用户名: 密码: 验证码:
小檗碱对儿童肿瘤细胞凋亡影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     癌基因双微体2(Murine Double Minute 2, MDM2)在肿瘤发生、发展和化疗耐药性产生过程中发挥重要作用。本实验室前期的研究表明,组成性高表达MDM2的急性淋巴细胞白血病和神经母细胞瘤患者的预后往往较差。我们初期的研究显示,小檗碱能特异性下调肿瘤细胞MDM2表达。MDM2具有E3连接酶活性,当MDM2与DAXX和HAUSP处于结合状态时,作为E3连接酶的MDM2泛素化并降解肿瘤抑制子p53。而当MDM2与DAXX和HAUSP处于分离状态时,作为E3连接酶的MDM2泛素化并降解MDM2自身,从而激活p53。因此,本研究的目的:
     1.小檗碱对儿童肿瘤细胞增殖、凋亡的影响;
     2.小檗碱对儿童肿瘤细胞MDM2、p53表达影响及其分子机制;
     3.小檗碱是否具不同于传统化疗药物阿霉素抗肿瘤作用机制,即是否通过抑制DAXX下调癌基因MDM2表达。
     方法:
     1.选取20种儿童急性淋巴细胞白血病细胞系为研究对象,用WST方法检测不同浓度的小檗碱对20种ALL细胞系生长抑制作用,并比较分析小檗碱IC50与MDM2、p53表达状态之间的关系。
     2.选取对传统化疗药物阿霉素耐药的ALL细胞系EU-1、REH和神经母细胞瘤细胞NB-1691和NB-1643为模型。用Western-blot方法检测不同浓度和不同时间条件下小檗碱作用细胞后,MDM2、p53、Bcl-2等相关蛋白表达的变化。
     3.选取对传统化疗药物阿霉素耐药的ALL细胞系EU-1为模型。用RT-PCR方法检测小檗碱以相同浓度处理不同时间条件下细胞MDM2、p53、p21、PUMA、GAPDH等相关基因mRNA表达变化。
     4.选取对传统化疗药物阿霉素耐药的ALL细胞系EU-1为模型。用Western-blot方法检测小檗碱以不同浓度处理24h条件下EU-1细胞p53及其下游靶基因p21、PUMA、GAPDH等蛋白表达变化。
     5.CHX(内源性蛋白合成抑制剂)作用于细胞后,用Western-blot检测小檗碱作用于EU-1、UOC-B1细胞前后MDM2、p53、Bcl-2蛋白半衰期变化。
     6.选取对传统化疗药物阿霉素耐药的ALL细胞系EU-1为模型。用Western-blot方法检测小檗碱以不同浓度处理24h条件下EU-1细胞凋亡关键蛋白酶caspase 3及其底物PARP是否被剪切。
     7.Western-blot方法检测8种(其中包括4种ALL细胞和4种NB细胞)细胞系DAXX、MDM2、HAUSP蛋白组成性表达,小檗碱处理前后DAXX、MDM2、HAUSP蛋白变化;比较分析以上蛋白表达与小檗碱细胞增殖抑制率之间的相互关系。
     8.以NB-1691为模型,用小分子干扰RNA (DAXX-siRNA)转染EU-4细胞下调DAXX表达,Western-blot方法鉴定转染DAXX-siRNA效果,用Western-blot检测转染DAXX-siRNA前后MDM2、HAUSP表达变化。
     9.用免疫共沉淀方法检测不同浓度小檗碱处理EU-1细胞24h后MDM2泛素化水平。
     10.构建无E3泛素化酶活性的MDM2质粒C464A,wt-MDM2质粒,相同条件下将C464A,wt-MDM2和空载体转染EU-4细胞后,Western-blot检测小檗碱对转染后EU-4细胞MDM2表达的影响。
     11.Annexin V凋亡试剂盒检测小檗碱处理不同浓度和不同时间条件下细胞凋亡情况。
     结果:
     1.小檗碱抑制肿瘤细胞MDM2表达,该抑制作用与p53表达状态无关。
     2.小檗碱诱导wt-p53/MDM2肿瘤细胞p53激活。
     3.小檗碱诱导p53下游基因p21和PUMA激活。
     4.小檗碱并非在转录水下调MDM2基因表达。
     5.小檗碱促进MDM2蛋白的降解从而稳定p53功能。
     6. DAXX表达在小檗碱诱导的MDM2表达下调和细胞死亡过程中是必需的。
     7.小檗碱诱导的细胞死亡与ALL细胞MDM2表达正相关而与p53表达无关。
     8.小檗碱诱导的细胞死亡与MDM2表达相关。
     9.小檗碱显著诱导wt-p53/高表达MDM2急性淋巴细胞白血病ALL细胞凋亡。
     结论:
     小檗碱下调MDM2表达并显著诱导wt-p53/MDM2高表达的儿童肿瘤细胞凋亡。
     目的:
     探讨肿瘤坏死因子相关凋亡诱导配体(TRAIL)的四种受体TR1-R4在儿童急性白血病(AL)中的表达,及其与临床分型和预后的关系。方法:
     应用半定量逆转录聚合酶链反应(RT-PCR)测定22例急性白血病患儿和10例骨髓正常的非恶性血液病患儿TR1-R4 mRNA的表达情况。
     结果:
     AL组死亡受体DR4(TR1)和DR5(TR2) mRNA的表达明显高于正常对照组(P<0.01);而AL组蒙骗受体DcR1(TR3)和DcR2 (TR4) mRNA的表达明显低于正常对照组(P<0.05)。AL组与正常对照组均表达DR5,但AL组内DR5表达相对量明显高于DR4,差异具有统计学意义(P<0.05)。AL患儿不同亚型之间TRAIL受体表达差异无统计学意义。
     结论:
     TRAIL受体TR1-R4在儿童急性白血病中表达有明显差异性,TRAIL及其受体在介导白血病细胞凋亡中起重要作用。
     目的:
     探讨肿瘤坏死因子相关凋亡诱导配体(TRAIL)联合小檗碱诱导Molt-4细胞凋亡作用及其对NF-κB/P65表达的影响。
     方法:
     采用MTT比色法测定TRAIL单独和联合应用小檗碱时对Molt-4细胞的生长抑制率;用流式细胞术和光镜细胞形态观察来检测凋亡;应用免疫印迹法检测单独和联合用药组细胞凋亡相关蛋白酶caspase3,caspase8及NF-κB/P65表达。
     结果:
     (1)MTT检测结果发现小檗碱可增加TRAIL对Molt-4细胞的生长抑制率,且呈时间和剂量依赖性(P<0.05)。
     (2)流式细胞术可以检测到凋亡,光镜细胞形态观察可见凋亡特异性形态改变。
     (3) Western blot结果显示:单独用TRAIL组及TRAIL联合小檗碱用药组caspase3, caspase8活化程度随TRAIL浓度依次增加,联合用药组活化作用更强;单独用TRAIL组NF-κB/P65表达随剂量增加而增加。联合小檗碱用药组NF-KB/P65表达与单独用TRAIL组相比则明显受抑制。
     结论:
     (1)小檗碱可协同TRAIL诱导Molt-4细胞凋亡。
     (2)小檗碱协同TRAIL诱导Molt-4细胞凋亡的分子机制涉及抑制NF-κB/P65表达和caspase3, caspase8剪切活化。
Objective:
     The oncoprotein MDM2 plays critical roles in cancer initiation, progression and the development of resistance to therapy. We studied pediatric cancer patients, including those with acute lymphoblastic leukemia (ALL) and neuroblastoma (NB), finding that patients with a poor prognosis commonly had cancer cells that expressed constitutively highlevels of MDM2. Our preliminary data supports a previously unrecognized mechanism of action for Berberine:It specifically downregulates MDM2 in cancer cells. An important function of MDM2 is the ubiquitination (as an E3 ligase) and degradationof the tumor suppressor p53, due to interactions with DAXX and HAUSP. Interestingly, disruption of these interactions can result in self-ubiquitination of MDM2 and p53 activation. So, we want to elucidate the following questions:
     1. Effect of berberine on the proliferation and apoptosis of pediatric tumor cells.
     2. Effect of berberine on the MDM2、p53 expression of pediatric tumor cells and its underlying mechanism.
     3. To test the hypothesis that regulation of MDM2 by DAXX inhibition is the major mechanism by which Berberine differs from Dox in exerting its anti-cancer effect.
