用户名: 密码: 验证码:
新发现的水禽星状病毒、微RNA病毒和嵌杯病毒的分子检测与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近20年来,新的水禽疫病不断出现,对我国水禽业构成了巨大威胁。因此,筛查水禽群体中可能存在的新病毒对于水禽新现疾病的防控具有十分重要的意义。
     2011-2012年间,从我国四个省采集水禽样品155份,包括来自江西的2月龄健康朗德鹅粪便样品19份和健康麻鸭粪便样品18份、来自广东和湖北的活禽市场采集的北京鸭粪便样品90份以及从山东采集的出壳前死亡北京鸭胚的肠道样品28份。利用星状病毒ORF1b通用引物进行RT-PCR检测,检出阳性样品20份(12.9%)。对扩增产物的序列进行比较分析的结果显示,20株星状病毒分属两类(A和B),彼此间核苷酸和氨基酸序列同源性分别为55%-58%和57-59%,它们与已知禽星状病毒的核苷酸和氨基酸序列同源性分别为52%-72%和35-79%。进化分析进-步证实,这些毒株均不同于已知的禽星状病毒,属于两类新的星状病毒。A类星状病毒共7株,均来白广东的北京鸭;B类星状病毒包括来自广东的北京鸭源毒株1株、从山东的北京鸭胚中检出的毒株3株、来自江西的麻鸭源毒株2株和朗德鹅源毒株7株。这些结果表明,星状病毒感染的地区分布已很广泛,且至少有三种水禽可感染星状病毒。研究结果还表明,两类星状病毒感染水禽后均可经粪便排毒,其中B类星状病毒具有较广泛的宿主范围。
     在部分ORF1b区,B类毒株与本室最近检出的鸭星状病毒(duck astrovirus, DAstV) CPH株具有相近的遗传进化关系,其核苷酸与氨基酸序列同源性分别达95%-96%和97-99%,表明它们属于同一个类型,因此,从A类中选DAstV/YP2株,用随机扩增、RT-PCR、5'RACE和3'RACE技术测定了其基因组序列。序列分析表明,不计poly(A)尾,DAstV/YP2基因组长度为7287nt,由12nt的5’UTR、3363nt的ORFla、1545nt的ORF1b、2184nt的ORF2和177nt的5'UTR组成。结果表明,DAstV/YP2具有典型的星状病毒基因组结构。用三个蛋白的全长氨基酸序列进行同源性分析和进化分析的结果表明,DAstV/YP2与已知的禽星状病毒具有较远的遗传进化关系。在衣壳蛋白区,DAstV/YP2与已知的禽星状病毒之间的遗传距离为0.599-0.801,据此可将DAstV/YP2鉴定为星状病毒科禽星状病毒属的一个新病毒种。
     采用不依赖序列的随机扩增法,并经测序和序列相似性检索,从一份来自广东的北京鸭粪便样品检测到一种新的微RNA病毒(LY株)。随后,采用RT-PCR、5'RACE和3’RACE技术测定了该病毒的基因组序列。序列同源性和进化分析结果表明,该病毒LY与微RNA病毒科Megrivirus属成员间的遗传进化关系最近,在P1、P2、P3、polyprotein和2C+3CD区,该病毒与Megrivirus成员间的氨基酸序列同源性分别为32-68%、35-45%、51-57%、41-50%和61-63%,据此将该病毒鉴定为Megrivirus属内的一个新成员,暂称之为Duck megrivirus (DMV)。序列分析表明,DMV具有类似于MeV-A的基因组结构,但亦有自身的特点。不计poly(A)尾,DMVLY株基因组长度为9700nt,是微RNA病毒科中最长的。最显著的特点位于2A区,该区由两个功能未知的蛋白(2A1和2A2)以及一个parachovirus样的2A3组成。DMV的5'UTR所含内部核糖体进入位点(internal ribosome entry site, IRES)属于IVB IRES的变异型,即其Ⅲ域含有一个很长的Ⅲ4螺旋,且Ⅲ域的顶端是一个20-nt长的“8”样保守结构。比较分析显示,所预测的DMV IRES Ⅲ域的二级结构亦见于Me V-A、Mesivirus、鹌鹑微RNA病毒和鸽子微RNA病毒B。以往在IVA和IVC型IRES的、域所见到的保守的内部和顶环在DMV IRES的Ⅱ域高度保守。另外,在不同的基因区,DMV分别与Megrivirus属的两个成员具有相近的遗传进化关系。这些结果表明,在进化过程中,DMV的编码区和非编码区可能发生过基因重组。为了解DMV感染的流行情况,检测了2011-2012年间从山东、广东、湖北和海南采集的另外117份北京鸭样品,从4个地区的样品中均检测到DMV,阳性率为23.9%,结果表明,我国鸭群中DMV的感染率较高,且地区分布较广。
     采用上述方法,从一份来自江西的朗德鹅粪便样品检测到一种嵌杯病毒。随后,采用RT-PCR.5’RACE和3’RACE技术测定了该病毒的基因组序列。序列分析表明,鹅嵌杯病毒(Goose calicivirus,GoCV)基因组全长8103nt,编码2个ORF,即ORF1和ORF2,这两个ORF位于同一个读框,间隔3nt,这一特性与火鸡嵌杯病毒(Tukey caliivirus, TuCV)类似。长度为6960-nt的ORF1编码一个大的聚蛋白,预测该聚蛋白裂解为非结构蛋白Nterm、NTPase、3A、VPg和Pro-pol以及主要结构蛋白VP1;长度为825-nt的ORF2编码次要结构蛋白VP2。结果表明,GoCV拥有类似于TuCV的基因组结构。与其他嵌杯病毒的比较结果表明,在非结构蛋白、VP1和VP2区,GoCV与TuCV的氨基酸序列同源性最高,分别为62%、38%和52%。进化分析表明,GoCV与TuCV具有相近的遗传进化关系,但亦存在明显的区别,因此,将GoCV鉴定为嵌杯病毒科"Nacovirus"属内的一种新病毒。
In the past20years, a number of new diseases have emerged in waterfowl, which have raised serious threat on the Chinese waterfowl industry. It is, therefore, important to screen the potential novel viruses present in waterfowl populations for the controlling of the emerging diseases in waterfowl.
