限制因子。本次相关性分析结果表明,在坡耕地、梯田和川地上,配施均能兼顾土壤固碳与粮食增产、稳产、高产的双赢目标,这符合农业可持续发展的大方向,宜予以推广。
As a typical rainfed agricultural area in China, the Loess Plateau region has poor soil and severe water shortage, seriously hindering the stability of agricultural production and its sustainable development. To study how to increase soil carbon sequestration (soil fertility) and yield-increasing, is important and necessary not only for the sustainable development of agricultural in this region as well as our country, but also for the global atmospheric CO2 mitigation. Previous researchers through conventional field observation methods had proved that to increase fertilizer input was the key measure to enhance soil carbon sequestration and crop yield-increasing. Therefore, to study the effects of different fertilization on soil carbon cycling rules, SOC content change trends and crop yield-increasing trends, could help us reveal the characteristics of soil carbon storage whether as a sink or a source, contributing to soil fertility and food security. In this study, DNDC model was used to simulate and predict both the farmland SOC content and crop yield dynamic changes under three types of fertilization treatments, single fertilizer application, single manure amendment and combined application of fertilizer and manure, as well as a no fertilizer treatment. Soil carbon cycling rules, SOC content changes, yield-increasing trends and so on were investigated by the simulated results. The main obtained results are as follows:
     (1) The credibility of DNDC model's simulation results could only be determined by comparing with the measured data. In this study, the long-term observed data collected from three long-term fertilization experiments, supported by Ansai Soil and Water Conservation Experimental Station, were compared with the simulated dynamic changes of SOC content and crop yield, in order to further verify the applicability of DNDC model in hilly and gully areas of the Loess Plateau. The validation results showed that the comparisons between observed and the simulated SOC content and crop yield were all significance at 0.01 level, suggesting the DNDC model can be used to simulate and predict both the farmland SOC content and crop yield dynamics.
     (2) Among the environmental factors, initial SOC content was the most sensitive factor for regulating SOC sequestration rate as a“carbon source”; among the farm management factors, crop residue incorporation and manure amendment are the most sensitive factors affecting the SOC dynamics as a“carbon sink”. Results from the sensitivity tests have a dual implication, which indicate that SOC dynamics is sensitive to some input factors (e.g., initial SOC content, crop residue incorporation, manure amendment) more than others. It also revealed there are potentials for enhancing SOC sequestration through improved farming management practices.
     (3) On the three types of farmland, fertilizition could significantly increase crop residues and root exudates amount, bringing more exogenous C into soil; it also could significantly enhance soil heterotrophic respiration, increasing endogenous C consumption. That suggesting it could both increase soil carbon pool's capability as "carbon sink" and "carbon source", and single manure and combined applications had more significant effects. On the slope land and plain field, no fertilizer made their soil fertility declined due to soil nutrients stress, even though soil fertility on terrace was improved, due to the introduction of a leguminous crop, soybean. Single nitrogen fertilizer application on the slope land and plain field, could ensure crop production, but the surface soil's fertility improvement was not obvious, or even be reduced slightly. On the three types of farmland, single manure or combined application both could increase SOC content significantly, and the fertilizing effect of combined nitrogen fertilizer with manure application is better.
     (4) On slope land and plain field, no fertilizer made their crop yields declined continually due to a continuous deterioration in soil fertility, on terrace, the crop yield was promoted due to the introduction of soybeans, a leguminous crop. Single nitrogen fertilizer application, on slope land and plain field, could ensure crop production basicly, but had an serious effect on soil fertility. Therefore, on the three types of cultivated land, combined application of nitrogen fertilizer and manure should be advised as a better yield-increasing measure in this region.
     (5) On the barren farmland, the necessary measures would not only enhance its soil fertility, but also play a very significant role in promoting crop yields. However, when the soil fertility beyond a threshold value that might exist, other factor, such as annual precipitation, mean annual temperature, crops’own productivity differences and so on, would replace soil fertility, becoming a new limiting factor for crop production. Standing on the sustainable development of agriculture, in this study, the combined application on slope land, terrace field and plain field should be a better choice, which would achieve the win-win goal of soil carbon sequestration and food production security.