     Methods:
     1.20 ALL cell lines were selected as study model. Proliferation inhibition of berberine on those cell lines were determined by WST assay and calculate IC50 of each cell line. Analyze the relationship between IC50 and the expression of MDM2、p53 on each cell line.
     2. The neuroblastoma cell lines(NB-1691 and NB-1643) and the conventional chemotherapeutic drug doxorubicin-resistant acute lymphoblastic leukemia (ALL) cell lines (EU-1、REH) were selected as study model. Western-blot was used to detect the protein expression changes of MDM2、p53、Bcl-2 of each cell line in different dose or time treatment of berberine.
     3. The conventional chemotherapeutic drug doxorubicin-resistant ALL cell line EU-1 was selected as study model. RT-PCR was used to detect the mRNA expression changes of MDM2、p53、p21、PUMA、GAPDH of of EU-1 cells treated by constant concentration of berberine for various time.
     4. The conventional chemotherapeutic drug doxorubicin-resistant ALL cell line EU-1 was selected as study model. Western-blot was used to detect the protein expression changes of p53 downstream targets:p21 and PUMA of EU-1 cells treated by various concentration of berberine for 24h.
     5. The protein synthesis inhibitor cycloheximide (CHX) were utilized to treat cells. Western-blot was used to detect the protein half-life changes of MDM2、p53、Bcl-2 of EU-1、UOC-B1 cells treated by berberine.
     6. The conventional chemotherapeutic drug doxorubicin-resistant ALL cell line EU-1 was selected as study model. Western-blot was used to check wheatear the apoptosis associated protein caspase 3 and its substrate PARP of EU-1 cells were cleaved after berberine treatment.
     7. Western-blot was used to detect the constitutional expression of DAXX、MDM2 and HAUSP in 8 cell lines including 4 ALL cell lines and 4 NB cell lines. Western-blot was used to detect the protein changes of DAXX and MDM2 in EU-1 cells treated by various concentration of berberine for 24h. Analyze the relationships between DAXX、MDM2 and HAUSP expression and the proliferation inhibition of berberine on each cell line.
     8. The NB-1691 cell line was selected as study model. DAXX-siRNA was transfected into NB-1691 cells to knock down DAXX expression. Western-blot was used to detect the changes of DAXX、MDM2 and HAUSP expression after DAXX-siRNA transfection.
     9. Co-immunoprecipitation was used to detect the ubiquitination changes of MDM2 of EU-1 cells treated by various concentration of berberine for 24h.
     10. Construct MDM2 without ubiquitin E3 ligase activity plasmid C464A and transfect the C464A plasmid, wt-MDM2 plasmid and the empty vector in to EU-4 cells.western-blot was used to detect the MDM2 expression of those transfected cells followed by berberine treatment.
     11. Annexin V apoptosis detection kit was used to detect the apoptosis of tumor cells in different dose or time treatment of berberine.
     Results:
     1. BBR inhibits MDM2 expression, regardless of p53 status in different ALL cells
     2. Induction of p53 by BBR in wt-p53/MDM2-expressing cells
     3. BBR activates p53 function by inducing its transcriptional targets
     4. MDM2 transcription is not repressed by BBR
     5. BBR promotes degradation of the MDM2 protein and p53 stabilization
     6. The expression of DAXX is absolutely required for BBR to down-regulate MDM2 and induce cell death
     7. Cytotoxicity of BBR is positively associated with MDM2 expression level in ALL cell lines, regardless of their p53 status.
     8. BBR-induced cytotoxicity associated with MDM2 expression
     9. BBR strongly induces apoptosis in ALL cells with wt-p53 and MDM2 overexpression
     Conclusoins:
     Berberine downregulates MDM2, inducing potent apoptosis of human cancer cells with wt-p53/MDM2 overexpression
     1. Expression of TRAIL receptors and its significance in children with acute leukemia
     Objective:
     To explore the expression of TRAIL receptors (TR1-R4) and its significance in clinic classification and prognosis of children with acute leukemia.
     Method:
     Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression of TRAIL receptors on leukemic cells of 22 children with acute leukemia.10 cases of children with no-malignant blood diseases were served as control group.
     Results:
     The mRNA expression of DR4 and DR5 in AL group was dramatically higher than that in control group (p<0.05). However, the mRNA expression of DcR1 and DcR2 in AL group was significantly lower than that in control group (p<0.05). DR5 was expressed in both AL group and control group, but its mRNA relative amount was markedly higher than that of DR4 in AL group. No significant differences of TR1-R4 expressions were observed in different clinical sub-types.
     Conclusion:
     There are significant differences between TRAIL receptors TR1-R4 in children with acute leukemia. TRAIL and its receptors play an important role in TRAIL and its receptors mediated apoptosis of leukemic cells.
     2. Berberine Augments TRAIL-induced Apoptosis of Leukemic Cells
     Objective:
     To investigate the apoptosis-inducing effect of TRAIL(TNF Related Apoptosis-Inducing Ligand) and berberine on the leukemic cell line Molt-4 and the relationship between the NF-κB/P65 expression and the synergistic effect.
     Method:
     MTT assays were used to measure the cytotoxic effects of TRAIL used alone or combined with the Chinese herb berberine. The apoptosis was detected by flow cytometry and microscopy. Western blotting was used to detect the expressions of caspase3,caspase8 and NF-κB/P65 in different chemotherapeutic groups.
     Results:
     (1) The MTT assay suggested berberine augments TRAIL-induced apoptosis in Molt-4 cells in a dose and time dependent way(P<0.05).
     (2)The Apoptosis can be detected by flow cytomery; Morphological observation also showed the typical apoptotic changes.
     (3) Western blot showed that the activity of caspase3 and 8 were up regulated when treated with either TRAIL alone or TRAIL combined with berberine. However, in the combinational use of berberine the caspase3, caspase8 activity was up regulated much more than in the absence of berberine. When treated with TRAIL alone, the expression of NF-κB/P65 was increased in a dose and time-dependent way. When berberine was added (50mg/L), the NF-κB/P65 activation was suppressed.
     Conclusion:
     (1)TRAIL combined with berberine can induce apoptosis of Molt-4 cells in a synergistic effect.
     (2)The suppression of NF-κB/P65 expression, caspase3 and caspase8 activation were involved in the mechanism of the synergistic effect.
引文
1. Sack RB, Froehlich JL. Berberine inhibits intestinal secretory response of Vibrio cholerae and Escher ichia coli enterotoxins. Infect Immun.1982 Feb; 35(2):471-5.
    2. Zhang MF, Shen YQ.Antidiarrheal and anti-inflammatory effects of berberine. Zhongguo Yao Li Xue Bao.1989 Mar; 10(2):174-6.
    3. Huang WM.A study of the antiarrhythmic mechanism of berberine on delayed activation potassium current by voltage clamp. Zhonghua Xin Xue Guan Bing Za Zhi. 1992 Oct;20(5):310-325.