     155samples were collected from ducks and geese in the years2011to2012, including19fecal samples from2-month-old healthy Landes geese and18fecal samples from healthy Ma ducks in Jiangxi,90fecal samples from Pekin ducks in live-bird markets in Guangdong and Hubei, and28intestinal samples from dead-in-shell Pekin duckings in Shandong. Using an open reading frame (ORF)1b-based astrovirus-specific reverse transcription (RT)-PCR assay, astroviruses were detected in20(12.9%) of the samples. Comparative analyses based on the ORF1b amplicon sequences showed that the astroviruses could be divided into two groups (A and B) which shared low nucleotide (55-58%) and amino acid (57-59%) identities with one another. The nucleotide and amino acid identities shared by the20astroviruses with previously known avastroviruses were55-58%and57-59%respectively. Phylogenetic analysis of the partial ORFlb sequence demonstrated that the astroviruses in this study were distinct from previously known avastroviruses, suggesting the presence of two novel astroviruses in waterfowl. Group A included7isolates, all of which were detected in Pekin ducks. Group B included one strain detected in Pekin duck,3strains detected in Pekin duck embryos,2strains detected in Ma ducks, and7strains detected in Landes geese. These investigations demonstrated that astrovirus infections were geographically widespread and that at least three waterfowl species could be infected by astroviruses. The results also suggested that astroviruses in the two groups could be shed in waterfowl feces and that astrovirus in group B have a broad host range.
     In the partial ORFlb region, the virus strains in group B was shown to be closely related to duck astrovirus (DastV) strain CPH detected recently in our laboratory, with nucleotide and amino acid identities of95%-96%and97-99%. This result showed that they may belong to the same avastrovirus species. Thus, DAstV/YP2in the group A was selected for full-length sequencing, using sequence-independent PCR amplification, RT-PCR and5'/3' rapid amplification of cDNA ends (RACE) strategies. Sequence analysis revealed that the complete genome of DAstV/YP2was7287nt, excluding the poly (A) tail. The polyadenylated genome was organized into three overlapping ORFs of3363(ORF1a),1545(ORF1b) and2184nt (ORF2) as well as a short5' untranslated region (UTR) of12nt and a3'UTR of177nt. The findings indicated that DAstV/YP2possessed a typical astrovirus organization. Sequence identity and phylogenetic analyses demonstrated that the DAstV/YP2was distinct from all known avastroviruses. Genetic analysis of the complete ORF2region revealed that mean amino acid genetic distances between DAstV/YP2and previously known avastroviruses were between0.599and0.801, suggesting that DAstV/YP2may be classified as an additional species in the genus Avastrovirus of the family Astroviridae.
     Using sequence-independent PCR amplification, sequencing, and sequence similarity searches, a novel picomavirus (designated LY) was detected from a fecal sample collected from a Pekin duck located in Guangdong. Subsequently, the complete genome sequence of the LY isolate was determined using RT-PCR and5'/'RACE. The virus was shown to be most closely related to the genus Mergivirus of the family Picornaviridae, with average amino acid identities of32%to68%,35%to45%,51%to57%,41%to50%, and61%to63%in the P1, P2, P3, polyprotein and2C+3CD regions, respectively. The virus was thus identified as an additional species in the genus Megrivirus and tentatively named Duck megrivirus (DMV). Sequence analyses indicated that the DMV genome possessed a MeV-A-like organization and also exhibited several unique features. The polyadenylated genome comprised9700nt, the largest among known picoraviruses. A notable feature was the2A region, which had an association of two distinct, function-unknown2As (2A1and2A2) and a parechovirus-like2A3. The5'UTR contained a variant type IVB internal ribosome entry site (IRES), which possessed a long helix Ⅲ4ending with the "8"-like20-nt-long conserved structure at the top of domain III. The secondary structure model of inferred domain III of DMV-like IRES was also conserved in MeV-A, Mesivirus, Quail picornavirus, and Pigeon picornavirus B. Domain II in DMV contained the conserved internal and apical loops previously identified in groups A and C of type IV IRESs. Moreover, DMV was closely related to different megriviruses in different genomic regions. These findings suggest that recombination events involving exchange of coding and noncoding regions may have occurred during the evolution of the virus. To understand the prevalence of DMV infection, additional117duck samples collected from Guangdong, Shandong, Hubei and Hainan provinces between2011and2012were tested using the RT-PCR method. DMV-specific RNA was found in23.9%samples from domestic ducks, reflecting a high prevalence of DMV in duck populations. The positive samples were detected from four provinces, suggesting that DMV infections were geographically widespread.