引文
蔡承智,陈阜,徐杰,梁颖. 2002.作物产量潜力及其提高途径探讨.农业现代化研究, 23(6): 465~468
    蔡文著. 2009.中国粮食安全问题研究述评.粮食与饲料工业, 3: 1~3
    陈晨,梁银丽,吴瑞俊,彭强,贾文燕,黄茂林. 2010.黄土丘陵沟壑区坡地有机碳变化及碳循环初步研究.自然资源学报, 25(4): 668~676
    陈庆强,沈承德,易惟熙,彭少麟,李志安. 1998.土壤碳循环研究进展.地球科学进展, 13(6): 555~563
    陈全胜,李凌浩,韩兴国,阎志丹. 2003.水分对土壤呼吸的影响及机理.生态学报, 25(5): 972~978
    陈秀德,王洪征,黄孝新,张智波. 1999.土壤养分含量及施肥与小麦产量关系的研究.山东农业科学, (4): 34~35
    宫占元,刘春梅,王艳杰. 2006.土壤有机碳库及其控制因子的研究进展.黑龙江八一农垦大学学报, 18(3): 10~12
    关连珠,张伯泉,颜丽. 1990.有机肥料配施化肥对土壤有机质组分及生物活性影响的研究.土壤通报, 21(4): 180~184
    郭广芬,张称意,徐影. 2006.气候变化对陆地生态系统土壤有机碳储量变化的影响.生态学杂志, 25(4): 435~442
    国家统计局. 2004.中国农村统计年鉴2003.北京:中国统计出版社
    韩冰,王效科,欧阳志云,曹志强,邹德乙,孙宏德,朱平,周宝库. 2004.中国东北地区农田生态系统中碳库的分布格局及其变化.土壤通报, 35(4): 401~407
    韩士杰,董云社,蔡祖聪,宋长春. 2008.中国陆地生态系统碳循环的生物地球化学过程.北京:科学出版社: 258~320
    郝明德,姚振镐,韩贵杰,申孝儒,胡克昌. 1991.渭北旱塬地区粮食作物优化施肥模式的研
    究.见:李玉山,苏陕民(主编).长武王东沟高效生态经济系统综合研究.西安:科学技术文献出版社: 9黄昌勇.2000.土壤学.北京:中国农业出版社
    黄耀,刘世梁,沈其荣,宗良纲. 2001.农田土壤有机碳动态模拟模型的建立.中国农业科学, 34(5): 532~536
    姜勇,梁文举,闻大中. 2004.免耕对农田土壤生物学特性的影响.土壤通报, (3): 348~351
    金琳. 2008.农田管理对土壤碳储量的影响及模拟研究.硕士学位论文.北京:中国农业科学院
    金琳,李玉娥,高清竹,刘运通,万远帆,秦晓波,石锋. 2008.中国农田管理土壤碳汇估算.中国农业科学, 41(3): 734~743
    李长生. 2001.生物地球化学的概念与方法—DNDC模型的发展.第四纪研究, 21(2): 89~99
    李长生. 2004.陆地生态系统的模型模拟.复杂系统与复杂性科学, 1(1): 49~57
    李科江,张素芳,贾文竹,宋平忠,刘树庆,霍习良,王玉朵. 1999.半干旱区长期施肥对作物产量和土壤肥力的影响植物营养与肥料学报, 5(1): 21~25
    李恋卿,潘根兴,张旭辉. 2000.退化红壤植被恢复中表层土壤微团聚体及其有机碳的分布变化.土壤通报, 31(5): 193~196
    李小涵. 2008.不同耕作模式与施肥处理对土壤碳氮的影响. [硕士学位论文].杨凌:西北农林科技大学
    李小涵,郝明德,王朝辉,李利利. 2008.农田土壤有机碳的影响因素及其研究干旱地区农业研究26(3): 176~181
    李玉宁,王关玉,李伟. 2002.土壤呼吸作用和全球碳循环.地学前缘, 9 (2): 351~357
    林葆,林继雄,李家康. 1994.长期施肥的作物产量和土壤肥力变化.植物营养与肥料学报, 1: 6~18
    林而达. 2001.气候变化与农业可持续发展.北京:北京出版社: 1~32
    林心雄. 1998.中国土壤有机质状况及其管理.见:沈敏善(主编).中国土壤肥力.北京:中国农业出版社: 111~159
    刘燕,唐立松,李彦. 2008.绿洲农田不同施肥处理对土壤养分和作物产量的影响.干旱地区农业研究, 26(3): 151~156
    刘运通. 2008.不同施肥措施下玉米地温室气体排放特点分析与模拟研究. [硕士学位论文].北京中国农业科学院
    刘振兴,杨振华,邱孝煊,刘玉环,林炎金,庄淑英,方红,林增泉. 1994.肥料增产贡献率及其对土壤有机质的影响.植物营养与肥料学报, 1: 19~26
    吕树鸣,霍兴祥,罗皓. 2004.长期施肥对作物产量和土壤肥力的影响.耕作与栽培, (3): 3~5
    马成泽,周勤,何方. 1994.不同肥料配合施用土壤有机碳盈亏分布.土壤学报, 31(1): 34~41
    倪健,张新时. 1998. CO2增浓和气候变化对陆地生态系统的影响.大自然探索, 17(1): 1~6
    潘根兴,赵其国. 2005.我国农田土壤碳库演变研究:全球变化和国家粮食安.地球科学进展, 20(4): 384~393
    彭祖厚,唐德琴. 1988.秸秆还田在培肥地力上的作用.土壤肥料, (2): 11~15
    秦小光,蔡炳贵,吴金水,王国安,刘东生. 2005.土壤温室气体昼夜变化及其环境影响因素研究.第四纪研究, 25(3): 376~388
    秦小光,李长生,蔡炳贵. 2001.气候变化对黄土碳库效应影响的敏感性研究.第四纪研究, 21(2): 153~161
    摄晓燕,谢永生,郝明德,赵云英,张义,鞠艳. 2009.黄土旱塬长期施肥对小麦产量及养分平衡的影响.干旱地区农业研究, 27(6): 27~32
    沈宏,曹志洪. 1998.长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响.热带亚热带土壤科学, 7(1): 1~5
    沈敏善. 1984a.国外长期肥料试验(一).土壤通报, (2): 85~91
    沈敏善. 1984b.国外长期肥料试验(二).土壤通报, (3): 134~138
    沈敏善. 1984c.国外长期肥料试验(三).土壤通报, (4): 184~185
    隋跃宇,张兴义,焦晓光,王其存,赵军. 2005.长期不同施肥制度对农田黑土有机质和氮素的影响.水土保持学报, 19(6): 190~200
    孙凤华,吴志坚,杨素英. 2006.东北地区近50年来极端降水和干燥事件时空演变特征.生态学杂志, 25(7): 779~784
    唐华俊,陈佑启,邱建军,陈仲新. 2004.中国土地利用/土地覆盖变化研究.北京:中国农业科学技术出版社: 268~270
    田洪艳,周道玮,郭平. 2001.不同撂荒年限的草原农田土壤及植被的变化规律研究.东北师大学报(自然科学版), 33(4): 72~77
    王伯仁,徐明岗,文石林. 2005.长期不同施肥对旱地红壤性质和作物生长的影响.水土保持学报, 19(1): 97~144
    王春乙,潘亚茹,白月明,温民. 1997. CO2浓度倍增对中国主要作物影响的试验研究.气象学报, 55(1): 86~94
