用户名: 密码: 验证码:
攀钢超低碳钢深脱硫实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电工钢等部分超低碳钢在转炉出钢采用弱脱氧工艺,从出钢到RH工位之前钢水氧活度较高,LF精炼过程中不仅无法实行有效的脱硫,甚至有回硫现象的发生,脱硫主要是在RH脱氧合金化之后进行,但RH脱硫时间较短,脱硫比较困难。本文主要针对攀钢超低碳电工钢冶炼工程中,由于转炉出钢采用弱脱氧工艺,RH冶炼过程中回硫严重,RH脱硫时间短、加入RH脱硫剂后浸渍管侵蚀严重等问题,通过热力学计算和实验研究,得到了高效的RH脱硫剂各组分的控制范围和顶渣成分的控制范围,同时提出了减缓RH浸渍管侵蚀的措施,研究结果如下:
     利用FACTSage热力学软件计算了顶渣中各组分对硫分配比Ls的影响,结果表明:①过高的(FeO+MnO)含量是造成回硫现象的主要原因,随着FeO含量的降低,钢水氧活度迅速降低,Ls增大,(FeO+MnO)含量必须控制在15%以下,RH脱硫之后需控制在10%以下;②CaO/Al_2O_3比值的增加不仅提高炉渣的硫容量,还可降低顶渣FeO的活度,应该控制在2.5~4;③MgO含量对Ls的影响不大,基本趋于稳定,但一定的MgO含量有助于缓解侵蚀,应控制在9%左右;④SiO_2不仅会降低炉渣的硫容量,而且还会增加顶渣中FeO的活度,因此要严格控制顶渣中的SiO_2含量。
     通过在硅钼棒为发热体的高温炉上(以下称为硅钼棒炉)进行钢渣接触实验,分析了CaO-Al_2O_3-CaF_2系脱硫剂中不同CaO/Al_2O_3、不同CaF_2含量对脱硫剂脱硫能力的影响,结果表明:①CaO/Al_2O_3的增加可以提高Ls,提高炉渣的脱硫能力;②渣中添加CaF_2可以有效的提高炉渣的脱硫能力,但当CaF_2含量大于15%,Ls不再增加;③考虑了脱氧产物的上浮对炉渣成分的影响,得到了最佳的脱硫剂配比%CaO/%Al_2O_3=2.5-4;SiO_2<5%;F-控制在8%左右,熔点不大于1350℃。实验室条件采用二次回归正交设计的方法,研究了含BaO和Na_2O的脱硫剂中各组分对Ls的影响,结果表明:①CaO/Al_2O_3比值的增加,Ls先增大后减小,在CaO/Al_2O_3为1.9时达到最小;②随着MgO含量的增加,Ls先增大后减小,当MgO=6%时,Ls最大;③随着BaO含量的增加,Ls减小,大于10%以后趋于平缓,随着Na_2O含量的增加,Ls呈线性增加;④随着CaF_2含量的增加,Ls将减小;⑤BaO、Na_2O和CaF_2含量的增加,均可以有效的降低渣系的熔点;⑥最终确定了脱硫剂中不添加BaO和Na_2O,而采用上述确定的CaO-Al_2O_3-CaF_2系脱硫剂。
     利用FACTSage热力学软件计算分析了RH脱硫剂对采用高铝浇注料的RH浸渍管的侵蚀机理,并通过实验进行了验证,结果表明:①RH脱硫剂在与浇注料接触后,主要生成的相为CaO·6Al_2O_3(CA6)和CaO·2Al_2O_3(CA2),继而继续与CaO结合成低熔点物质进入渣中;②CaF_2会与渣中的CaO和Al_2O_3结合成低熔点物质11CaO·7Al_2O_3·CaF_2,加快炉渣的渗透,加重侵蚀;③脱硫剂中添加5%的MgO,不仅可以生成高熔点的MgO·Al_2O_3(MA)尖晶石相,而且可以降低Al_2O_3在渣中的溶解度,从而缓解侵蚀,同时在耐火材料中添加一定量的MgO含量之后,也可以生成高熔点的MA相;④实验验证了热力学计算结果,表明在脱硫剂中添加5%MgO之后,脱硫剂对刚玉坩埚的侵蚀减轻。
     本文分析了RH冶炼条件下脱硫动力学的影响因素,建立了RH投入法脱硫的动力学模型,结果表明RH脱硫的主要影响因素为反应的容积系数,增大RH吹氩流量,提高真空度,提高炉渣的硫容量,均可以提高RH脱硫速率。
     工业试验结果表明,通过顶渣改质工艺,将顶渣中的FeO含量控制在15%以下,RH冶炼结束在10%以下之后,钢水氧活度有了很大程度的下降,硫分配比Ls增大,避免了RH回硫现象的发生,RH的脱硫效率达到了30%,成品硫含量小于0.005%,达到了钢种的要求。
Soft-killed process is adopted after tapping for some ultra-low carbon steel, oxygen activity in steel was very so high that effective desulfurization cannot be performed in LF furnace, even that resulfurization would be happened. So desulfurization was carrried out after RH deoxidation alloying, but left time for desulfurization was short and difficult to remove sulfur from steel in soft killed process.