     Using the strategy described above, a novel calicivirus was detected in a Landes goose from Jiangxi and then completely sequenced. Sequence analysis revealed that the Goose calicivirus (GoCV) genome comprised8013nt, which was organized into two ORFs, ORF1and ORF2. The two ORFs were in the same frame and separated by3nt, most similar to the case for turkey calicivirus (TuCV). The6960-nt ORF1was predicted to encode a large polyprotein which was predicted to be cleaved into nonstructural proteins Nterm, NTPase,3A-like protein, VPg and Pro-Pol as well as major structural protein VP1. The825-nt-long ORF2was predicted to encode a minor structural protein VP2. These findings indicated that GoCV possessed a TuCV-like genome organization. Comparison of GoCV with other caliciviruses showed that it shared the highest amino acid identities of62%,38%, and52%in nonstructural protein, VP1, and VP2, respectively, with TuCV. Phylogenetic analyses based on amino acid sequences of nonstructural protein and VP1both demonstrated that GoCV was most closely related to but distinct from TuCV. Thus, GoCV was identified as a novel member in the proposed genus "Nacovirus" of the family Caliciviridae.
引文
[I]Allander T, Emerson SU, Engle RE, et al. A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc Natl Acad Sci USA, 2001,98 (20): 11609-11614.
    [2]Allander T, Tammi MT, Eriksson M, et al. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci, 2005, 102:12891-12896.
    [3]Asplin FD. Duck hepatitis: vaccination against two serological types. Vet Rec, 1965, 77:1529-1530.
    [4]Barbknecht M, Sepsenwol S, Eric Leis E, et al. Characterization of a new picornavirus isolated from the freshwater fish Lepomis macrochirus. J Gen Virol,2014,95:601-613.
    [5]Bidin M, Bidin Z, Majnaric D, et al. Circulation and phylogenetic relationship of chicken and turkey-origin astroviruses detected in domestic ducks (Anas platyrhynchos domesticus). AvianPathol,2012a,41:555-562.
    [6]Bidin M, Lojkic I, Bidin Z, Tisljar M, et al. Detection and characterization of avian nephritis virus in ducklings. Avian Pathol, 2011,40:173-177.
    [7]Bidin M, Lojkic I, Tisljar M, et al. Astroviruses associated with stunting and pre-hatching mortal ity in duck and goose embryos. Avian Pathol, 2012b, 41:91-97.
    [8]Bodewes R, Rubio Garcia A, Wiersma LC, et al. Novel B19-like parvovirus in the brain of a harbor seal. PLoS One, 2013,8(11): e79259.
    [9]Boros A, Kiss T, Kiss O, et al. Genetic characterization of a novel picornavirus distantly related to the marine mammal-infecting aquamaviruses in a long-distance migrant bird species, European Roller (Coracias garrulus). J Gen Virol, 2013a, 94:2029-2035.
    [10]Boros A, Nemes C, Pankovics P et al. Genetic characterization of a novel picornavirus in turkeys (Meleagris gallopavo) distinct from turkey galliviruses and megriviruses and distantly related to the members of the genus Avihepatovirus. J Gen Virol, 2013b, 94:1496-1509.
    [11]Boros A, Pankovics P, Knowles NJ, et al. Comparative complete genome analysis of chicken and turkey megriviruses (family Picornaviridae): long 3'untranslated regions with a potential second open reading frame and evidence for possible recombination. J Virol, 2014,doi:10.1128/JVI.03807-13.
    [12]Bosch A, Guix S, Krishna NK, et al. Astroviridae. In: King AMQ, Adams MJ, Carstens EB, et al. Virus Taxonomy. Classification and Nomenclature of Viruses: Ninth Report of the International Committee on the Taxonomy of Viruses. Elsevier Aca-demic Press, London, United Kingdom,2012,953-959.
    [13]Breitbart M, Salamon P, Andresen B, et al. Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci USA, 2002, 99 (22): 14250-14255.
    [14]Bullman S, Kearney K, O'Mahony M et al. Identification and genetic characterization of a novel picornavirus from chickens. J. Gen. Virol, 2014,95, 1094-1103.
    [15]Canelli E, Cordioli P, Barbieri I, et al. Astroviruses as causative agents of poultry enteritis: genetic characterization and longitudinal studies on field conditions. Avian Dis, 2012, 56: 173-182.
    [16]Cao Z, Zhang C, Liu Y, et al. Tembusu Virus in Ducks, China. Emerg infect diseases, 2011,17 (10):1873-1875.