    王立刚,邱建军,马永良,王迎春. 2004.应用DNDC模型分析施肥与翻耕方式对土壤有机碳含量的长期影响.中国农业大学学报, 9(6): 15~19
    王位泰,张天封,姚玉璧,王润元,郭江勇,黄斌. 2008.黄土高原夏半年降水气候变化特征及对作物产量的影响.干旱地区农业研究, 26 (1): 154~159
    王旭东,张一平,吕家珑,樊小林. 2000.不同施肥条件对土壤有机碳及胡敏酸特性的影响.中国农业科学, 33(2): 75~81
    王旭东,张一平. 1998.不同施肥条件土壤胡敏酸级分变异及性质的研究.土壤学报, 35(3): 404~411
    王艳芬,陈佐忠, LurryT. 1998.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响.植物生态学报, 22(6): 545~551
    魏孝荣,郝明德,张春霞. 2003.黄土区长期定位培肥试验对土壤肥力的影响.水土保持研究, 10(1): 37~39
    肖国举,张强,王静. 2007.全球气候变化对农业生态系统的影响研究进展.应用生态学报, 18 (8): 1877~1885
    徐阳春,沈其荣,雷宝坤,储国良,王全洪. 2000.水旱轮作下长期免耕和施用有机肥对土壤某些肥力性状的影响.应用生态学报, 11(4): 549~552
    徐阳春,沈其荣,冉炜. 2002.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报, 39(1): 89~96
    许信旺,潘根兴,汪艳林, .曹志宏2009.中国农田耕层土壤有机碳变化特征及控制因素.地理研究, 28(3): 601~612
    杨昕,王明星,黄耀. 2002.地-气间碳通量气候响应的模拟Ⅰ.近百年来气候变化.生态学报, 22(2): 270~277
    张凡,李长生,王政. 2006.耕作措施对陕西耕作土壤碳储量的影响模拟.第四纪研究, 26(6): 1021~1028
    张福申. 1996.长期施肥条件下娄土和黄绵土有机质氧化稳定性的研究.土壤肥料, 6: 32~34
    张士功. 2005.耕地资源与粮食安全. [博士学位论文].北京:中国农业科学院
    张国盛,黄高宝, Y IN Chan. 2005.农田土壤有机碳固定潜力研究进展.生态学报, 25(2): 351~357
    张治国. 2008.坡耕地增施有机肥是减少面源污染的有效措施.山西水土保持科技, 3: 9~10
    赵秉强,张夫道. 2002.我国的长期肥料定位试验研究.植物营养与肥料学报, (8): 3~8
    赵峰,千怀遂. 2004.全球变暖影响下农作物气候适宜性研究进展.中国生态农业学报, 12 (2): 134~138
    周广胜,王玉辉,蒋延玲,杨利民. 2002.陆地生态系统类型转变与碳循环.植物生态学报, 26(2): 250~254
    周莉,李保国,周广胜. 2005.土壤有机碳的主导影响因子及其研究进展.地球科学进展, 20(1): 99~105
    周涛,史培军,王绍强. 2003.气候变化及人类活动对中国土壤有机碳储量的影响.地理学报, 58(5): 727~734
    左洪超,吕世华,胡隐樵. 2004.中国近50年气温及降水量的变化趋势分析.高原气象, 23 (2): 238~244
    IPCC. 2007.气候变化2007:综合报告.政府间气候变化专门委员会第四次评估报告第一、第二和第三工作组的报告[核心撰写组、Pachauri, R.K和Reisinger, A.(编辑)]. IPCC,瑞士,日内瓦, 104页。
    Amthor J S. 1998. Perspective on the relative insignificance of increasing atmospheric CO2 concentration to crop yield. Field Crops Research, 58: 109~127
    Andersen M K, Jensen L S. 2001. Low soil temperature effects on short-term gross N mineralization -immobilization turnover after incorporation of a green manure. Soil Biology and Biochemistry, 33: 511~521
    Bowman R A, Vigil M F, Nielsen D C, Anderson R L. 1999. Soil organic matter changes in intensively cropped dryland systems. Soil Science Society of America, 63: 186~191
    Browna L, Syedb B, Jarvis S C, Sneathc R W, Phillips V R, Goulding K W T, Li C S. 2002.
    Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture. Atmospheric Environment, 36(2002): 917~928
    Buyanovsky C A, Wagner G H, Gantzer C J. 1986. Soil respiration in a winter wheat ecosystem. Soil Science Society of America Journal, 50: 338~344
    Campbell C A, Zentner R P, Liang B C, Roloff G, Gregorich E C, Blomert B. 2000. Organic C accumulation in soil over 30 years in semiarid southwestern Saskatchewan - effect of crop rotations and fertilizers. Can J Soil Sci, 80: 179~192
    Cramer W, Bondeau A, Woodward F I, Prentice C, Betts R A, Brovkin V, Cox P M, Fisher V, Foley J A, Friend A D, Kucharik C, Lomas M R, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol, 7: 357~373
    Davidson E A , Trumbore S E , Amundson R. 2000. Soil warming and organic carbon content. Nature, 408(14) : 789~790
