用户名: 密码: 验证码:
含稀土氧化物的镁质和镁尖晶石质耐火材料性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环保意识的加强,铬公害问题越来越受到重视,镁铬砖必将逐渐被取代。镁质和镁尖晶石质耐火材料是重要的碱性耐火材料,本文以无铬化为目的,研究了添加稀土氧化物对镁质和镁尖晶石质材料性能的影响。
     以不同粒度的电熔镁砂和化学纯的稀土氧化物细粉为主要原料,纸浆废液为结合剂,制成含稀土氧化物的镁质耐火材料,研究了Y2O3、CeO2、La2O3、Nd2O3对镁质耐火材料物理性能、挂窑皮性及抗渣性能的影响。结果表明:(1)稀土氧化物都能促进镁质耐火材料的烧结,其中以添加CeO2效果最好;(2)稀土氧化物能提高材料的力学性能,其中少量的Y2O3、CeO2、Nd2O3就能提高镁质材料的常温力学性能,而La2O3是在加入量为1.5%时,性能最好;(3)添加1%的Y2O3对试样的高温抗折强度提高最大,达到8.19MPa,其次是添加La2O3和Nd2O3的试样;(4)加入Y2O3后,材料的挂窑皮性能有了很大的提高,而加入La2O3、Nd2O3后,材料挂窑皮性能有一定提高,加入CeO2后,挂窑皮性能无明显改善;(5)加入稀土氧化物提高了镁质耐火材料抗RH精炼炉渣侵蚀的能力。
     以不同颗粒级配的电熔镁砂、活性α-Al2O3细粉、镁铝尖晶石细粉和化学纯的稀土氧化物细粉为主要原料,制成含稀土氧化物的镁尖晶石质耐火材料,研究了Y2O3、La2O3、Nd2O3、CeO2对镁尖晶石质耐火材料物理性能、挂窑皮性及抗渣性能的影响。结果表明:(1)添加稀土氧化物能促进镁尖晶石质耐火材料的烧结,其中以添加Y2O3效果最好;(2)适量的稀土氧化物能提高镁尖晶石质材料的常温力学性能;(3)加入稀土氧化物,有利于提高镁尖晶石质材料的热震稳定性;稀土氧化物有利于提高镁尖晶石质材料的高温抗折强度,其中以加入1%CeO2效果最好,为3.76MPa;(4)加入Y2O3后,材料的挂窑皮性能有了很大的提高,而加入La2O3、Nd2O3后,材料挂窑皮性能有一定提高;加入CeO2后,材料的挂窑皮性能无明显改善;(5)加入稀土氧化物有利于提高镁质耐火材料抗RH精炼炉渣侵蚀的能力。
     对镁质材料和镁尖晶石质材料的挂窑皮性及抗渣性进行了对比,结果表明:镁质材料的挂窑皮性能好于镁尖晶石质材料,镁尖晶石质材料抗RH精炼炉渣侵蚀的能力要好于镁质材料。
With the reinforcement of environmental awareness, more attentions have been paid to the pollution of chrome, resulting in the gradual replacement of magnesia-chrome brick. Magnesia and magnesia-spinel refractories are important basic refractories,. On the purpose of eliminating chrome pollution, the effects of added rare earth oxides on the properties of the magnesia and magnesia-spinel refractories were studied in this paper.
     Magnesia refractories were prepared using MgO and rare earth oxides(Y2O3, La2O3, Nd2O3, CeO2) power as raw materials and waste solution of pulp as binder. The effects of rare earth oxides addition on physical performance, the coating adhering performance and slag resistance performance of magnesia refractories were studied. The results indicated that the addition of rare earth oxides was beneficial to the sintering densification of magnesia refractories, and the best was CeO2; mechanical performance of samples can be improved by the proper addition of rare earth oxides, and the mechanical performance at room temperature can be improved by addition of a small quantity of Y2O3, CeO2, Nd2O3; however, the best adding quantity for La2O3 was 1.5wt.%; The highest HMOR of samples containing 1wt.% Y2O3 was 8.19 MPa, and the next were La2O3 and Nd2O3, but for CeO2 there is no significant improvement on the HMOR. The coating adhering performance of magnesia refractory has highly increased by adding Y2O3, no obvious improvement by addition of CeO2, and a little improvement with La2O3 and Nd2O3. The RH slag resistance performance of magnesia refractories increased with the addition of rare earth oxides.