    [17]Castrignano SB, Nagasse-Sugahara TK, Kisielius J, et al. Two novel circo-like viruses detected in human feces: complete genome sequencing and electron microscopy analysis. Virus Res, 2013, 178 (2):364-73.
    [18]Cattoli G, De Battisti C, Toffan A, et al. Co-circulation of distinct genetic lineages of astroviruses in turkeys and guinea fowl. Arch Virol, 2007, 152:595-602.
    [19]Chen K, Pachter L. Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol, 2005, 1 (2): 106-112.
    [20]Chen L, Xu Q, Zhang R, et al. Complete genome sequence of a duck astrovirus discovered in eastern China. J Virol,2012,86:13833-13834.
    [21]Cheney IW, Nairm S, Shim JH, et al. Viability of poliovirus/rhinovirus VPg chimeric viruses and identification of an amino acid residue in the VPg gene critical for viral RNA replication. J Virol, 2003,77 (13): 7434-43.
    [22]Cheng WX, Li JS, Huang CP, et al. Identification and nearly full-length genome characterization of novel porcine bocaviruses. PLoS One, 2010, 5 (10): el3583.
    [23]Chu DK, Leung CY, Perera HK, et al. A novel group of avian astroviruses in wild aquatic birds. J Virol,2012,86:13772-13778.
    [24]Chu DK, Poon LL, Chiu SS, et al. Characterization of a novel gyrovirus in human stool and chicken meat. J Clin Virol, 2012, 55 (3): 209-13.
    [25]Chu DK, Poon LL, Guan Y, et al. Novel astroviruses in insectivorous bats. J Virol, 2008, 82: 9107-9114.
    [26]Clark ME, Hmmerle T, Wimmer E, et al. Poliovirus proteinase 3C converts an active form of transcription factor ⅢC to an inactive form: a mechanism for inhibition of host cell polymerase Ⅲ transcription by poliovirus. The EMBO Journal, 1991,10 (10): 2941-2947.
    [27]Clarke IN, Estes MK, Green KY, et al. Caliciviridae. In: King AMQ, Adams MJ, Carstens EB, et al. Virus taxonomy. Classification and nomenclature of viruses. Ninth report of the International Committee on Taxonomy of Viruses. Elsevier, London, 2012, 977-986.
    [28]Day JM, Ballard LL, Duke MV, et al. Metagenomic analysis of the turkey gut RNA virus community. Virol J, 2010, 7:313.
    [29]De Battisti C, Salviato A, Jonassen CM, et al. Genetic characterization of astroviruses detected in guinea fowl (Numida meleagris) reveals a distinct genotype and suggests cross-species transmission between turkey and guinea fowl. Arch Virol, 2012, 157:1329-1337.
    [30]De Benedictis P, Schultz-Cherry S, Burnham A, et al. Astrovirus infections in humans and animals-molecular biology, genetic diversity, and interspecies transmissions. Infect Genet Evol, 2011,11:1529-1544.
    [31]Delwart EL. Viral metagenomics. Rev Med Virol,2007, 17 (2): 115-131.
    [32]Dingle KE, Lambden PR, Caul EO, et al. Human enteric Caliciviridae: the complete genome sequence and expression of virus-like particles from age netic group Ⅱ small round structured virus. J Gen Virol,1995, 76 (9): 2349-2355.
    [33]Djikeng A, Kuzmickas R, Anderson NG, et al. Metagenomic analysis of RNA viruses in a fresh water lake. PLoS One, 2009,4 (9): e7264.
    [34]Donaldson EF, Haskew AN, Gates JE, et al. Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat. J Virol, 2010, 84 (24): 13004-13018.
    [35]Dougherty WG, SemLer BL. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiology and Molecular Biology Reviews, 1993, 57 (4): 781-822.
    [36]Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 2004, 32: 1792-1797.
    [37]Edwards RA, Rohwer F. Viral metagenomics. Nat Rev Microbiol, 2005, 3 (6):504-510.
    [38]Froussard P. A random-PCR method (rPCR) to construct whole cDNA library from low amounts of RNA. Nucleic Acids Res, 1992, 20 (11):2900.
    [39]Fan TF, Manire C, Borrowman K, et al. Discovery of a novel single-stranded DNA virus from a sea turtle fibropapilloma by using viral metagenomics. J Virol, 2009, 83 (6): 2500-2509.
    [40]Farkas T, Fey B, Hargitt E, Parcells M, et al. Molecular detection of novel picornaviruses in chickens and turkeys. Virus Genes, 2012, 44:262-272.
    [41]Farkas T, Sestak K, Wei C, et al. Characterization of a rhesus monkey calicivirus representing a new genus of Caliciviridae. J Virol, 2008, 82: 5408-5416.
    [42]Fichtner D, Philipps A, Groth M, et al. Characterization of a novel picornavirus isolate from a diseased European eel (Anguilla anguilla). J Virol, 2013,87:10895-10899.
    [43]Finkbeiner SR, Li Y, Ruone S, et al. Identification of a novel astrovirus (astrovirus VA1) associated with an outbreak of acutegastroenteritis. J Virol, 2009, 83:10836-10839.