    Diaz R A, Magrin G O, Travasso M I, Rodriguez R O. 1997. Climate change and its impact on the properties of agricultural soils in the Argentinean Rolling Pampas. Climate Research, 9: 25~30
    Farahbakhshazad N, Dinnes D L, Li C S, Jaynes D B, Salas W. 2008. Modeling biogeochemical impacts of alternative management practices for a row-crop field in Iowa. Agriculture, Ecosystems and Environment, 123(2008): 30~48
    Flie?bach A, Oberholzer H R, Gunst L, Mader P. 2007. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems and Environment, 118(2007): 273~284
    Gami S K, Ladha J K, Pathak H, Shah M P, Pasuquin E, Pandey S P, Hobbs P R, Joshy D, Mishra R. 2001. Long-term changes in yield and soil fertility in a twenty-year rice-wheat experiment in Nepal. Biol Fertil Soils, (2001)34: 73~78
    Giltrap D L, Li C S, Saggar S. 2010. DNDC: aprocess-based model of greenhouse gas fluxes from agricultural soils. Agriculture, Ecosystems and Environment, 136(2010): 292~300
    Hao Y, Lal R, Owens L B, Izaurralde R C, Post W M, Hothem D L. 2002. Effect of crop land management and slope position on soil organic carbon pool at the North Appalachian Experimental Watersheds. Soil and Tillage Research, 68(2): 133~142
    Holt J A. 1997. Grassing pressure and soil carbon, microbial biomass and enzyme activities in semiarid Northeastern Australia. Applied Soil Ecology, 5: 143~149Houghton R A. 2002. Magnitude, distribution and causes of terrestrial carbon sinks and some implications for policy. Climate Policy, 2: 71~88
    Huang Y, Liu S L, Shen Q R, Zong L G. 2002. Influence of environment factors on the decomposition of organic carbon in agricultural soil. Chinese Journal of Applied Ecology, 13 (6) : 709~714
    James J M, Canziani O F, Leary N A, Dokken D J, White K S. 2001. Climate change 2001:impacts, adaptation and vulnerability. Cambridge: Cambridge University Press, 31~36
    Kirschbaum M U F. 1995. The temperature of dependence soil organic matter decomposition, and the effect of global warning on soil carbon storage. Soil Biol Geochem, 27: 753~760
    Kirschbaum M U F. 2000. Will change in soil organic carbon act as a positive or negative feed back on global warming? Biogeochemistry, 48: 21~51
    Koch G W, Mooney H A. 1996. Response of terrestrial ecosystems to elevated CO2: a synthesis and summary. In: Koch G W, Mooney H A(eds). Carbon Dioxide and Terrestrial Ecosystems. San Diego: Academic Press
    Ladd J N, Oades J M, Amato M. 1981. Microbial biomass formed from 14C, 15N-labelled plant material decomposing in soils in the field. Soil Biology and Biochemistry, 13: 119~126
    Lal R, Bruce J P. 1999. The potential of world cropland soils to sequester C and mitigate the greenhouse effect. Environmental Science and Policy, 2: 177~185
    Lal R, Griffin M, Apt J, Lave L, Morgan M G. 2004. Managing soil carbon. Science, (304): 393
    Lal R, Kimble J, Follett R. 1998. Land use and soil C pool in terrestrial ecosystems. In: Lal R, Kimble J, Follett R F, Stewart B A. Management of carbon sequestration in soil. Boca Raton: CRC Press: 1~10
    Li C S, Forlking S, Harriss R. 1994. Modeling carbon biogeochemistry in agricultural soils. Global Biochemical Cycles, 8(3): 237~254