     In the present study, based on the severe problem that resulfurization during RH melting, short time for RH desulfurization in soft-killed process and corrosion of RH submerged tube after RH desulfurizer input for the melting of ultra-low carbon electric steel, high efficient desulfurizer and control range of every component in top slag were obtained through thermodynamic calculation and experimental study in laboratory, improvement measures for the corrosion of RH submerged tube were also put forward, the research results were gotten as following:
     The effects of components on Ls were calculated using FACTSage thermodynamic software and the results show that:①overhigh content of (FeO+MnO) was the main reason for resulfurization, Ls would be increased and oxygen activity in steel decreased with the decrease of FeOcontent. For the avoiding of resulfurization, (FeO+MnO) content in top slag should be controlled below 15% and after RH desulfurization should be controlled below 10% at least;②the increase of (%CaO)/(%Al_2O_3) increases the sulfur distribution. The component of CaO in slag can increase sulphide capacity of top-slag, and decrease FeO activity, and (%CaO)/(%Al_2O_3) should be controlled 2.5~4;③no substantial effect of MgO on the sulphide distribtution when it increases from 7 to 13 mass%, and a certain amount of MgO in slag helps to alleviate corrosion and should be controlled around 9%;④SiO_2 can decrease the sulphide capacity and increase the activity of FeO in slag so SiO_2 concentration in top slag should be controlld strictly.
     The effect of the ratio of CaO/Al_2O_3 and the content CaF_2 on desulfurizing ability of desulfurizer based on CaO-Al_2O_3-CaF_2 slag system was analyzed through desulfurization experiment performed in MoSi2 furnace. The results show that:①the sulfur distribution and desulfurizing ability of desulfurizer is found to increase with the increase of (%CaO)/(%Al_2O_3);②the addition of CaF_2 can effectively increase the desulfurizing ability of desulfurizer but when CaF_2 content is in the range 15%~20%, sulfur distribution goes near to steadiness;③Considering that large amount of Al_2O_3 produced by deoxidizing may reduced the ratio of CaO/Al_2O_3 of desulfurizer, the optimum desulfurizer composition was obtained as follows: %CaO/%Al_2O_3=2.5-4;SiO_2<5%;F-<8%,the melting point should be controlled lower than 1350℃.
     As for the influence of various components in desulfurizer containing BaO and Na_2O on Ls based on CaO-SiO_2-Al_2O_3-MgO-BaO-Na_2O-CaF_2 slag system, the quadratic regression orthogonal method was used for the experimental study and the results show that:①with the increase of the ratio of CaO/Al_2O_3, Ls increases at first, then decreases and the least Ls was obtained when CaO/Al_2O_3 was 1.9;②with the increase of the content of MgO, Ls increases at first, then decreases and the largest Ls was obtained when MgO content was 6%;③Ls decreased with the increase of BaO content and goes near to steadiness when BaO content was larger than 10%;④Ls decreased with the increase of CaF_2 content;⑤the melting point of slag can be effectively decreased with the addition of BaO、Na_2O and CaF_2;⑥no addition of BaO and Na_2O in desulfurizer was decided to be used in industrial test, and desulfurizer composition was obtained as follows: %CaO/%Al_2O_3=2.5-4;SiO_2<5%;F-<8%,the melting point should be controlled lower than 1350℃.