    4. Lee CH, Chen JC, Hsiang CY, et al. Berberine suppresses inflammatory agents-induced interleukin-lbeta and tumor necrosis factor-alpha productions via the inhibition of IkappaB degradation in human lung cells. Pharmacol Res.2007 Sep;56(3):193-201.
    5. Kong W, Wei J, Abidi P,et al.Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med.2004 Dec; 10(12):1344-51.
    6. Letasiova S, Jantova S, Cipak L, et al. Berberine anti-proliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett,2006;239:254-262.
    7. Kettmann V, Kosfalova D, Jantova S, et al. In vitro cytotoxicity of berberine against HeLa and L1210 cancer cell lines. Pharmazie,2004;59:548-551.
    8. Hwang JM, Kuo HC, Tseng TH, et al. Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells. Arch Toxicol,2006;80:62-73.
    9.缺作者Downregulated NM23-H1 expression is associated with intracranial invasion of nasopharyngeal carcinoma. Br J Cancer.2008 Jan 29;98(2):363-369.
    10. Sanders MM, Liu AA, Li TK, et al. Selective cytotoxicity of topoisomerase-directed protoberberines against glioblastoma cells. Biochem Pharmacol,1998;56:1157-1166.
    11. Mantena SK, Sharma SD, Katiyar SK. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther.2006 Feb;5(2):296-308.
    12. Lin JP, Yang JS, Lee JH, et al. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line. World J Gastroenterol 2006;12:21-28.
    13. Zhaojian Liua, Qiao Liua, Bing Xua, et al. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage. Mutat Res.2009 Mar 9;662(1-2):75-83.
    14. Kuo CL, Chou CC, Yung BY. Berberine complexes with DNA in the berberine-induced apoptosis in human leukemic HL-60 cells. Cancer Lett.1995 Jul 13;93(2):193-200.
    15. Kim S, Choi JH, Kim JB, et al. Berberine suppresses TNF-alpha-induced MMP-9 and cell invasion through inhibition of AP-1 activity in MDA-MB-231 human breast cancer cells. Molecules.2008 Dec 3;13(12):2975-85.
    16. Choi MS, Yuk DY, Oh JH, et al. Berberine inhibits human neuroblastoma cell growth through induction of p53-dependent apoptosis. Anticancer Res.2008 Nov-Dec; 28(6A):3777-3784.
    17. Katiyar SK, Meeran SM, Katiyar N, et al. p53 Cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo. Mol Carcinog.2009 Jan;48(1):24-37.
    18. Kuo CL, Chi CW, Liu TY. Modulation of apoptosis by berberine through inhibition of cyclooxygenase-2 and Mcl-1 expression in oral cancer cells. In Vivo,2005;19:247-252.
    19. Mantena SK, Sharma SD, Katiyar SK. Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential andcleavage of caspase 3 and PARP. Carcinogenesis,2006;27:2018-2027.
    20. Kuo CL, Chi CW, Liu TY. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett 2004;203:127-137.
    21. Lin S, Tsai SC, Lee CC, et al. Berberine inhibits HIF-1a expression via enhanced proteolysis. Mol Pharmacol 2004;66:612-619.
    22. Choi MS, Oh JH, Kim SM,et al. Berberine inhibits p53-dependent cell growth through induction of apoptosis of prostate cancer cells. Int J Oncol.2009 May;34(5):1221-30.
    23. Piyanuch R, Sukhthankar M, Wandee G, et al. Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells.Cancer Lett.2007 Dec 18;258(2):230-240.
    24. Fakharzadeh SS;, Trusko SP, George DL. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 1991,10,1565-1569.
    25. Haupt Y, Maya R, Kazaz A, et al. MDM2 promotes the rapid degradation of p53. Nature 1997;387:296-299.
    26. Momand J, Zambetti GP, Olson D,, et a. The MDM-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69:1237-1245.
    27. Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 1997; 420:25-27.
    28. Michael D, Oren M. The p53-Mdm2 module and the ubiquitin system. Semin. Cancer Biol.2003,13:49-58.
    29. Teodoro JG, Evans SK, GreenMR. Inhibition of tumor angiogenesis by p53:a new role for the guardian of the genome. J Mol Med 2007;85:1175-1186.
    30. Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene,2003;22:9030-9040.
    31. Vousden KH, Lu X. Live or let die:the cell's response to p53. Nat Rev Cancer 2002;2:594-604.
    32. Lane DP, Crawford LV. Tan tigen is bound to a host protein in SV40-transformed cells. Nature,1979;278:261-263.
    33. DeLeo AB, Jay G, Appella E, et a. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A 1979;76:2420-2424.
    34. LinzerDI, LevineAJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 1979;17:43-52.
    35. Oren M, Levine AJ.Molecular cloning of a cDNA specific for the murine p53 cellular tumor antigen. Proc Natl Acad Sci US A1983;80:56-59.
    36. Finlay CA, Hinds PW, Levine AJ. The p53 protooncogene can act as a suppressor of transformation. Cell1989;57:1083-1093.
    37. Koshland DE. Molecule of the year. Science 1993; 262:1953.
    38. Feki A, Irminger-Finger I. Mutational spectrum of p53 mutations in primary breast and ovarian tumors. Crit Rev Oncol Hematol 2004;52:103-116.
    39. Martin K, Trouche D, Hagemeier C, et a. Stimulation of E2F1/DP1transcriptional activity by MDM2 oncoprotein. Nature 1995,375,691-694.
    40. Wei X, Yu ZK, Ramalingam A, et a. Physical and functional interactions between PML and MDM2. J. Biol. Chem.2003,278,29288-29297.
    41. Dai MS., Zeng SX, JinY, et a. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol. Cell Biol.2004,24,7654-7668.
    42. Zhang Y, Wolf GW, Bhat K., et a. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomalstress checkpoint pathway. Mol. Cell Biol.2003,23,8902-8912.
    43. Kawai H, WiederschainD, Kitao H, et al. DNA damage-induced MDMX degradation is mediated by MDM2. J. Biol. Chem.2003,278,45946-45953.
    44. Xiao ZX, Chen J., Levine AJ, et a. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 1995,375,694-698.
    45. Kouzarides, T. Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature 1995,375,691-694
    46. Gu L, Zhu N, Zhang H,, et a. Regulation of XIAP translation and induction by MDM2 following irradiation. Cancer Cell.2009 May 5;15(5):363-75.
    47. Russell NH. Biology of acute leukaemia. Lancet.2003,349:118-122
    48.廖清奎.小儿血液病基础与临床.北京人民卫生出版社.2001,496-522
    49. Mayer SP, Giamelli J, Sandoval C,et al. Quantitation of leukemia clone-specific antigen gene rearrangements by a single-step PCR and fluorescence-based detection method. Leukemia.2005,13:1843-1852
    50. Taub JW, Konrad MA, Ge Y, et al. High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood.2002,99:2992-2996
    51. Mori H, Colman SM, Xiao Z,et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA. 2004,99:8242-8247
    52. Ravindranath Y. Recent advances in pediatric acute lymphoblastic and myeloid leukemia. Curr Opin Oncol.2003,15:23-35
    53. Zur Stadt U, Rischewski J, Schneppenheim R,et al. Denaturing HPLC for identification of clonal T-cell receptor gamma rearrangements in newly diagnosed acute lymphoblastic leukemia. Clin Chem.2004,47:2003-2011
    54.黄少良.小儿血液病临床手册.第2版,北京人民卫生出版社.2000,484-496
    55. Krajinovic M, Labuda D, Mathonnet G, et al. Polymorphisms in genes encoding drugs and xenobiotic metabolizing enzymes, DNA repair enzymes, and response to treatment of childhood acute lymphoblastic leukemia. Clin Cancer Res.2005,8:802-810
    56. Fakharzadeh SS, Trusko SP., GEORGE DL. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 1991.10:1565-1569.
    57. BOND, G.L., W. HU & A.J. LEVINE. MDM2 is a central node in the p53 pathway: 12 years and counting. Curr. Cancer Drug Targets.2005.(5):3-8
    58. RAYBURN, E. et al. MDM2 and human malignancies:expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr. Cancer Drug Targets2005.5:27-41.