    [44]Finkbeiner SR, Kirkwood CD, Wang D. Complete genome sequence of a highly divergent astrovirus isolated from a child with acutediarrhea. J Virol, 2008, 5:117. doi:10.1186/1743-422X-5-117.
    [45]Fu Y, Pan M, Wang X, et al. Molecular detection and typing of duck hepatitis A virus directly from clinical specimens. Vet Microbiol, 2008, 131:247-257.
    [46]Fu Y, Pan M, Wang X, et al. Complete sequence of a duck astrovirus associated with fatal hepatitis in ducklings. J Gen Virol, 2009, 90: 1104-1108.
    [47]Ge X, Li Y, Yang H, et al. Metagenomic analysis of viruses from the bat fecal samples reveals many novel viruses in insectivoous bats in the china. J virol, 2012, 86: 4620-4630.
    [48]Giovannoni S, DeLong E, Schmidt T, et al. Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Applied and environmental microbiology,1990, 56(8):2572-2575.
    [49]Gough RE, Borland ED, Keymer IF, et al. An outbreak of duck hepatitis type Ⅱ in commercial ducks. Avian Pathol,1985,14: 227-236.
    [50]Gough RE, Collins MS, Borland E, et al. Astrovirus-like particles associated with hepatitis in ducklings. Vet Rec, 1984, 114: 279.
    [51]Gough RE, Drury SE, Bygrave AC, et al. Detection of caliciviruses from pheasants with enteritis. Vet Rec,1992,131:290-291.
    [52]Gough RE, Spackman D. Virus-like particles associated with disease in guinea fowl. Vet Rec, 1981,109: 497.
    [53]Grothues D, Cantor CR, Smith CL. PCR amplification of megabase DNA with tagged random primers (T-PCR). Nucleic Acids Res, 1993, 21 (5): 1321-1322.
    [54]Haider SA, Calnek BW. In vitro isolation, propagation and characterisation of duck hepatitis virus type III. Avian Dis, 1979, 23:715-729.
    [55]Handelsman J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol, 1998, 5(10):245-249.
    [56]Hellen CU, de Breyne S. A distinct group of hepacivirus/pestivirus-like internal ribosomal entry sites in members of diverse picornavirus genera: evidence for modular exchange of functional noncoding RNA elements by recombination. J Virol, 2007, 81,5850-5863.
    [57]Holtz LR, Wylie KM, Sodergren E, et al. Astrovirus MLB2 viremia in febrile child. Emerg Infect Dis,2011,17:2050-2052.
    [58]Honkavuori KS, Shivaprasad HL, Briese T, et al. Novel picornavirus in turkey poults with hepatitis, California,USA. Emerg Infect Dis, 2011,17,480-487.
    [59]Hughes PJ, Stanway G, The 2A proteins of three diverse picornaviruses are related to each other and to the H-rev1O7 family of proteins involved in the control of cell proliferation. J Gen Virol, 2000,81:201-207.
    [60]Imada T, Yamaguchi S, Mase M, et al. Avian nephritis virus (ANV) as a new member of the family Astroviridae and construction of infectious ANV cDNA. J Virol, 2000, 74:8487-8493.
    [61]Joffret ML, Bouchier C, Grandadam M, et al. Genomic characterization of Sebokele virus 1 (SEBV1) reveals a new candidate species among the genus Parechovirus. J Gen Virol, 2013, 94: 1547-1553.
    [62]Jiang B, Monroe SS, Koonin EV, et al. RNA sequence of astrovirus:distinctive genomic organization and a putative retrovirus-like ribosomal frameshifting signal that directs the viral replicase synthesis. Proc Natl Acad Sci USA, 1993, 90: 10539-10543.
    [63]Jindal N, Patnayak DP, Chander Y, et al. Detection and molecular characterization of enteric viruses in breeder turkeys. Avian Pathol, 2010, 39 (1):53-61.
    [64]Johansson S, Niklasson B, Maizel J, et al. Molecular analysis of three Ljungan virus isolates reveals a new, close-to-root lineage of the Picornaviridae with a cluster of two unrelated 2A proteins. J Virol, 2002,76:8920-8930.
    [65]Jonassen CM, Jonassen TO, Grinde B. A common RNA motif in the 3'end of the genomes of astroviruses, avian infectious bronchitis virus and an equine rhinovirus. J Gen Virol, 1998, 79: 715-718.
    [66]Jonassen CM, Jonassen TO, Saif YM, et al. Comparison of capsid sequences from human and animal astroviruses. J Gen Virol,2001,82:1061-1067.
    [67]Jonassen CM, Jonassen TO, Sveen TM, et al. Complete genomic sequences of astroviruses from sheep and turkey: comparison with related viruses. Virus Res, 2003, 91:195-201.
    [68]Jones MS, Lukashov VV, Ganac RD, et al. Discovery of a novel human picornavirus in a stool sample from a pediatric patient presenting with fever of unknown origin. J Clin Microbiol, 2007, 45 (7):2144-2150.
    [69]Koomin EV. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J. Gen. Virol, 1991,72:2197-2206.