    Li C S, Frolking S, Croker G J, Grace P R, Klir J, Korchens M, Poulton P R. 1997. Simulating trends in soil organic carbon in long-term experiments using the DNDC model. Geoderma, 81: 45~60
    Li C S, Mosier A, Wassmann R, Cai Z C, Zheng X H, Huang Y, Tsuruta H, Boonjawat J, Lantin R. 2004. Modeling greenhouse gas emissions from rice-based production systems: Sensitivity and upscaling. Global Biogeochemical Cycles, 18, GB1043, doi: 10.1029/2003GB002045, 1~19
    Li C S, Zhuang Y H, Forlking S, Galloway J, Harriss R, Moore BⅢ, Schimel D, Wang X K. 2003. Modeling soil organic carbon change in croplands of China. Ecological Applications, 13(2): 327~336
    Li C S. 1995. Modeling impact of agricultural practices on soil C and N2O emissions. In: Lal R, Kimble J, Lexine E, Stewart B A. Soil management and greenhouse effect. Boca Raton: CRC Press: 101~112
    Li C S. 2007. Quantifying Soil Organic Carbon Sequestration Potential with Modeling Approach. In: Tang H J, Eric V R, Qiu J J. Simulation of soil organic carbon storage and changes in agricultural cropland in China and its impact on food security. Beijing: China Meteorological Press: 1~14
    Li H, Qiu J J, Wang L G, Tang H J, Li C S, Ranst E V. 2010. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat–maize rotation system in China. Agriculture, Ecosystems and Environment. 135(2010): 24~33
    Long S P, Ains worth E A, Leakey A D B, Nosberger J, Ort D R. 2006. Food for thought: lower-than-expected crop yield stimulati on with rising CO2 concentrations. Science, 312: 1918~1921
    Malhi S S, Nyborg M. 1992. Influence of various factors on the relative effectiveness ofautumn-versus spring-applied N. In: Bajwa, M S. Proceedings of the International Symposium on Nutrient Management for Sustainable Productivity, Vol 1. Department of Soils, Punjab Agricultural University, Ludhiana, Punjab, India, 355~365
    Miko U F K. 1995. The temperature dependence of SOM decomposition and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry, 27(6): 753~760
    Orchard V A, Cook F J. 1983. Relationship between soil respiration and soil moisture. Soil Biol Biochem, 15: 447~453
    Parson E A. 1992. A summary of the major documents signed at the earth summit and the global forum. Environment, 34: 12~15
    Paul K I, Polglase P J, Nyakuengama J G, Khanna P K. 2002. Change in soil carbon following afforestation. Forest Eeology and Management, 168: 241~257
    Post W M, Emanuel W R, Zinke P J, Stangenberger A G. 1982. Soil carbon pools and world life zones. Nature, 298: 156~159
    Price D T, Peng C H, Apps M J, Hallrwell D H. 1999. Simulating effects of climate change on boreal ecosystem carbon pools in central Canada. J Biogeogr, 26: 1237~1248
    Qiu J J, Li C S, Wang L G, Tang H J, Ranst E V. 2009. Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China. Global Biogeochem. Cycles, 23, GB1007, doi: 10.1029/2008GB003180
    Qiu J J, Wang L G, Tang H J, Li C S. 2005. Studies on the situation of soil organic carbon storage in croplands in northeast of China. Agricultural Sciences in China, 4(8): 594~600