    59. ZHANG, R.& H. WANG.2000. MDM2 oncogene as a novel target for human cancertherapy. Curr. Pharm. Design 6:393-416.
    60. WANG, H. et al.2003. Chemosensitization and radiosensitization of human cancer byantisense anti-MDM2 oligonucleotides:in vitro and in vivo activities and mechanisms. Ann. N.Y. Acad. Sci.1002:217-235.
    61. ZHANG, R., H. WANG & S. AGRAWAL. Novel antisense anti-MDM2 mixed-backbone oligonucleotides:proof of principle, in vitro and in vivo activities, and mechanisms. Curr. Cancer Drug Targets.2005.(5):43-49.
    62. RAYBURN, E. et al.2005. RNA silencing technologies in drug discovery and target validation. Lett. Drug Design Discov.2:1-18.
    63. DE OCA LUNA, R.M. et al.1996. The organization and expression of the mdm2 gene. Genomics 33:352-357.
    64. MOMAND, J. et al.1998. The MDM2 gene amplification database. Nucleic Acids Res.26:3453-3459.
    65. DOGAN, E. et al.2005. p53 and mdm2 as prognostic indicators in patients with epithelial ovarian cancer:a multivariate analysis. Gynecol. Oncol.97:46-52.
    66. LEE, H. et al.2005. Diagnostic approach using the expression profiling of the P53 tumor suppressor gene and its related proteins in ovarian epithelial tumors. Int. J. Gynecol. Cancer 15:453-461.
    67. HERNANDEZ, L. et al.2005. CDK4 and MDM2 gene alterations mainly occur in highly proliferative and aggressive mantle cell lymphomas with wild-type INK4a/ARlocus. Cancer Res.65:2199-2206.
    68. MURRAY, S.A. et al.2005. Increased expression of MDM2, cyclin Dl, and p27(Kipl) in carcinogen-induced rat mammary tumors. J. Cell. Biochem.95:875-884.
    69. HARRIS, L.C.2005. MDM2 splice variants and their therapeutic implications. Curr. Cancer Drug Targets 5:21-26.
    70. ZHOU, M. et al.2003. PTEN reverses MDM2-mediated chemotherapy resistance by interacting with p53 in acute lymphoblastic leukemia cells. Cancer Res.63:6357-6362.
    71. ZHANG, Z.& R. ZHANG.2005. p53-independent activities of MDM2 and their relevance to cancer therapy. Curr. Cancer Drug Targets 5:9-20.
    72. BENDLE, G.M. et al.2004. Induction of unresponsiveness limits tumor protection by adoptively transferred MDM2-specific cytotoxic T lymphocytes. Cancer Res.64: 8052-8056.
    73. NISHIZAKI, M. et al.2004. Synergistic tumor suppression by coexpression of FHIT and p53 coincides with FHIT-mediated MDM2 inactivation and p53 stabilization in human non-small cell lung cancer cells. Cancer Res.64:5745-5752.
    74. FISCHER, P.M.& D.P. LANE.2004. Small-molecule inhibitors of the p53 suppressor HDM2:have protein-protein interactions come of age as drug targets? Trends Pharmacol. Sci.25:343-346.
    75. VASSILEV, L.T.2004. Small-molecule antagonists of p53-MDM2 binding:research tools and potential therapeutics. Cell Cycle 3:419-421.
    76. MU, Z. et al.2004. Antisense MDM2 sensitizes prostate cancer cells to androgen deprivation, radiation, and the combination. Int. J. Radiat. Oncol. Biol. Phys.58:336-343.
    77. VASSILEV, L.T. et al.2004. In vivo activation of the p53 pathway by small-moleculeantagonists of MDM2. Science 303:844-848.
    78. CARVAJAL, D. et al.2005. Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res.65:1918-1924.
    79. Zhou M, Yeager AM, Smith SD, Findley HW. Overexpression of the MDM2 gene by childhood acute lymphoblastic leukemia cells expressing the wild-type p53 gene. Blood 1995;85:1608-1614.
    80. Zhou M, Gu L, Abshire T, Homans A, Yeager AM, Findley HW. Incidence and prognostic significance of MDM2 oncoprotein overexpresion in relapsed childhood acute lymphoblastic leukemia. Leukemia 2000; 14:61-67.
    81. Zhou M, Gu L, Abshire T, Homans A, Yeager AM, Findley HW. Incidence and prognostic significance of MDM2 oncoprotein overexpresion in relapsed childhood acute lymphoblastic leukemia. Leukemia 2000; 14:61-67.
    82. Wang H, Nan L, Yu D, Agrawal S, Zhang R. Antisense anti-MDM2 oligonucleotides as a novel therapeutic approach to Human Breast Cancer:in vitro and in vivo activities and mechanisms. Clin Cancer Res 2001;7:3613-24.
    83. Yu Y, Sun P, Sun LC, et al. Downregulation of MDM2 expression by RNAi inhibits LoVo human colorectal adenocarcinoma cells growth and the treatment of LoVo cells with mdm2siRNA3 enhances the sensitivity to cisplatin. Biochem Biophys Res Commun.2006 Jan 6;339(1):71-8.
    84. Gu L, Zhu N, Findley HW, Zhou M. MDM2 antagonist nutlin-3 is a potent inducer of apoptosis in pediatric acute lymphoblastic leukemia cells with wild-type p53 and overexpression of MDM2. Leukemia.2008 Apr;22(4):730-9. Epub 2008 Feb 14.
    85. Haupt Y, Maya R, Kazaz A,et al. MDM2 promotes the rapid degradation of p53. Nature 387,296-299 (1997).
    86. Kubbutat MH., Jones SN,Vousden KH. Regulation of p53 stability by MDM2.Nature 1997,387,299-303().
    87. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H.& Weissman, A. M. MDM2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem.2000, 275,8945-8951
    88. Li M, Zhang Z, Hill DL, et al. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res.2007 Mar 1;67(5):1988-96.
    89. Li M, Zhang Z, Hill DL, et al. Genistein, a dietary isoflavone, down-regulates the MDM2 oncogene at both transcriptional and posttranslational levels. Cancer Res.2005 Sep 15;65(18):8200-8.
    1. 阴健,主编.中药现代研究与临床应用.北京:学苑出版社,1993,578-579.
    2. Letasiova S, Jantova S, Cipak L, et al. Berberine anti-proliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett 2006;239:254-262.
    3. Kettmann V, Kosfalova D, Jantova S, et al. In vitro cytotoxicity of berberine against HeLa and L1210 cancer cell lines. Pharmazie 2004;59:548-551.
    4. Hwang JM, Kuo HC, Tseng TH, et al. Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells. Arch Toxicol 2006;80:62-73.
    5. Downregulated NM23-H1 expression is associated with intracranial invasion of nasopharyngeal carcinoma. Br J Cancer.2008 Jan 29;98(2):363-369.
    6. Sanders MM, Liu AA, Li TK, et al. Selective cytotoxicity of topoisomerase-directed protoberberines against glioblastoma cells. Biochem Pharmacol 1998;56:1157-1166.
    7. Mantena SK, Sharma SD, Katiyar SK. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther.2006 Feb;5(2):296-308.
    8. Lin JP, Yang JS, Lee JH, et al. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line. World J Gastroenterol 2006;12:21-28.
    9. Zhaojian Liua, Qiao Liua, Bing Xua, et al. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage. Mutat Res.2009 Mar 9;662(1-2):75-83.