    [70]Krishna NK. Identification of structural domains involved in astrovirus capsid biology. Viral Immunol,2005,18: 17-26.
    [71]Kadare, G., Haenni, A. Virus-encoded RNA helicases. J. Virol,1997,71:2583-2590.
    [72]Kang KI, Icard AH, Linnemann E, et al. Determination of the full length sequence of a chicken astrovirus suggests a different replication mechanism. Virus Genes, 2012, 44:45-50.
    [73]Kapoor A, Victoria J, Simmonds P, et al. A highly divergent picornavirus in a marine mammal. J Virol,2008,82:311-320.
    [74]Knowles NJ, Hovi T, Hyypia T, et al. Picornaviridae. In: King AMQ, Adams MJ, Carstens EB, et al. Virus taxonomy. Classification and nomenclature of viruses: Ninth report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, San Diego, 2012, 855-880.
    [75]Koci MD, Schultz-Cherry S. Avian astroviruses. Avian Pathol, 2002,31:213-227.
    [76]Koci MD, Seal BS, Schultz-Cherry S, et al. Molecular characterization of an avian astrovirus. J Virol, 2000,74:6173-6177.
    [77]Kofstad T, Jonassen CM. Screening of feral and wood pigeons for viruses harbouring a conserved mobile viral element: characterization of novel astroviruses and picornaviruses. PLoS One, 2011, 6:e25964.
    [78]Konig M, Thiel HJ, Meyers G. et al. Detection of viral proteins after infection of cultured hepatocytes with rabbit hemorrhagic disease virus. Am Soc Microbiol, 1998:4492-4497.
    [79]Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell, 1986, 44:283-292.
    [80]Lambden PR, Cooke SJ, Caul EO, et al. Cloning of noncultivatable human rotavirus by single primer amplification. J Virol, 1992, 66 (3): 1817-1822.
    [81]Lange J, Groth M, Fichtner D, et al. Virus isolate from carp: genetic characterization reveals a novel picornavirus with two aphthovirus 2A-like sequences. J Gen Virol, 2014, 95:80-90.
    [82]Lau SK, Woo PC, Yip CC, et al. Identification of a novel feline picornavirus from the domestic cat. J Virol,2012,86:395-405.
    [83]Lewis JK, Bothner B, Smith TJ, et al. Antiviral agent blocks breathing of the common cold virus. Proc Natl Acad Sci USA, 1998, 95:6774-6778.
    [84]Lewis TL, Greenberg HB, Herrmann JE, et al. Analysis of astrovirus serotype 1 RNA, identification of the viral RNA-dependent RNA polymerase motif, and expression of a viral structural protein. J Virol, 1994, 68:77-83.
    [85]Lewis TL, Matsui SM. An astrovirus frameshift signal induces ribosomal frameshifting in vitro. Arch Virol, 1995, 140:1127-1135.
    [86]Lewis TL, Matsui SM. Astrovirus ribosomal frameshifting in an infection-transfection transient expression system. J Virol, 1996, 70: 2869-2875.
    [87]Lewis TL, Matsui SM. Studies of the astrovirus signal that induces (-1) ribosomal frameshifting. Adv Exp Med Biol, 1997, 412:323-330.
    [88]L'Homme Y, Sansregret R, Plante-Fortier E, et al, Genomic characterization of swine caliciviruses representing a new genus of Caliciviridae. Virus Genes, 2009, 39: 66-75.
    [89]Li L, Victoria JG, Wang C, et al. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses. J Virol, 2010, 84 (14):6955-6965.
    [90]Liu B, Clarke IN, Lambden PR. Polyprotein processing in Southampton virus: identification of 3C-like protease cleavage sites by in vitro mutagenesis. Journal of virology, 1996, 70 (4): 2605-2610.
    [91]Liu BL, Lambden PR, Gunther H, et al. Molecular characterization of a bovine enteric: relationship to the Norwalk-like viruses. J Virol, 1999, 73 (1):819-25.
    [92]Liu N, Wang F, Shi J, et al. Molecular characterization of a duck hepatitis virus 3-like astrovirus. Vet Microbiol, 2014, http://dx.doi.org/10.1016/j.vetmic.2014.01.026.
    [93]Madeley CR, Cosgrove BP. Letter: Viruses in infantile gastroenteritis. Lancet, 1975,2:124-124
    [94]Marczinke B, Bloys AJ, Brown TDK, et al. The human astrovirus RNA-dependent RNA polymerase coding region is expressed by ribosomal frameshifting. J Virol, 1994, 68: 5588-5595.
    [95]Martin Alonso JM, Casais R, Boga JA, et al. Processing of rabbit hemorrhagic disease virus polyprotein. The Journal of Virology, 1996, 70 (2): 1261.
    [96]Mittelholzer C, Hedlund K, Englund L, et al. Molecular characterization of a novel astrovirus associated with disease in mink. J Gen Virol,2003,84:3087-3094.
    [97]Meyers G, Wirblich C, Thiel HJ, et al. Rabbit hemorrhagic disease virus: genome organization and polyprotein processing of a calicivirus studied after transient expression of cDNA constructs. Virology, 2000, 276:349-363.