    Raun W R, Johnson G V, Phillips S B, Westerman R L. 1998. Effect of long-term N fertilization on soil organic C and total N in continuous wheat under conventional tillage in Oklahoma. Soil and Tillage Research, 47: 323~330
    Schimel D S, Braswell B H, Holland E A, Mckeown R, Ojima D S, Painter T H, Parton W H, Townsend A R. 1994. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycle, 8: 279~293
    Schlesinger W H. 1990. Evidence from chronosequence studies for a low carbon storage potential of soil. Nature, 348: 232~234
    Schlesinger W H. 1999. Carbon sequestration in soil. Science, 284: 2095
    Sehlesinger W H. 1995. An overview of the global carbon cycle. In: Lal R, Kimble J, Levine E, Stewart B A. Soils and Global Change. Boca Raton: CRC Press: 9~25
    Singh J S, Gupta S R. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. Bot Rev, 43: 449~528
    Six J, Elliot E T, Paustain K. 1999. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Science Society of America Journal, 63: 1350~1358
    Smith P, Smith J U, Powlson D S. 1997. Acomparison of the performance of nine soil organic mattermodels using datasets from seven long-term experiments. Geoderma, 81: 153~225
    Smith W N, Grant B B, Desjardins R L, Rochette P, Drury C F, Li C S. 2008. Evaluation of two process-based models to estimate N2O emissions in eastern Canada, Can J Soil Sci, 15, 31~51
    Sombmek W G, Nachtergeele F O, Hebel A. 1993. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. AMBIO, 22: 417~425
    Tans P P, Fung IY, Takahashi T.1990. Observational constraints on the global atmospheric budget. Science, 247: 1431~1438
    Thuille A, Buehmann N, Sehulze E D. 2000. Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Physiology, 20: 849~857
    Trumbore S E, Chadwick O A, Amundson R. 1996. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science, 272: 393~396
    Tubiello F N, Soussana J, Howden S M. 2007. Crop and pasture response to climate change. Proceedings of the National Academy of Sciences, 104(50): 19686~19690
    Wang L G, Qiu J J, Tang H J, Li H, Li C S, Ranst E V. 2008. Modelling soil organic carbon dynamics in the major agricultural regions of China. Geoderma, 147(2008): 47~55
    Wardle D A, Bardgett R D, Klironomos J N, Setala H, van de Putten W H, Wall D H. 2004. Ecological linkages between aboveground and belowground biota. Science, 304(5677): 1629~1633
    Yadvinder-Singh, Bijay-Singh, Ladha J K, Khind C S, Gupta R K, Meelu O P, Pasuquin E. 2004. Long-term effects of organic inputs on yield and soil fertility in the rice–wheat rotation. Soil Sci Soc Am J, (68): 845~853
    Yusuf A A, Abaidoo R C, Iwuafor E N O, Olufajo O O, Sanginga N. 2009. Rotation effects of grain legumes and fallow on maize yield, microbial biomass and chemical properties of an alfisol in the Nigerian savanna. Agriculture, Ecosystems and Environment, 129(2009): 325~331
    Zhang F, Li C S, Wang Z, Wu H. 2006. Modeling impacts of management alternatives on soil carbon storage of farmland in Northwest China. Biogeosciences, 3: 451~466

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700