    10. Kuo CL, Chou CC, Yung BY. Berberine complexes with DNA in the berberine-induced apoptosis in human leukemic HL-60 cells. Cancer Lett.1995 Jul 13;93(2):193-200.
    11. Kim S, Choi JH, Kim JB, et al. Berberine suppresses TNF-alpha-induced MMP-9 and cell invasion through inhibition of AP-1 activity in MDA-MB-231 human breast cancer cells. Molecules.2008 Dec 3;13(12):2975-85.
    12. Choi MS, Yuk DY, Oh JH, et al. Berberine inhibits human neuroblastoma cell growth through induction of p53-dependent apoptosis. Anticancer Res.2008 Nov-Dec; 28(6A):3777-3784.
    13. Katiyar SK, Meeran SM, Katiyar N, et al. p53 Cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo. Mol Carcinog.2009 Jan;48(1):24-37.
    14. Anis KV, RajeshkumarNV, Kuttan R. Inhibition of chemical carcinogenesis by berberine in rats and mice. Pharmacol,2001,53 (5):763-768.
    15. Nishino H, Kitagawa K, Fujiki H, et al. Berberine sulfate inhibits tumor-promoting activity of teleocidin in two-stage carcinogenesis on mouse skin. Oncology,1986,43 (2):131-134.
    16. Lin C C, Lin S Y, Chung J G, et al. Down regulation of cyclin B1 and up regulation of weel by berberine p romotes entry of leukemia cells into the G2/M phase of the cell cycle[. Anticancer Res,2006,26 (2A):1097.
    17. Li X K, MotwaniM, TongW, et al. Huanglian, A chinese herbal extract, inhibits cell growth by suppressing the expression of cyclin Bl and inhibiting CDC2 kinase activity in human cancer cells[J]. Mol Pharmacol,2000,58 (6):1287.
    18. Mantena SK, Sharma SD, Katiyar SK. Berberine, a natural product, induces Gl-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther.2006 Feb;5(2):296-308.
    19. Iizuka N,M iyamo to K,Ok ita K, et al. Inh ibito ry effect of Coptidis Rh izoma and berberine on the p ro liferation of human esophageal cancer cell lines[J]. Cancer L ett, 200,148(1):19-25
    20. Li T K, Bathory E, Lovoie EJ, et al. Human topoisomerase I poisoning by p rotoberberine:potention roles for both drug -DNA and drug -enzyme interation. Biochemistry,2000,39:7107.
    21. Mazzin S,Bellucci MC,Mondelli RIMode of binding of the cytotoxic alkaloid berberine wit h t he double helix oligonucleotide d (AA GAA TTCTT).Bioorg Med Chem,2003,11(4):5051
    22. Barreto MC, Pinto RE, A rrabaca JD, et al. Inhibition of mouse liver respiration by Chelidonium majus isoquinoline alkaloids. Toxico 1 Lett,2003,146 (1):37-47
    23. Mantena SK, Sharma SD, Katiyar SK. Berberine inhibits growth, induces G1 arrest and apop tosis in human ep idermoid carcinomaA431 cells by regulating Cdki-Cdk cyclin cascade, disrup tionof mitochondrial membrane potential and cleavage of caspase 3and PARP[J]. Carcinogenesis,2006,27 (10):2018-2027.
    24. HsuWH, Hsieh YS, Kuo HC, et al. Berberine induces apoptosis in SW620 human colonic carcinoma cells through generation of reactive oxygen species and activation of JNK/p38MAPK and FasL [J]. Arch Toxicol,2007,81 (10):719-728.
    25. Peng PL, Hsieh YS, Wang CJ, et al. Chou FP inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-p lasminogen activator and matrixmetallop roteinase-2 [J]. ToxicolAppl Pharmacol, 2006,214(1):8-15.
    26. Lin S, Tsai S C, Lee C C, et al. Berberine inhibits HIF-1 alpha expression via enhanced p roteolysis[J]. Mol Pharmacol,2004,66 (3):612.
    27. Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis [J]. Immunity,1995,3(6):673-682.
    28.兰进,杨世林,郑玉权,等.。黄连的研究进展[J]。中草药,2001,32(2):1139-1141.
    29. Li XK, Motwai M, Tong W, et al. Huanglian, a Chinese herbal extract, inhibits cell growth by suppression of cyclinB1 and inhibiting CDC2 Kinase activity in human cancer cells[J]. Mopharmacol,2000,58(6):1287-1293.
    30. Johansen P, Raynaud C, Yang Metal. Antimyco bacterial immunity induced by a single injection of M.leprae HSP65 encoding plasmid DNA in biodegradable microparticles[J]. ImmunolLet,2003;90(23):81 - 85.
    31. Lowrie DB, Silva CL. Enhancement of immunocompetence in tuberculosis by DNA vaccination [J]. Vaccine,2000,18:1712-1716.
    32. Takehiro Matsuda et al. Resistance to Apo2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis and constitutive expression of Apo2L/TRAIL in human T-cell lines. Virology,2005,Feb:1367-1378.
    33. Takenari Yamanaka, Katsuya Shiraki, Kazushi Sugimoto, et al. Chemotherapeutic agents augument TRAIL-induced apoptosis in human hepatocellulear carcinoma cell lines. Hepatology,2000,32:482-490.
    34. Wiley S R, Schooley K, Smolak P J, et al. Identification and characterization of a new member of the TNF family that induces apoptosis [J]. Immunity,1995,3(6):673-682.
    35. Walczak H, Miller R E, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo[J].Nat Med,1999,5(2):157-163.
    36. Buneker C, Mohr A, Zwacka RM. The TRAIL-receptor-1:TRAIL-receptor-3 and-4 ratio is a predictor for TRAIL sensitivity of cancer cells [J]. Oncol Rep.2009 May; 21(5):1289-95.
    37. Zhang Y, Zhang B. TRAIL resistance of breast cancer cells is associated with constitutive endocytosis of death receptors 4 and 5 [J]. Mol Cancer Res.2008 Dec;6(12):1861-71.
    38. F.C. Kischkel, D.A. Lawrence, A. Chuntharapai, P. Schow, K.J. Kim, A. Ashkenazi, Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5[J]. Immunity 2000 Jun; 12(6):611-2012.
    39. A. Suliman, A. Lam, R. Datta, R.K. Srivastava, Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and-independent pathways [J]. Oncogene 2001 Apr 19;20(17):2122-33.
    40. Almasan A, Ashkenazi A. Apo2L/TRAIL:Apoptosis signaling, biology, and potential for cancer therapy [J]. Cytokine Growth Factor Rev.2003 Jun-Aug; 14(3-4):337-48.
    41. Yamanaka T, Shiraki K, Sugimoto K, et al. Chemotherapeutic agents augument TRAIL-induced apoptosis in human hepatocellulear carcinoma cell lines.[J]. Hepatology,2000,32(3):482-490.
    42.蒋艳,胡群,刘双又,等.小檗碱诱导人急性T淋巴细胞白血病细胞凋亡的研究[J].医药导报,2005,24(7):568-570.
    43. Konstantinos G, Drosopoulos, Michael L, et al. Tansfomation by oncogenic RAS sensitizes human colon cells to TRAIL-induced apoptosis by up-regulating DR4 and DR5 through a MEK-dependent pathway[J]. J Biol Chem,2005,280(24):22856-22867.
    1. Momand J, Zambetti GP, Olson DC, and et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell.1992 Jun 26;69(7):1237-45.
    2. Fakharzadeh, S. S.; Trusko, S. P.; George, D. L. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 1991,10,1565-1569.