     The reaction between RH desulfurizer and high alumina refractory castable for RH submerged tube was thermodynamic analyzed using FACTSage software and the impact on corrosion of CaF_2 and MgO in desulfurier and castable was also analyzed. The verification test was also carried out, the results indicate that:①CaO·6Al2O(3CA6) and CaO·2Al2O(3CA2)are the main phase produced by the reaction between castable and by RH desulfurizer, and the reactants with low melting point dissolved into slag;②CaF_2 reacts with CaO and Al_2O_3 to produce 11CaO·7Al_2O_3·CaF_2 which may quicken the penetration and sharpen the erosion;③the saturation solubility of Al_2O_3 in RH desulfurizer is lower after addition of 5% MgO, Meanwhile, compacted MgO·Al_2O_3(MA) spinel with high melting point can be produced, which can effectively reduce corrosion and extend RH submerged tube utility longevity;④thermodynamic calculation was demonstrated by experiments and the results indicate that after addition of 5% MgO in desulfurizer, corrosion of desulfurizer to corundum crucible was reduced.
     The influence factors of desulfurization process kinetics in RH process were analyzed in this paper and a model for RH desulfurization using the method of top addition was also established, the results show that the main influence factor of RH desulfurization is the reaction volumetric coefficient, increasing Ar gas flow rate, improving vaccum degree and sulfuide capacity of slag can effectively increase the rate of RH desulfurization.
     Industrial test shows that after the content of (FeO+MnO) was controlled below 15% and 10% after RH through the slag property changing treatment, oxygen activity in steel decreased and Ls increased obviously, resulfurization can be avoidable. Combined with the process of slag modification and application of RH desulphurizer, the efficient rate of RH desulfurization can be close to 30%, sulphur content in products is lower than 0.005%, and meets the needs of steel grade.
引文
[1]徐匡迪.关于洁净钢的若干基本问题[J].金属学报, 2009, 45(3):257-269.
    [2]李正邦.超洁净钢的新进展[J].材料与冶金学报, 2002,1(3):161-165.
    [3]王立峰,王万军,王新华.钢中夹杂物控制技术研究[C].第三届北京冶金年会论文集, 2002:395-399.
    [4]崔健,黄宗泽,郑贻裕等.宝钢洁净钢生产工艺技术开发的回顾与展望[J].宝钢技术, 2009,(z1):12-18.
    [5]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社, 2002.01.
    [6]刘浏.超低硫钢生产工艺技术[J].特殊钢, 2000,21(5):29-33.
    [7]张荣生.钢铁生产中的脱硫[M].北京:冶金工业出版社, 1986: 14-16.
    [8]于定孚.低硫钢的进展[J].钢铁, 1987,22(11):52-59.
    [9] Taisei Nakayama, Noriyuki Honjou, Takashi Minaga. Effect of manganese and sulfur contents and slab reheating temperatures on the magnetic properties of non-oriented semi-processed eldctrical steel sheet [J]. Journal of Magnetism and Magnetic Materials, 2001, 234(1):55-61.
    [10] Yoshihiko Oda, Yasushi Tanaka, Nobuo Yamagami, et al. Ultra-low sulfur non-oriented electrical steel sheets for highly efficient motors: NKB-CORE [J]. NKK TECHNICAL REVIEW, 2002, (87):12-18.
    [11]何忠治.电工钢(上册)[M].北京:冶金工业出版社,1997.
    [12]张利武,蔺筠,付胜群.低碳高硫易切削钢LF精炼工艺研究[J].钢铁研究, 2010,38(2): 43-45.
    [13] ARTHUR D.PELTON, GUNNAR ERIKSSON, ANTONIO ROMERO-SERRANO. Calculation of Sulfide Capacities of Multicomponent Slags [J]. METALLURGICAL TRANSACTIONS B, 1993, 24: 817.
    [14]战东平.钢的二次精炼过程预熔渣深脱硫理论与工艺研究[D].东北大学, 2003.
    [15] HIROKI OHTA, HIDEAKI SUITO. Activities of SiO2 and Al2O3 and activity coefficients of FetO and MnO in CaO-SiO2-Al2O3-MgO Slags [J]. Metall Trans B, 1998,29 (1):119.
    [16] Margarete A.T.ANDERSSON, Lage T.I.JONSSON, Par G. JONSSON. A Thermodynamic and Kinetic Model of Reoxidation and Desulphurisation in the ladle Furnace [J]. ISIJ International, 2000, 40 (11): 1080-1088.
    [17] Sosinsky D J, Sommerville I D. The Composition and Temperature Dependence of the Sulfide Capacity of Metallurgical Slags [J]. Metallurgical and Materials Transactions B, 1986, 17 (6):331.
    [18] Young R W, Duffy J A, Hassal G J. Use of Optical Basicity Concept for Determining Phosphorus and Sulphur Slag-Metal Partitions [J]. Ironmaking and Steelmaking, 1992, 19 (3):201.