    [98]Ng TFF, Marine R, Wang C, et al. High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage. J Virol,2012, 86:12161-12175.
    [99]Nicholas KB, Nicholas Jr HB, Deerfield DW, GeneDoc: analysis and visualization of genetic variation. EMBNEW News, 1997, 4,14.
    [100]Oka T, Yamamoto M, Katayama K, et al. Identification of the cleavage sites of sapovirus open reading frame 1 polyprotein. J Gen Virol, 2006,87 (11):3329-3338.
    [101]Pankovics P, BorosA, Reuter G. Novel picornavirus in domesticated common quail (Coturnix coturnix) in Hungary. Arch. Virol, 2012, 157: 525-530.
    [102]Pantin-Jackwood MJ, Strother KO, Mundt E, et al. Molecular characterization of avian astroviruses. Arch Virol,2011,156:235-244.
    [103]Pantin-Jackwood MJ, Spackman E, Woolcock PR,et al. Molecular characterization and typing of chicken and turkey astroviruses circulating in the United States: implications for diagnostics. Avian Dis, 2006, 50: 397-404.
    [104]Phan TG, Vo NP, Boros A, et al. The viruses of wild pigeon droppings. PLoS One 8, 2013, e72787.
    [105]Phelps NBD, Mor SK, Armien AG., et al. Isolation and molecular characterization of a novel picornavirus from baitfish in theUSA. PLoS One, 2014, 9, e87593.
    [106]Poet SE, Skilling DE, Megyesl JL, et al. Detection of a non-cultivatable calicivirus from the white tern (Gygis alba rothschildi). J Wildl Dis,1996,32:461-467.
    [107]Reyes GR, Kim JP. Sequence-independent, single-primer amplification (SISPA) of complex DNA populations. Mol Cell Probes, 1991,5 (6): 473-481.
    [108]Rijk PD, Wuyts J, Wachter RD,et al. RnaViz 2: an improved representation of RNA secondary structure. Bioinformatics, 2003, 19: 299-300.
    [109]Rossmann MG, Arnold E, Erickson JW, et al. Structure of a human common cold virus and functional relationship to other picomaviruses. Nature, 1985, 317:145.153.
    [110]Ryan MD, Flint M. Virus-encoded proteinases of the picornavirus super-group. J Gen Virol,1997, 78:699-723.
    [111]Sauvage V, Ar Gouilh M, Cheval J, et al. A member of a new Picornaviridae genus is shed in pig feces. J Virol, 2012, 86: 10036-10046.
    [112]Schmidt TM, DeLong E, Pace N, et al. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. Journal of Bacteriology, 1991,173 (14):4371-4378.
    [113]Shan T, Lan D, Li L, et al. Genomic character ization and hign prevalence of bocavirus in swine. PLoS One, 2011,6: el7292.
    [114]Sironi G. Concurrent calicivirus and Isospora lacazei infections in goldfinches (Carduelis carduelis). Vet Rec, 1994, 134: 196.
    [115]Smiley JR, Chang KO, Hayes J, et al. Characterization of an enteropathogenic bovine calicivirus representing a potentially new calicivirus genus. Journal of virology, 2002, 76 (20): 10089-10098.
    [116]Smits SL, Raj VS, Oduber MD, et al. Metagenomic analysis of the ferret fecal viral flora. PLoS One, 2013, 8: e71595. doi:10.1371/journal.pone.0071595.
    [117]Smyth VJ, Todd D, Trudgett J, et al. Capsid protein sequence diversity of chicken astrovirus. Avian Pathol,2012,41:151-159.
    [118]Snodgrass DR, Gray EW. Detection and transmission of 30 nm virus particles (astroviruses) in faeces of lambs with diarrheoea. Arch Virol, 1977,55:287-291.
    [119]Stang A, Korn K, Wildner O, et al. Characterization of virus isolates by particleassociated nucleic acid PCR. J Clin Microbiol,2005,43 (2):716-720.
    [120]Stein JL, Marsh TL, Wu KY, et al. Characterization of uncultivated prokaryotes:isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. Journal of bacteriology, 1996, 178 (3): 591-599.
    [121]Strain E, Kelley LA, Schultz-Cherry S, et al. Genomic analysis of closely related astroviruses. J Virol, 2008,82:5099-5103.
    [122]Su J, Li S, Hu X, et al. Duck Egg-Drop Syndrome Caused by BYD Virus, a New Tembusu-Related Flavi virus. Plos ONE, 2011,6 (3):el 8106.
    [123]Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol,2011,28:2731-2739.
    [124]Thompson JD, Higgins DG, Gibson TJ, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids Res. 1994, 22, 4673-680.
    [125]Todd D, Smyth VJ, Ball NW, et al. Identification of chicken enterovirus-like viruses, duck hepatitis virus type 2 and duck hepatitis virus type 3 as astroviruses. Avian Pathol, 2009, 38: 21-30.
    [126]Todd D, Trudgett J, Smyth VJ, et al. Capsid protein sequence diversity of avian nephritis virus. Avian Pathol,2011,40:249-259.