    3. De Oca Luna, R. M.; Tabor, A. D.; Eberspaecher, H.; Hulboy, D. L.; Worth, L. L.; Colman, M. S.; Finlay, C. A.; Lozano, G. The organization and expression of the mdm2 gene. Genomics 1996,33,352-357.
    4. Leveillard, T.; Gorry, P.; Niederreither, K.; Wasylyk, B. MDM2 expression during mouse embryogenesis and the requirement of p53. Mech. Dev.1998,74,189-193.
    5. Momand, J.; Zambetti, G. P.; Olson, D. C.; George, D.; Levine, A. J. The mdm-2 oncogene product forms a complex with the p53protein and inhibits p53-mediated transactivation. Cell 1992,69,1237-1245.
    6. Kubbutat, M. H.; Jones, S. N.; Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 1997,387,299-303.
    7. Bond, G. L.; Hu, W.; Bond, E. E.; Robins, H.; and et al. A single nucleotide polymorphism in the MDM2promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004,119,591-602.
    8. Momand, J.; Jung, D.; Wilczynski, S.; Niland, J. The MDM2 gene amplification database. Nucleic Acids Res.1998,26,3453-3459.
    9. Stefanou, D. G.; Nonni, A. V.; Agnantis, N. J.; Athanassiadou, S. E.; Briassoulis, E.; Pavlidis, N. p53/MDM-2 immunohistochemical expression correlated with proliferative activity in different subtypes of human sarcomas:a ten-year follow-up study. Anticancer Res.1998,18,4673-4681.
    10. Zietz, C.; Rossle, M.; Haas, C.and et al. MDM-2 oncoprotein overexpression, p53 gene mutation, and VEGF up-regulation in angiosarcomas. Am. J. Pathol.1998,153,1425-1433.
    11. Dei Tos, A. P.; Doglioni, C.; Piccinin, S.; Sciot, R.; Furlanetto, A.; Boiocchi, M.; Dal Cin, P.; Maestro, R.; Fletcher, C. D.; Tallini, G. Coordinated expression and amplification of the MDM2, CDK4, and HMGI-C genes in atypical lipomatous tumours. J. Pathol.2000,190,531-536.
    12. Dei Tos, A. P.; Piccinin, S.; Doglioni, C.; Vukosavljevic, T.; Mentzel, T.; Boiocchi, M.; Fletcher, C. D. Molecular aberrations of the G1-S checkpoint in myxoid and round cell liposarcoma. Am. J. Pathol.1997,151,1531-1539.
    13. Nakayama, T.; Toguchida, J.; Wadayama, B.; Kanoe, H.; Kotoura, Y.; Sasaki, M. S. MDM2 gene amplification in bone and soft-tissue tumors:association with tumor progression in differentiated adipose-tissue tumors. Int. J. Cancer 1995,64,342-346.
    14. Yoo, J.; Park, S. Y.; Kang, S. J.; Shim, S. I.; Kim, B. K. Altered expression of G1 regulatory proteins in human soft tissue sarcomas. Arch. Pathol. Lab. Med.2002,126, 567-573.
    15. Lopes, M. A.; Nikitakis, N. G.; Ord, R. A.; Sauk, J. Jr. Amplification and protein expression of chromosome 12q13-15 genes in osteosarcomas of the jaws. Oral. Oncol. 2001,37,566-571.
    16. Eid, H.; Institoris, E.; Geczi, L.; Bodrogi, I.; Bak, M. mdm-2expression in human testicular germ-cell tumors and its clinical value. Anticancer Res.1999,19,3485-3490.
    17. Datta, M. W.; Macri, E.; Signoretti, S.; Renshaw, A. A.; Loda, M. Transition from in situ to invasive testicular germ cell neoplasia is associated with the loss of p21 and gain of mdm-2 expression. Mod. Pathol.2001,14,437-442.
    18. Iwato, M.; Tachibana, O.; Tohma, Y.; Nitta, H.; Hayashi, Y.; Yamashita, J. Molecular analysis for p53 and mdm2 in intracranial germ cell tumors. Acta Neuropathol.2000, 99,21-25.
    19. Momand, J.; Jung, D.; Wilczynski, S.; Niland, J. The MDM2 gene amplification database. Nucleic Acids Res.1998,26,3453-3459.
    20. Ehrmann, J. Jr.; Kolar, Z.; Vojtesek, B.; Kala, M.; Komenda, S.; Oulton, A. Prognostic factors in astrocytomas:relationship of p53, MDM-2, BCL-2 and PCNA immunohistochemical expression to tumor grade and overall patient survival. Neoplasma 1997,44,299-304.
    21. Korkolopoulou, P.; Christodoulou, P.; Kapralos, Thomas-Tsagli, E. The role of p53, MDM2 and c-erb B-2 oncoproteins, epidermal growth factor receptor and proliferation markers in the prognosis of urinary bladder cancer. Pathol. Res. Pract.1997,193,767-775.
    22. Ranuncolo, S. M.; Varela, M.; Morandi, A.; Lastiri, J.; Christiansen, S.; Bal de Kier Joffe, E.; Pallotta, M. G.; Puricelli, L. Prognostic value of Mdm2, p53 and p16 in patients with astrocytomas. J. Neurooncol.2004,68,113-121.
    23. Reifenberger, G.; Liu, L.; Ichimura, K.; Schmidt, E. E.; Collins, V. P. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res.1993,15,2736-2739.
    24. Newcomb, E. W.; Cohen, H.; Lee, S. R.; Bhalla, S. K.; Bloom, J.; Hayes, R. L.; Miller, D. C. Survival of patients with glioblastoma multiforme is not influenced by altered expression of p16, p53, EGFR, MDM2 or Bcl-2 genes. Brain Pathol.1998,8,655-667.
    25. Burton, E. C.; Lamborn, K. R.; Forsyth, P.; Scott, J.; O'Campo, J.; Uyehara-Lock, J.; Prados, M.; Berger, M.; Passe, S.; Uhm, J.; O'Neill, B.P.; Jenkins, R. B; Aldape, K. D. Aberrant p53, mdm2, and proliferation differ in glioblastomas from long-term compared with typical survivors. Clin. Cancer Res.2002,8,180-187.
    26. Biernat, W.; Tohma, Y.; Yonekawa, Y.; Kleihues, P.; Ohgaki, H. Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol.1997,94,303-309.
    27. Schiebe, M.; Ohneseit, P.; Hoffmann, W.; Meyermann, R.; Rodemann, H. P.; Bamberg, M. Analysis of mdm2 and p53 gene alterations in glioblastomas and its correlation with clinical factors. J. Neurooncol.2000,49,197-203.
    28. Giordana, M. T.; Duo, D.; Gasverde, S.; Trevisan, E.; Boghi, A.; Morra, I.; Pradotto, L.; Mauro, A.; Chio, A. MDM2 overexpression is associated with short survival in adults with medulloblastoma. Neuro-oncol.2002,4,115-122.
    29. Stark, A. M.; Hugo, H. H.; Witzel, P.; Mihajlovic, Z.; Mehdorn, H. M. Age-related expression of p53, Mdm2, EGFR and Msh2 in glioblastoma multiforme. Zentralbl Neurochir.2003,64,30-36.
    30. Zhou, M.; Gu, L.; Abshire, T. C.; Homans, A.; Billett, A. L.; Yeager, A. M.; Findley, H. W. Incidence and prognostic significance of MDM2 oncoprotein overexpression in relapsed childhood acute lymphoblastic leukemia. Leukemia 2000,14,61-67.
    31. Marks, D. I.; Kurz, B. W.; Link, M. P.; Ng, E.; Shuster, J. J.; Lauer, S. J.; Carroll, D.; Brodsky, I.; Haines, D. S. Altered expression of p53 and mdm-2 proteins at diagnosis is associated with early treatment failure in childhood acute lymphoblastic leukemia. J. Clin. Oncol.1997,15,1158-1162.
