用户名: 密码: 验证码:
短距离无线通信网络低信噪比接收算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
短距离无线通信,如无线局域网(WLAN,Wireless Local Area Network)、无线个域网(WPAN,Wireless Personal Area Network)、蓝牙(Bluetooth)、Zigbee、射频识别(RFID,Radio Frequency Identification)、无线传感器网络(WSN,Wireless Sensor Network)等,是目前无线通信领域研究和应用的热点。本学位论文围绕短距离无线通信网络低信噪比接收算法展开研究,重点研究低信噪比条件下无线接收机的载波频率同步、载波相位同步、定时同步、差错控制和低密度校验码(LDPC,Low-Density Parity-Check)的迭代随机构造等。
     首先,论文提出一个基于最大后验概率(MAP,Maximum a Posterrior Probability)准则的联合载波频偏估计与信道译码因子图,并根据该因子图提出了联合载波频偏估计与信道译码算法。由于原始联合载波频偏估计与信道译码算法的复杂度高,本文采用载波频偏离散化和长帧数据分为多个短子帧两个近似方法,推导了该算法的近似形式,降低了该算法的运算复杂度,扩大了它的应用范围。仿真结果表明该算法有效地提高了低信噪比条件下载波频率同步性能。
     然后,针对低信噪比条件下接收机的载波相位估计问题,提出了一种新的自适应迭代相位估计算法。在该算法中,相位估计和信道译码是独立进行的。相位估计器把从信道译码得到的软判决信息当作训练序列,把每个发送比特当作一个随机变量,采用最大似然准则(ML,Maximum Likelihood)完成相位估计。由于该自适应迭代相位估计算法相位估计范围不足,论文在该算法启动之前,先采用基于ML的相位估计算法来估计接收信号的相位,然后消除大相位误差对接收信号的干扰。仿真结果表明,数据辅助自适应迭代相位估计算法能消除各种相位误差,并且加快了自适应迭代相位估计算法的收敛速度。
     然后,论文通过仿真发现了降低常用定时同步算法性能的两个原因:区域效应和临界效应。针对这两个效应,提出了相对应的修正算法,并将该修正算法应用于Lee、平方环、对数、绝对值等定时同步算法中。仿真结果表明,改进区域效应和边界效应算法的性能优于传统定时同步算法。
     其次,提出一种基于线性预测的自适应可变冗余混合ARQ(VR-HARQ,Variable Redundancy Hybrid Automatic Repeat Request)方案。根据信道信噪比,时变信道被等效为有限状态的Markov过程。在推导每个Markov状态的最佳编码方案的基础上,系统采用自适应线性预测算法,根据当前L个时段的信道状态估计下一个时段信道的所对应的Markov状态,最后根据吞吐率最大原则选择合适的纠错编码方案。仿真结果表明:自适应VR-HARQ方案的性能比传统纠错编码方案提高了2dB。
The study for the small area wireless communication networks is one of the hot points in the research and application of the wireless communication, which include Wireless Local Area Network (WLAN), Wireless Personal Area Network (WPAN), Bluetooth, Zigbee, Radio Frequency Identification (RFID), Wireless Sensor Network (WSN) and so on. Surrounding the key technologies of the small area wireless communication networks, the receiving algorithms in low Signal Noise Ratio (SNR) are studied deep in this dissertation. The emphases have been focused on the random construction for Low-Density Parity-Check (LDPC) codes, the synchronizations of carrier frequency, carrier phase and symbol timing.
     Firstly, based the MAP criterion, the factor graph is constructed for the joint channel decoding and the carrier frequency offset estimating. The corresponding joint algorithm of channel decoding and the carrier frequency offset estimating is proposed. Due to the high complexity of the joint algorithm of channel decoding and the carrier frequency offset estimating, the approximate realization of the joint algorithm is presented, where the long frame is divided to many short frames and the carrier frequency offset is quantified. So the application fields are enlarged. The simulation results show that the performance of the carrier frequency offset estimating is improved greatly by using the joint algorithm of channel decoding and the carrier frequency offset estimating.