    [19]李京社,唐海燕,孙开明等.硫容量模型和在五元渣CaO-SiO2-MgO-Al2O3-FetO中的应用[J].钢铁研究学报, 2009,21(2):9-13.
    [20]郝宁,王海涛,王新华等.硫容量和硫分配的计算及分析[J].北京科技大学学报, 2006,28(1): 25-28.
    [21] Margareta A.T.ANDERSSON, P?r G J?NSSON, Mselly M.NZOTTA. Application of the sulphide capacity concept on high-basicity ladel slags used in bearing-steel production [J]. ISIJ Int, 1999, 39(11): 1140-1149.
    [22] M.M.NZOTTA, DU SICHEN, S.SEETHARAMAN. A Study of the Sulfide Capacities of Iron-Oxide Containing Slags [J]. METALLURGICAL TRANSACTIONS B, 1999, 30:909.
    [23] M.M.NZOTTA, Du SICHEN, S.SEETHARAMAN. Sulphide capacities of“FeO”-SiO2, CaO-“FeO”and“FeO”-MnO Slags [J]. ISIJ Int, 1999, 39(7):657-663.
    [24] Yoshinori TANIGUCHI, Nobuo SANO, Seshadri SEETHARAMAN. Sulphide capacities of CaO-Al2O3-SiO2-MgO-MnO slags in the temperature range 1673~1773K [J]. ISIJ Int, 2009, 49(2):156-163.
    [25] RAMANA G. REDDY, MILTON BLANDER. Sulfide Capacities of MnO-SiO2 Slags [J]. Metall Trans B, 1989, 20(4):137-140.
    [26] YOUN-BAE KANG,ARTHUR D PELTON. Thermodynamic model and database for sulfides dissolved in molten oxide slags [J]. Metall Trans B, 2009, 40(6):979-994.
    [27] Bale C W, Chartrand P, Degterov S A, et al. Factsage thermochemical software and databases [J]. Calphad, 2002, 26(2):189.
    [28] Bale C W, Chartrand P, Degterov S A, et al. Factsage thermochemical software and databases—recent developments[J]. Calphad, 2009, 33(2):295.
    [29]孟劲松. LF合成精炼渣优化与深脱硫工艺研究[D].东北大学, 2006.
    [30]王展宏.钢包炉(LF)精炼渣的作用及特性分析[J].钢铁研究, 1996,15(3): 11-16.
    [31]战东平,姜周华,王文忠.超低硫钢冶炼过程钢包渣改质剂的作用[J].材料与冶金学报, 2002,1(4):265-270.
    [32]杨吉春,王宏明,李桂荣. Li2O、Na2O、K2O、BaO对CaO基钢包渣系性能影响的实验研究[J].炼钢, 2002,18(2):35-38.
    [33]王宏明,李桂荣,徐明喜等.改质剂对LATS精炼钢包渣粘度的影响[J].过程工程学报, 2006,6(2):227-230.
    [34]汪明东,杨素波,赵启云等. RH用脱硫剂实验室研究[J].钢铁钒钛, 2001, 22(1):48-52.
    [35] Humbert J.C, Blossey R.G, The Elliott Symposium, Iron & Steel Soc., 1990: 427.
    [36]周宏,吴晓春,崔崑.硫在CaO-Al2O3系熔渣与钢液间的分配率[J].钢铁, 1995, 30(6):14-17.
    [37]战东平,姜周华,王文忠. CaO-Al2O3-CaF2-MgO-SiO2五元预熔渣系钢水深脱硫实验研究[J].炼钢, 2002,18(6): 33-36.
    [38] F.奥特斯.钢冶金学[M].北京:冶金工业出版社, 1997: 362.
    [39]时启龙. RH用少氟或无氟脱硫剂的开发[D].武汉科技大学, 2006.
    [40]成国光,宋波,陆钢等.钢液深脱硫精炼工艺的研究[J].钢铁, 2001,36 (3):21 -22.
    [41]祝贞学,李桂荣,王宏明等. BaO,B2O3对CaO基精炼渣熔化性能及脱硫能力的影响[J].北京科技大学学报, 2006,28 (8):725 -727.
    [42]陆钢,成国光,宋波等.含BaO、Na2O渣系渣钢间硫平衡研究[J].包头钢铁学院学报, 2001,20 (3):280 -284.