    32. Gustafsson, B.; Christenson, B.; Hjalmar, V.; Winiarski, J. Cellular expression of MDM2 and p53 in childhood leukemias with poor prognosis. Med. Pediatr. Oncol. 2000,34,117-124.
    33. Haidar, M. A.; El-Hajj, H.; Bueso-Ramos, C. E.; Manshouri, T.; Glassman, A.; Keating, M. J.; Maher, A. Expression profile of MDM-2 proteins in chronic lymphocytic leukemia and their clinical relevance. Am. J. Hematol.1997,54,189-195.
    34. Faderl, S.; Kantarjian, H. M.; Estey, E.;and et al.The prognostic significance of pl6(INK4a)/pl4(ARF) locus deletion and MDM-2 protein expression in adult acute myelogenous leukemia. Cancer 2000,1,1976-1982.
    35. Wilda, M.; Bruch, J.; Harder, L.; Rawer, D.; Reiter, A.; Borkhardt, A.; Woessmann, W. Inactivation of the ARF-MDM-2-p53 pathway in sporadic Burkitt's lymphoma in children. Leukemia 2004,18,584-588.
    36. Pagnano, K. B.; Vassallo, J.; Lorand-Metze, I.; Costa, F. F.; Saad, S. T. p53, Mdm2, and c-Myc overexpression is associated with a poor prognosis in aggressive non-Hodgkin's lymphomas. Am. J. Hematol.2001,67,84-92.
    37. Moller, M. B.; Nielsen, O.; Pedersen, N. T. Oncoprotein MDM2 overexpression is associated with poor prognosis in distinct non-Hodgkin's lymphoma entities. Mod. Pathol.1999,12,1010-1016.
    38. Moller, M. B. Molecular control of the cell cycle in cancer:biological and clinical aspects. Dan. Med. Bull.2003,50,118-138.
    39. Finnegan, M. C.; Goepel, J. R.; Royds, J.;and et al. Elevated levels of MDM-2 and p53 expression are associated with high-grade non-Hodgkin's lymphomas. Cancer Lett. 1994,11,215-221.
    40. Moller, M. B.; Nielsen, O.; Pedersen, N. T. Frequent alteration of MDM2 and p53 in the molecular progression of recurring non-Hodgkin's lymphoma. Histopathology 2002, 41,322-330.
    41. Watanabe, T.; Hotta, T.; Ichikawa, A and et al. The MDM2 oncogene overexpression in chronic lymphocytic leukemia and low-gradelymphoma of B-cell origin. Blood 1994, 1,3158-3165.
    42. Chen J, MarechalV, LevineAJ. Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 1993; 13:4107-14.
    43. Picksley SM,Vojtesek B, Sparks A, Lane DP. Immunochemicalanalysis of the interaction of p53 with MDM2;-fine mapping of the MDM2 binding site onp53 using synthetic peptides. Oncogene 1994;9:2523-9.
    44. Vassilev LT,Vu BT,Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004;303:844-8.
    45. Shangary S, Qin D, McEachern D, et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A 2008; 105:3933-8.
    46. Lau LM, Nugent JK, Zhao X, Irwin MS. HDM2 antagonist Nutlin-3 disrupts p73-2 binding and enhances p73 function. Oncogene 2008;27:997-1003.
    47. Ambrosini G, Sambol EB, Carvajal D, and et al.. Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 2007;26:3473-81.
    48. LaRusch GA, JacksonMW, DunbarJD,Warren RS, Donner DB, Mayo LD. Nutlin3 blocks vascular endothelial growth factor induction by preventing the interaction between hypoxia inducible factor 1a and Hdm2. Cancer Res 2007;67:450-4.
    49. Colaluca IN,Tosoni D, Nuciforo P, et al. Numb controls p53 tumour suppressor activity. Nature 2008; 451:76-80.
    50. Rodriguez-Lopez, A. M.; Xenaki, D.; Eden, T. O.; Hickman, J. A.; Chresta, C. M. MDM2 mediated nuclear exclusion of p53 attenuates etoposide-induced apoptosis in neuroblastoma cells. Mol. Pharmacol.2001,59,135-143.
    51. Keshelava, N.; Zuo, J. J.; Chen, P.; Waidyaratne, S. N.; Luna, M. C.; Gomer, C. J.; Triche, T. J.; Reynolds, C. P. Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res.2001,61,6185-6193.
    52. Rotterud, R.; Berner, A.; Holm, R.; Skovlund, E.; Fossa, S. D. p53, p21 and mdm2 expression vs. the response to radiotherapy in transitional cell carcinoma of the bladder. BJU Int.2001,88,202-208.
    53. Vassilev LT,Vu BT,Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004;303:844-8.
    54. Shangary S, Qin D, McEachern D, et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A 2008; 105:3933-8.
    55. Kondo, S.; Kondo, Y.; Hara, H.; Kaakaji, R.; Peterson, J. W.; Morimura, T.; Takeuchi, J.; Barnett, G. H. Mdm2 gene mediates the expression of mdrl gene and P-glycoprotein in a human glioblastoma cell line. Br. J. Cancer 1996,74,1263-1268.
    56. Patton JT,Mayo LD, Singhi AD, GudkovAV, Stark GR, JacksonMW. Levels of HdmX expression dictate the sensitivity of normal and transformed cells toNutlin-3. Cancer Res 2006;66:3169-76.
    57. Slamon, D. J.; Clark, G. M.; Wong, S. G.; Levin, W. J.; Ullrich, A.; McGuire, W. L. Human breast cancer:correlation of relapse andsurvival with amplification of the HER-2/neu oncogene. Science 1987,235,177-182.
    58. Gu, L.; Findley, H. W.; Zhou, M. MDM2 induces NF-kappaB/p65 expression transcriptionally through Spl-binding sites:a novel, p53-independent role of MDM2 in doxorubicin resistance in acutelymphoblastic leukemia. Blood 2002,99,3367-3375.
    59. Wang, H.; Oliver, P.; Zhang, Z.; Agrawal, S.; Zhang, R. Chemosensitization and radiosensitization of human cancer by antisense anti-MDM2 oligonucleotides:in vitro and in vivo activities and mechanisms. Ann. NY Acad. Sci.2003,1002,217-235.
    60. Zhang, Z.; Wang, H.; Li, M.; Agrawal, S.; Chen, X.; Zhang, R. MDM2 is a negative regulator of p21WAFl/CIP1, independent of p53. J. Biol. Chem.2004,279,16000-16006.
    61. Jones, S. N.; Hancock, A. R.; Vogel, H.; Donehower, L. A.; Bradley, A. Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc. Natl. Acad. Sci. USA 1998,95,15608-15612
    62. Wang, H.; Nan, L.; Yu, D.; Lindsey, J. R.; Agrawal, S.; Zhang, R. Anti-tumor Efficacy of A Novel Antisense Anti-mdm2 Mixed-Backbone Oligonucleotide in Human Colon Cancer Models:p53-Dependent and p53-Independent Mechanisms. Mol. Med.2002,8, 185-199.
    63. Takahashi, Y.; Oda, Y.; Kawaguchi, K.; Tamiya, S.; Yamamoto, H.; Suita, S.; Tsuneyoshi, M. Altered expression and molecular abnormalities of cell-cycle-regulatory proteins in rhabdomyosarcoma. Mod. Pathol.2004,17,660-669.
    64. Cordon-Cardo, C.; Latres, E.; Drobnjak, M.; Oliva, M. R.; Pollack, D.; Woodruff, J. M.; Marechal, V.; Chen, J.; Brennan, M. F.; Levine, A. J. Molecular, abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res.1994,54,794-799.