     Secondly, a new adaptive iterative phase tracking algorithm is proposed for the carrier phase estimating of the receiver in low SNR. In this new approach, the phase tracking and the channel decoding are performed separately. The maximum- likelihood (ML) carrier phase estimator is completed, which the transmitted bits are considered as random variables. Due to the small scope of this adaptive iterative phase tracking, the data-aided carrier phase estimating is used before the adaptive iterative phase tracking and the large carrier phase error is eliminated. Simulation results show that this method not only eliminates the carrier phase error, but also improves the convergence rate of iterative carrier phase tracking.
     Thirdly,region effect and boundary effect are found in the simulation results, which worsen the timing synchronization algorithms. To eliminate them, two modified algorithm are proposed. And the modified algorithms are applied in the Lee, square, logarithm, and absolute timing synchronization algorithms. The simulation shows that the modified algorithms can greatly improve the performance of normal timing synchronization algorithms.
     And then, a new VR-HARQ (Variable Redundancy Hybrid-Automatic Repeat Request) scheme proposed. The channel is equivalent to a finite-markov process,
引文
[1] N.Wiberg. Codes and decoding on general graphs [D]. Ph.D dissertation, Link?ping Univ., Link?ping, Sweden, 1996.
    [2] N Wiberg, H A Loeliger, and R K?tter. Codes and iterative decoding on general graphs [J]. Eur. Trans. Telecomm., Sept./Oct. 1995, 6(9):513–525
    [3] R M Tanner. A recursive approach to low complexity codes [J]. IEEE Trans. Inform. Theory. Sept. 1981, 27(5): 533–547
    [4] S M Aji and R J McEliece. A general algorithm for distributing information on a graph [c]. In Proc. 1997 IEEE Int. Symp. Information Theory, Ulm, Germany, July 1997, p.: 6
    [5] S M Aji and R J McEliece. The generalized distributive law[J]. IEEE Trans. Inform. Theory, Mar. 2000, 46(2): 325–343
    [6] R G Gallager. Low-Density Parity-Check Codes [D]. Cambridge, MA: MIT Press, 1963.
    [7] C Berrou, A Glavieux, and P Thitimajshima. Near Shannon-limit errorcorrecting coding and decoding: Turbo codes[C]. In Proc. 1993 IEEE Int. Conf. Commun., Geneva, May 1993: 1064–1070.
    [8] D J C MacKay. Good error-correcting codes based on very sparse matrices [J]. IEEE Trans. Inform. Theory, Mar. 1999, 45(2): 399–431
    [9] P Rusmevichientong and B Van Roy. An analysis of belief propagation on the turbo decoding graph with Gaussian densities[J]. IEEE Trans.Inform. Theory. Feb. 2001, 47(2): 745–765
    [10] R D Shachter. Probabilistic inference and influence diagrams. Oper.Res. 1988, 36: 589–605
    [11] G R Shafer and P P Shenoy. Probability propagation. Ann. Mat. Art.Intell., 1990, 2(4): 327–352
    [12] S L Lauritzen and D J Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. Royal Statistical Society. 1988(B), 50(2): 157–224
    [13] B J Frey and F R Kschischang. Probability propagation and iterative decoding [C]. In Proc. 34th Annual Allerton Conf. Commun., Control, and Computing, Allerton House, Monticello, Illinois, Oct. 1–4, 1996.