    [127]Tohya Y, Shinchi H, Matsuura Y, et al. Analysis of the N-terminal polypeptide of the capsid precursor protein and the ORF3 product of feline caticivirus. Journal of Veterinary Medical Science, 1999,61:1043-1047.
    [128]Toth TE. Studies of an agent causing mortality among ducklings immune to duck virus hepatitis. Avian Dis, 1969,13:834-846.
    [129]Tseng CH, Knowles N J, Tsai H J. Molecular analysis of duck hepatitis virus type 1 indicates that it should be assigned to a new genus. Virus Res, 2007,123:190-203.
    [130]Wang X, Liu N, Wang F, Ning K, et al. Genetic characterization of a novel duck-origin picornavirus with six 2A proteins. J Gen Virol, 2014, doi:10 10.1099/vir.0.063313-0.
    [131]Willcocks MM, Brown TDK, Madeley CR, et al. The complete sequence of a human astrovirus. J Gen Virol, 1994,75:1785-1788.
    [132]Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic marker. J Nucleic Acids Res,1990,18 (22): 6531-6535.
    [133]Willner D, Furlan M, Haynes M, et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS One, 2009, 4 (10): e7370.
    [134]Wolf S, Reetz J, Hoffmann K, et al. Discovery and genetic characterization of novel caliciviruses in German and Dutch poultry. Arch Virol,2012, 157:1499-1507.
    [135]Wolf S, Reetz J, Otto P, et al. Genetic characterization of a novel calicivirus from a chicken. Arch Virol, 2011,156:1143-1150.
    [136]Woo PC, Lau SK, Huang Y, et al. Comparative analysis of six genome sequences of three novel picornaviruses, turdiviruses 1,2 and 3, in dead wild birds, and proposal of two novel genera, Orthoturdivirus and Paraturdivirus, in the family Picornaviridae. J Gen Virol, 2010, 91: 2433-2448.
    [137]Woo PC, Lau SK, Choi GK, et al. Complete genome sequence of a novel picornavirus, canine picornavirus, discovered in dogs. J Virol, 2012, 86: 3402-3403.
    [138]Woolcock PR, Duck hepatitis. In:Saif YM, Barnes HJ, Glisson JR, et al. Diseases of Poultry, 11th ed. Iowa State Press, Ames, IA.2003,343-354.
    [139]Wu ZX, Ren L, Yang Y, et al. virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. J Virol, 2012:86:10999-11012.
    [140]Xiao CT, Gimenez-Lirola LG, Gerber PF, et al. Identification and characterization of novel porcine astroviruses (PAstVs) with high prevalence and frequent co-infection of individual pigs with multiple PAstV types. J Gen Virol, 2013, 94:570-82.
    [141]Zhang T, Breitbart M, Lee WH, et al. RNA viral community in human feces:prevalence of plant pathogenic viruses. PLoS biology, 2005,4 (1):e3.
    [142]Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res,2003,31:3406-3415.
    [143]曹贞贞,张存,黄瑜,等.鸭出血性卵巢炎的初步研究.中国兽医杂志,2010,46(12):3-6.
    [144]陈少莺,陈仕龙,林锋强,等.一种新的鸭病(暂名鸭出血性坏死性肝炎)病原学研究初报.中国农学通报,2009,25(16):28-31.
    [145]傅光华,程龙飞,施少华,等.彭鸭圆环病毒全基因组克隆与序列分析.病毒学报,2008,24(2):138-143.
    [146]甘孟侯.禽流感,第2版.北京:中国农业出版社,2002:98.
    [147]何彪,涂长春.病毒宏基因组学的研究现状及应用.畜牧兽医学报,2012,43(12):1865-1870.
    [148]黄瑜,李文杨,程龙飞,等.鸭“白点病”(暂定名)研究.中国兽医杂志,2001,37(12):23-23.
    [149]马国明.鸭呼肠孤病毒的分子鉴定[硕士学位论文].北京:中国农业大学,2012.
    [150]潘梦,付余,王笑言,等.国内新型鸭肝炎病毒基因组3’末端的序列特点.中国农业大学学报,2008,13(3):13-14.
    [151]潘梦,付余,王笑言,等.基因C型鸭肝炎病毒的分离和鉴定.中国兽医杂志,2009,(03):52-59.
    [152]苏敬良,黄瑜,贺荣连,等.新型鸭肝炎病毒的分离及初步鉴定.中国兽医科技,2002,32(1):15-16.
    [153]王笑言.鸭星状病毒RT-PCR及ORF2-ELISA的建立和初步应用[硕士学位论文].北京:中国农业大学,2010.
    [154]杨凡力,王意银,郑文成,等.中国部分地区蝙蝠携带病毒的宏基因组学分析.生物工程学报,2013,29(5):586-600.
    [155]殷震,刘景华.动物病毒学(第2版).北京:科学出版社,1997,531-535.
    [156]余旭平,郏新添,何世成,等.鹅圆环病毒浙江永康株全基困组的克隆及序列分析.微生物学报,2005,45(6):860-864.
    [157]张冬冬.鸭病毒性肝炎的病原检测和鸭星状病毒的致病性分析[硕士学位论文].北京:中国农业大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700