    [43]李素琴,李士琦,朱荣等.高硫容量含BaO超低硫钢精炼脱硫渣系[J].特殊钢, 2004,25 (2):22 -24.
    [44] J.A.Duffy. Optical basicity of fluoride containing slags [J]. Ironmaking and steelmaking, 1990, 17(6):25.
    [45]郁能文.多功能RH精炼过程的数学和物理模拟[D].上海大学, 2001.
    [46]国际钢铁协会编.洁净钢:洁净钢生产工艺技术[M].北京:冶金工业出版社, 2006.
    [47]沈昶,宋超,舒宏富等. CSP批量生产超低碳钢的RH-LF双联工艺研究[J].钢铁, 2008,43(5):26-29.
    [48]张霞.超低碳钢冶炼深脱硫工艺研究[J].山西冶金, 2008,(3):27-30.
    [49]金辉,孙群,吕志升等. RH-TB精炼处理超低碳钢的研究[J].鞍钢技术, 2005,(5):22-24.
    [50]战东平,姜周华,罗建江等. RH-KTB预熔渣深脱硫实践[J].钢铁, 2005,40(11):27-31.
    [51]李应江,包燕平. 120tLD-RH-LF CSP流程生产W600无取向硅钢的工艺时间[J].特殊钢, 2008,29(6):34-36.
    [52]潘秀兰,王艳红,梁慧智等.国内外超低碳IF钢炼钢工艺分析[J].鞍钢技术, 2009,(1):6-9.
    [53]艾立群,蔡开科. RH处理过程钢液脱硫[J].炼钢, 2001,17(6):53-57.
    [54]于赋志,侯纯明,沈峰满.钢水深脱硫的方法[J].材料与冶金学报, 2002, 1(2):91-94.
    [55]罗建江,阎文龙,邢峰.超低碳钢用RH真空处理深脱硫预熔渣及其制备方法[P]. 2005.
    [56]战东平,姜周华,张慧书等. RH工艺精炼超低硫钢的冶炼技术[J].特殊钢, 2004, 25(2):44-46.
    [57]黄宗泽,曹伟.一种无取向硅钢用脱硫剂[P]. 2006.
    [58]李广田,陈俊锋,李文献等.多功能预熔精炼渣的研制和应用[J].特殊钢,2004,25(2):47-49.
    [59]桐原理,山口公治,加藤嘉英.ぱか.RH机能扩大にょる高纯度钢溶制プロセスの开发[J]. CAMP-ISIJ, 1993, 85(6):142-145.
    [60]松野英寿,菊地良辉,山田健三.环流式脱ガス炉におけゐ溶钢脱硫举动[J].铁と钢, 1999,85(7):9-14.
    [61]伏学峰,金山同.钢包渣中氧化铁、氧化锰对清洁钢的二次氧化作用及渣处理技术[J].炼钢, 1996,9(5):49-52.
    [62]徐匡迪,蒋国昌,郭占成等.超低硫钢冶炼技术的研究[J].钢铁, 1989,24 (8):12 -16.
    [63]李素芹,熊国宏,李士琦等.极低硫钢的精炼脱硫动力学模型[J].北京科技大学学报, 2004,26(3):244-246.
    [64]魏季和,朱守军.钢液RH精炼中喷粉脱硫的动力学[J].金属学报, 1998,34 (5):497-505.
    [65] Lehner T. Reactor Models for Powder Injection[C]. Proc Int Conf Injection Metallurgy, Lulea, Sweden, 1997.
    [66] WEI Ji He. Mathematical Modeling of the Vacuum Circulation Refining Process of Molten Steel [J]. Journal of Shanghai University (English Edition), 2003, 7(2):97-117.
    [67]区铁.钢水真空环流与二次精炼反应的研究[D].北京科技大学, 2000.
    [68]区铁,刘振清,刘良田等. RH装置的粉剂顶吹脱硫[J].钢铁(增刊), 2006,41(2):251-255.
    [69]区铁.提高RH真空处理的精炼效率.钢铁, 1996,31(5):17-20.
    [70]区铁,刘振清,刘良田等. RH装置的粉剂顶吹脱硫[C].武汉市第二届学术年会论文集, 2006:307-310.
    [71]艾立群. RH处理过程中碳、氧、硫行为与工艺优化[D].北京科技大学, 2002.
    [72]李京社,王敬慧,杨树峰等. RH真空脱硫技术概述[J].河南冶金, 2009,17(6):1-4.
    [73]陈义胜. RH真空精炼过程数学模型及物理模型研究[D].北京科技大学, 2001.