     Magnesia-spinel refractories were prepared using MgO,α-Al2O3, MA power and rare earth oxides(Y2O3, La2O3, Nd2O3, CeO2) as raw materials and waste solution of pulp as binder. The effects of rare earth oxides addition on physical performance, coating adhering performance and slag resistance performance of magnesia-spinel refractories were studied. The results showed that the addition of rare earth oxides were beneficial to the sintering densification of magnesia-spinel refractories, and the addition of Y2O3 with a better outcome; the mechanical performance at room temperature of samples could be improved by the proper addition of rare earth oxides;The addition of rare earth oxides were beneficial to the thermal shock resistance of magnesia-spinel refractories, the sample with 1wt.% CeO2 has the highest HMOR of 3.76MPa. The coating adhering performance of magnesia-spinel refractory has highly increased by adding Y2O3, no obvious improvement by addition of CeO2, and a little improvement with La2O3 and Nd2O3. The RH slag resistance performance of magnesia-spinel refractories increased with the addition of rare earth oxides.
     The coating adhering performance and slag resistance performance of magnesia and magnesia-spinel refractories were compared. The results showed that the coating adhering performance of magnesia refractories were better than that of magnesia-spinel refractories, and the RH slag resistance performance of magnesia-spinel refractories were better than that of magnesia refractories.
引文
[1]李哲萍编译.水泥回转窑及其耐火材料内衬.国外耐火材料[J],2005,30(4):22-23.
    [2]孙成林.水泥回转窑耐火材料的配置[J].中国水泥,2004:49-51.
    [3]蒋金然.回转窑高温带窑皮的粘挂及保护[J].新世纪水泥导报,2000,3:19-20.
    [4]孙华琦等编译.水泥窑烧成带窑衬的革新[J].国外建材科,1998,9(3):42-43.
    [5]隋良志,王兆国,姚春林.水泥工业耐火材料[M].中国建材工业出版社,2004:174.
    [6]沈威,黄文熙,阂盘荣.水泥工艺学[M].武汉工业大学出版社,1991:130-140.
    [7]陆秉权,曾志明.新型干法水泥生产线耐火材料砌筑使用手册[M].中国建材工业出版社,2005:47.
    [8] P Bartha,H Klischat. Present state of the refractory lining for cement kilns[J]. CN-Refractories,1999,6(3):31-38.
    [9] D Bray. Toxicity of chromium compounds formed in refractories[J]. Ceram Bull,1985,64(7):1012-1016.
    [10] M Driscoll. Price temper steel market promise[J]. Industrial Minerals,1994,324:35-49.
    [11] H Komatsu,M Arai,S Ukawa. Current and future status of chrome-free bricks for rotary cement kilns[J]. Taikabutsu Overseas,1999,19(4):3-9.
    [12] P Bartha,H Klischat. Classification of magnesia bricks in rotary cement kilns according to specification and serviceability[J]. ZKG International,1994,47(10):277-280.
    [13]喇华璞.回转窑用耐火材料的发展[J].上海建材,1995,25(1),9-11.
    [14] P Barth. The cement rotary kiln and its refractory lining[J]. Interceramic Refractories Manual,2004,47(10):14~17.
    [15] Hans-Jürgen,Klischat. Refractory lining review for cement kiln systems[J]. ZKG International,2005,2(58):33-45.
    [16]刘良田. RH真空顶吹氧技术[A].第九届全国炼钢学术会议论文集[C].北京:中国金属学会炼钢分会,1996:385-392.
    [17]李正邦.钢铁冶金前沿技术[M].北京:冶金工业出版社,1997.
    [18]黄会发,魏季,郁能文等. RH精炼技术的发展[J].上海金属,2003,25(6):7-10.
    [19] N Myrayama. Secondary refining technology for interstitial free steel at NSC[A]. Proceedings 6th Int Iron & Steel Congress[C]. Nagoya ISU,1990,(3):151.