    [14] F R Kschischang, B J Frey, and H-A. Loeliger. Factor graphs and the sum-product algorithm[J]. IEEE Trans. Inform. Theory, Feb. 2001, 47(2): 498–519
    [15] G D Forney, Jr. Codes on graphs: Normal realizations[J]. IEEE Trans. Inform. Theory. 2001, 47(2): 520–548
    [16] F. Kschischang and B J Frey. Iterative decoding of compound codes byprobability propagation in graphical models[J]. IEEE J. Select. Areas Commun. Feb. 1998.16(1): 219–230
    [17] Yongyi Mao; Kschischang, F.R. On factor graphs and the Fourier transform [J]. IEEE Transactions on, Information Theory, May 2005, 51(5): 1635 – 1649
    [18] Colavolpe G, Barbieri A. Caire, G. Algorithms for iterative decoding in the presence of strong phase noise [J]. Selected Areas in Communications, IEEE Journal on, Sept. 2005, 23(9): 1748 – 1757
    [19] Yedidia J S, Freeman W T, Weiss Y. Constructing free-energy approximations and generalized belief propagation algorithms [J]. Information Theory, IEEE Transactions on July 2005, 51(7): 2282 – 2312
    [20] Colavolpe G, Germi G. On the application of factor graphs and the sum-product algorithm to ISI channels [J]. Communications, IEEE Transactions on, May 2005, 53(5): 818 – 825
    [21] Kyeongcheol Yang. Weighted nonbinary repeat-accumulate codes [J]. Information Theory, IEEE Transactions on, March 2004, 50(3): 527 – 531
    [22] Jung-Chieh Chen, Ching-Shyang Maa, Yeong-Cheng Wang, Jiunn-Tsair Chen. Mobile position location using factor graphs [J]. Communications Letters, IEEE, Sept. 2003, 7(9): 431 – 433
    [23] Boutros J, Caire G. Iterative multiuser joint decoding: unified framework and asymptotic analysis [J]. Information Theory, IEEE Transactions on, July 2002, 48(7): 1772 - 1793
    [24] Feldman J, Wainwright M J, Karger D R. Using linear programming to Decode Binary linear codes [J]. Information Theory, IEEE Transactions on, March 2005, 1(3): 954 - 972
    [25] Naphade M, Kozintsev I, Huang T, Ramchandran K. A factor graph framework for semantic indexing and retrieval in video[C]. In Proceedings. IEEE Workshop on Content-based Access of Image and Video Libraries, 12, June 2000, p: 35 – 39
    [26] Koetter R. Factor graphs and iterative algorithms[C]. Information Theory and Networking Workshop, June-1 July 1999, p: 28
    [27] Kotter R, Vardy, A. Factor graphs: constructions, classification, and bounds[C]. Information Theory, 1998. Proceedings. 1998 IEEE International Symposium on, 16-21 Aug. 1998, p: 14
    [28] Fernandez A, Efe K. Generalized algorithm for parallel sorting on product networks[J]. Parallel and Distributed Systems, IEEE Transactions on, Dec. 1997, 8(12): 1211 - 1225
    [29] Yedidia J S. Sparse factor graph representations of Reed-Solomon and related codes[C]. In Proceedings. International Symposium on Information Theory, 27 July 2004, p: 260
    [30] Drost R J, Singer A C. Linear equalization via factor graphs[C]. In Proceedings. International Symposium on Information Theory, June-2 July 2004, p: 129
    [31] Drost R J, Singer A C. Image segmentation using factor graphs[C]. In IEEE Workshop on, Statistical Signal Processing 28 Sept. 2003, p: 150 – 153
    [32] Vontobel P O, Loeliger H A. Factor graphs and dynamical electrical networks[C]. In Information Theory Workshop, Paris, France, March-4 April 2003, p: 218 – 221
    [33] Yongyi Mao. Computation of joint moment functions on convolutional factor graphs[C]. In Proceedings. IEEE International Symposium on Information Theory, 2002, p: 281
    [34] Loeliger A. On hybrid factor graphs and adaptive equalization[C]. In Proceedings. 2001 IEEE International Symposium on Information Theory, 24-29 June 2001, p: 268