    [74] Tadasu KIRIHARA, Hirohide UEHARA, Hakaru NAKATO, et al. Desulfurization of Steel Melt by Pulverized CaO Blasted through Top Lance of Vacuum Vessel in RH Degasser [J]. Tetsu-to-Hagane, 2003, 89(10):1018-1022.
    [75] SOMNATH BASU, ASHOK KUMAR LAHIRI, SESHADRI SEETHARAMAN. Activity of Iron Oxide in steelmaking slag [J]. Metallurgical Materials Transactions B, 2008, 39B (6):447.
    [76] CHUL-HWAN CHOI, SUNG-KOO JO, SEON-HYO KIM, et.al. The effect of CaF2 on thermodynamics of CaO-CaF2-SiO2-(MgO) Slags [J]. Metall Trans B, 2004, 35B:115.
    [77]马杰. BaO、CaO钢液脱硫的试验研究与分析[J],上海金属, 1998,20(1):40-45.
    [78]谢兵.连铸结晶器保护渣相关基础理论的研究及其应用实践[D].重庆:重庆大学,2004.
    [79]李宗强,薛正良,张海峰,周继程. CaF2对铝酸钙精炼渣系预熔特性和脱硫的影响[J].中国冶金, 2007,17(1):46-49.
    [80]张晨,王群,刘世州.预熔型精炼渣脱硫的实验研究[J].钢铁, 1997,32(S):782.
    [81]朱伯铨,祝洪喜,蒋春华. RH插入管刚玉-尖晶石浇注料研制与应用[J].炼钢, 2000,16(1):20-22.
    [82]王健东,高心魁. RH炉用耐火材料使用现状与解决措施[C].全国RH精炼技术研讨会, 2007:122-126.
    [83]陈松林,孙加林,熊小勇等. RH用MgO-ZrO2材料抗渣侵蚀机理的研究[J].炼钢, 2008,24(6):53-56.
    [84]陈肇友. RH精炼炉用耐火材料及提高其寿命的途径[J].耐火材料, 2009,43(2):81-95.
    [85]闫世宽,张作路. RH底部耐火材料损毁原因分析及改进[J].鞍钢技术, 2009,6:48-50.
    [86]田守信.钢包操作条件对耐火材料使用寿命的影响[J].山东冶金, 2009,31(5):20-23.
    [87] S. Zhang, W. E. Lee. Use of phase diagrams in studies of refractories corrosion [J], International materials Reviews, 2000, 45(2):41-58.
    [88] In-Ho Jung, Sergei A Decterov, Arthur D Pelton. Computer application of thermodynamic database to corrosion of refractories[C]. 8th ECO Refractory for the earth, 2003:252-255.
    [89] T.M.Basemann. Thermochemical modeling of refractory corrosion in slagging coal gasifiers [J]. Calphad, 32(3): 466-469.
    [90] William E.Lee, Bernard B. Argent, Shaowei Zhang. Complex phase equilibria in refractories design and use [J]. J.Am.Ceram.Soc, 2002, 85(12):2911-2918.
    [91] Jerome Berjonneau, Pascal Prigent, Jacques Poirer. The development of a thermodynamic model for Al2O3-MgO refractory castable corrosion by secondary metallurgy steel ladel slag [J]. Ceramics International, 2009, 35:623-635.
    [92] Weol D CHO, Peter FAN. Diffusional dissolution of alumina in various steelmaking slag [J]. ISIJ International, 2004, 44(2):229-234.
    [93] A I Zaitsev, N V Korolyov, B M Mogutnov. Phase equilibria in the CaF2-Al2O3-CaO system [J]. Journal of Materials Science, 1991, 26:1588-1600.
    [94] Shaowei. Zhang, Hamid Reza Rezaie, Hossiain Sarpoolaky, et al. Alumina dissolution into silicate slag [J]. J.Am.Ceram.Soc., 2000,83(4):897-903.
    [95] W.E.Lee, S.Zhang. Melt corrosion of oxide and oxide-carbon refractories [J]. International Materials Reviews, 1999, 44(3):77-104.
    [96] Ghosh, Ahindra. Secondary steelmaking: Principles and application [M]. CRC Press, 1999.
    [97] Tatsuro KUWABARA, Kazusige UMEZAWA, Kouji MORI. Investigation of decarburization behavior in RH-reactor and its operation improvement [J]. Transactions ISIJ, 1988,28:305-314

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700