    [20] M Kano,K Adachi,M Nambu,et al. Longer life in RH with oxygen top blowing system [J]. Iron & Steelmaker,1997,24(6):39.
    [21]钱之荣,范广举.耐火材料实用手册[M].北京:冶金工业出版社,1992:267-332.
    [22]顾立德.特种耐火材料[M] .北京:冶金工业出版社,2000:150-158.
    [23]陈松林,孙加林,熊小勇等.镁锆砖和镁铬砖的抗RH炉渣侵蚀性对比[J].耐火材料,2007,41 (6):417-423.
    [24]陈荣荣,何平显,牟济宁等. RH真空炉衬用无铬耐火材料抗渣性能的研究[J].耐火材料,2005,39 (5 ):357-360.
    [25]王维邦.耐火材料工艺学[M].北京:冶金工业出版社,2007.
    [26] Sarkar R,Tripathi H S,Ghosh A. Reaction sintering of different spinel composition in the presence of Y2O3[J]. Materials Letters,2004,58:2186-2191.
    [27] Maschio R D,Fabbri B,Fiori C. Industrial applications of refractories containing magnesium aluminate spinel[J]. Industrial Ceramics,1988,8(2):121-126.
    [28] Park H C,Lee Y B,Oh K D,et al. Grain growth in sintered MgAl2O4 spinel[J]. J Mater Sci Lett,1997,16 (22):1841-1844.
    [29]曹林洪等.复合添加剂对方镁石-尖晶石砖性能的影响[J].耐火材料,2002,36(4):204-206.
    [30]曹林洪等.添加剂对方镁石-尖晶石砖性能影响[J].西南工学院学报,2002,17(2):63-65.
    [31]田忠凯,王周福,王玺堂等.稀土氧化物对反应烧结合成镁铝尖晶石的影响[J].耐火材料,2008,42(5):326-329.
    [32]杨道媛等.含ZrO2添加剂对方镁石-尖晶石耐火材料力学性能的影响[J].耐火材料,2000,34(2):79-81.
    [33] P Bartha,H Klischat. Present state of the refractory lining for cement kilns[J]. CN-Refractories,1999,6(3):31-38.
    [34]高宏适译. TiO2加入量对MgO-TiO2-Al2O3系熟料特性的影响[J].国外耐火材料,2005,30(2):46-47.
    [35]郑子樵.李红英.稀土功能材料[M].北京:化学工业出版社,2003.
    [36]蔡作乾.陶瓷材料词典[M].北京:化学工业出版社,2002:310-338.
    [37]王周福,徐自伟,张宝国等.混合稀土氧化物对镁质耐火材料结构与性能的影响[J].稀有金属材料与工程,2007,36(增刊2):373-375.
    [38]郭瑞松,郭多力,齐海涛等.添加稀土氧化物对氧化铝复相陶瓷性能的影响[J].硅酸盐学报,2002,30(1):112-116.
    [39]刘永杰,孙杰璟,王英姿等.稀土精矿在耐火材料中的应用研究[J].硅酸盐通报,2004,23(2):89-92.
    [40]蒋阳.稀土氧化物CeO2对ZTA陶瓷的结构及力学性能影响的研究[J].合肥工业大学学报,1995,18(3):66-71.
    [41]陆志新,于燕文,杨正方等.稀土氧化物对高钙镁钙材料结构与性能的影响[J].稀有金属材料与工程,2008,37(1):651-653.
    [42]鲁有,何宪超.水泥窑用耐火材料适用技术[M].北京:中国建材工业出版社,2007.
    [43] Shimizu Koichi,Hokii Toshiyuki, Asano Keisuke,et al. Chrome-free brick applied tolower vessel of RH degasser[J]. Krosaki Technical Report,2001,149:31-39.
    [44]陆配文.无机材料科学基础[M].武汉:武汉理工大学出版社,1996:184-186.
    [45]杨道媛. Al2O3-MgAlON复合材料的烧结性能、高温性能和显微结构研究[D].北京:北京科技大学,2004.
    [46]王诚训.炉外精炼用耐火材料[M].北京:冶金工业出版社,2007:15-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700