    65. Ladanyi, M.; Lewis, R.; Jhanwar, S. C.; Gerald, W.; Huvos, A. G.; Healey, J. H. MDM2 and CDK4 gene amplification in Ewing's sarcoma. J. Pathol.1995,175,211-217.
    66. Kim, K. J.; Li, B.; Winer, J.; Armanini, M.; Gillett, N.; Phillips, H. S.; Ferrara, N. Inhibition of vascular endothelial growth factorinduced angiogenesis suppresses tumour growth in vivo. Nature 1993,362,841-844.
    67. Warren, R. S.; Yuan, H.; Matli, M. R.; Gillett, N. A.; Ferrara, N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J. Clin. Invest.1995,95,1789-1797.
    68. Takahashi, Y.; Kitadai, Y.; Bucana, C. D.; Cleary, K. R.; Ellis, L. M. Expression of vascular endothelial growth factor and itsreceptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res.1995,55,3964-3968.
    69. Bartel, F.; Meye, A.; Wurl, P.; Kappler, M.; Bache, M.; Lautenschlager, C.; Grunbaum, U.; Schmidt, H.; Taubert, H. Amplification of the MDM2 gene, but not expression of splice variants of MDM2 MRNA, is associated with prognosis in soft tissue sarcoma. Int. J. Cancer.2001,95,168-175.
    70. Taubert, H.; Schuster, K.; Brinck, U.; and et al.Loss of heterozygosity at12q14-15 often occurs in stage I soft tissue sarcomas and is associated with MDM2 amplification in tumors at various stages. Mod. Pathol.2003,16,1109-1116.
    71. Rieske, P.; Bartkowiak, J. K.; Szadowska, A. M.; Olborski, B.; Harezga-Bal, B.; Debiec-Rychter, M. A comparative study of p53/MDM2 genes alterations and p53/MDM2 proteins immunoreactivity in soft-tissue sarcomas. J. Exp. Clin. Cancer Res.1999,18,403-416.
    72. Leuschner, I.; Langhans, I.; Schmitz, R.; Harms, D.; Mattke, A.; Treuner, J. Kiel Pediatric Tumor Registry and the German Cooperative Soft Tissue Sarcoma Study. p53 and mdm-2 expression in Rhabdomyosarcoma of childhood and adolescence:clinic opathologic study by the Kiel Pediatric Tumor Registry and the German Cooperative Soft Tissue Sarcoma Study. Pediatr. Dev. Pathol.2003,6,128-136.
    73. Oda, Y.; Takahira, T.; Kawaguchi, K.; Yamamoto, H.; Tamiya, S.; Matsuda, S.; Tanaka, K.; Kinukawa, N.; Iwamoto, Y.; Tsuneyoshi, M. Altered expression of cell cycle regulators in myxofibrosarcoma, with special emphasis on their prognostic implications. Hum. Pathol.2003,34,1035-1042.
    74. Gustafsson, B.; Axelsson, B.; Gustafsson, B.; et al. MDM2 and p53 in childhood acute lymphoblasticleukemia:higher expression in childhood leukemias with poor prognosis compared to long-term survivors. Pediatr. Hematol. Oncol.2001,18,497-508.
    75. Konikova, E.; Kusenda, J. Altered expression of p53 and MDM2 proteins in hematological malignancies. Neoplasma 2003,50,31-40.
    76. Bueso-Ramos, C.E.; Yang, Y.; deLeon, E.; McCown, P.; Stass, S.A.; Albitar, M. The human MDM-2 oncogene is overexpressed in leukemias. Blood 1993,82,2617-2623.
    77. Saito, H.; Tsujitani, S.; Oka, S.; Ikeguchi, M.; Maeta, M.; Kaibara, N. The expression of murine double minute 2 is a favorable prognostic marker in esophageal squamous cell carcinoma without p53 protein accumulation. Ann. Surg. Oncol.2002,9,450-456.
    78. Tuna, B.; Yorukoglu, K.; Tuzel, E.; Guray, M.; Mungan, U.; Kirkali, Z. Expression of p53 and mdm2 and their significance in recurrence of superficial bladder cancer. Pathol. Res. Pract.2003,199,323-328.
    79. Hori, M.; Shimazaki, J.; Inagawa, S.; Itabashi, M.; Hori, M. Overexpression of MDM2 oncoprotein correlates with possession of estrogen receptor alpha and lack of MDM2 mRNA splice variants in human breast cancer. Breast Cancer Res. Treat.2002,71,77-83
    80. Zell, J. A.; Ramakrishnan, R.; Rathinavelu, A. Regulation of mdm2mRNA expression in human breast tumor-derived GI-101A cells. Life Sci.2002,71,2331-2339.
    81. Vestey, S. B.; Sen, C.; Calder, C. J.; Perks, C. M.; Pignatelli, M.; Winters, Z. E. p14ARF expression in invasive breast cancers and ductal carcinoma in situ--relationships to p53 and Hdm2. Breast Cancer Res.2004,6, R571-585.
    82. Osman, I.; Drobnjak, M.; Fazzari, M.; Ferrara, J.; Scher, H. I.; Cordon-Cardo, C. Inactivation of the p53 pathway in prostate cancer:impact on tumor progression. Clin. Cancer Res.1999,5,2082-2088.
    83. Leite, K. R.; Franco, M. F.; Srougi, M.;and et al. Abnormal expression of MDM2 in prostate carcinoma. Mod. Pathol.2001,14,428-436.
    84. Mathew, R.; Arora, S.; Khanna, R.; Mathur, M.; Shukla, N. K.; Ralhan, R. Alterations in p53 and pRb pathways and their prognostic significance in oesophageal cancer. Eur. J. Cancer 2002,38,832-841.
    85. Horie, S.; Endo, K.; Kawasaki, H.; Terada, T. Overexpression of MDM2 protein in intrahepatic cholangiocarcinoma:relationship with p53 overexpression, Ki-67 labeling, and clinicopathological features. Virchows Arch.2000,437,25-30.
    86. Zhang, L.; Hill, R. P. Hypoxia enhances metastatic efficiency by up-regulating Mdm2 in KHT cells and increasing resistance to apoptosis. Cancer Res.2004,64,4180-4189.
    87. Ozdemir, E.; Kakehi, Y.; Okuno, H.; Habuchi, T.; Okada, Y.; Yoshida, O. Strong correlation of basement membrane degradation with p53 inactivation and/or MDM2 overexpression in superficial urothelial carcinomas. J. Urol.1997,158,206-211.
    88. Cocker, H. A.; Hobbs, S. M.; Tiffin, N.; Pritchard-Jones, K.; Pinkerton, C. R.; Kelland, L. R. High levels of the MDM2 oncogene in paediatric rhabdomyosarcoma cell lines may confer multidrug resistance. Br. J. Cancer 2001,85,1746-1752.
    89. Suzuki, A.; Toi, M.; Yamamoto, Y.; Saji, S.; Muta, M.; Tominaga, T. Role of MDM2 overexpression in doxorubicin resistance of breast carcinoma. Jpn. J. Cancer Res.1998, 89.221-227.
    90. Pilotti, S.; Della Torre, G.; Lavarino, C.; Di Palma, S.; Sozzi, G.; 252. Minoletti, F.; Rao, S.; Pasquini, G.; Azzarelli, A.; Rilke, F.; Pierotti, M. A. Distinct mdm2/p53 expression patterns in liposarcoma subgroups:implications for different pathogenetic mechanisms. J. Pathol.1997,181,14-24.
    91. Ouban, A.; Dellis, J.; Salup, R.; Morgan, M. Immunohistochemical expression of Mdm2 and p53 in penile verrucous carcinoma. Ann. Clin. Lab. Sci.2003,33,101-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700