    [35] Frey B J, Koetter R, Petrovic N. "Codes" on images and iterative phase unwrapping[C]. In Information Theory Workshop, 2001. Proceedings. 2001 IEEE, 2-7 Sept. 2001, p: 9 – 11
    [36] Feldman J, Wainwright M J, Karger D R. Using Linear Programming to Decode Binary Linear Codes[J]. Information Theory, IEEE Transactions on, March 2005, 51(3): 954 - 972
    [37] Ramesh Naphade M, Kozintsev I V, Huang T S. Factor graph framework for semantic video indexing[J]. Circuits and Systems for Video Technology, IEEE Transactions on, Jan. 2002 12(1): 40 - 52
    [38] Nissila M, Pasupathy S. Low-complexity turbo receivers for multiple antenna space-time coded systems via variational inference[C]. In Vehicular Technology Conference, 2004 IEEE 59th, 17-19 May 2004, 1:530 - 534
    [39] Loeliger H A, Dauwels J, Koch V M, Korl S. Signal processing with factor graphs: examples[C]. In Control, Communications and Signal Processing, First International Symposium on, 2004, p: 571 - 574
    [40] Xiao Ma, Xinmei Wang, Ping Li. A computational model for linear codes [C]. In Communication Technology Proceedings, 2000, WCC - ICCT 2000, International Conference on, 21-25 Aug. 2000, 2:1704 - 1705
    [41] Boutros J, Caire G. Iterative multiuser joint decoding: unified framework and asymptotic analysis[C]. In Information Theory, 2001 IEEE International Symposium on, Beijing, China, 24-29 June 2001, Pages: 317
    [42] Yongyi Mao, Kschischang F R. On factor graphs and the Fourier transform[C]. In Information Theory, 2001 IEEE International Symposium on, Washington, DC, USA, 24-29 June 2001, Pages: 224
    [43] Kyeongcheol Yang. Weighted nonbinary repeat-accumulate codes [J]. Information Theory, IEEE Transactions on, March 2004, 50(3): 527 - 531
    [44] Jung-Chieh Chen, Ching-Shyang Maa, Yeong-Cheng Wang, Jiunn-Tsair Chen. Mobile position location using factor graphs [J]. Communications Letters, IEEE, Sept. 2003, 7(9): :431 – 433
    [45] Kschischang F R. Codes defined on graphs [J]. Communications Magazine, IEEE, Aug. 2003, 41(8): 118 - 125
    [46] Boutros J, Caire G. Iterative multiuser joint decoding: unified framework and asymptotic analysis [J]. Information Theory, IEEE Transactions on, July 2002, 48(7): 1772 - 1793
    [47] Wymeersch H, Steendam H, Moeneclacy M. Interleaved coded modulation for non-binary codes: a factor graph approach[C]. In Global Telecommunications Conference, 2004, GLOBECOM '04. IEEE, 29 Nov -3 Dec 2004, 1: 525 - 529
    [48] Colavolpe G, Barbieri A, Caire G, Bonneau N. Bayesian and nonBayesian methods for iterative joint decoding and detection in the presence of phase noise[C]. In Information Theory, International Symposium on, 27 June-2 July 2004 Pages: 131
    [49] Jung-Chieh Chen, Ching-Shyang Maa, Jiunn-Tsair Chen. Factor graphs for mobile position location [J]. In ICASSP-2003, Hong Kong, Apr. 6-10, 2003, pp. 393-396
    [50] Nissilia M, Pasupathy S. Reduced-complexity turbo receivers for single and multi-antenna systems via variational inference in factor graphs[C]. In Communications, 2004 IEEE International Conference on, 20-24 June 2004, 5:2767 - 2771
    [51] Dauwels J, Loeliger H A. Phase estimation by message passing [C]. In Communications, 2004 IEEE International Conference on, 20-24 June 2004, 1: 523 - 527
    [52] Schlegel C. Multi-user detection via iterative processing [J]. In Wireless Communications and Networking Conference, 2000. WCNC. 2000 IEEE, 23-28 Sept. 2000, 3:1030 - 1034
    [53]Joachim Hagenauer. Ilke Offe, Lutz Papke. Iterative Decoding of Binary Block and Convolutional Code [J]. IEEE Trans. Information Theory, March 1996. 42(2): 429-445
    [54] MacKay D J C. Good error-correcting codes based on very sparse matrices [J]. IEEE Transactions on Information Theory, Volume: 45, Issue: 2, March 1999, Pages: 399-431
    [55] Y V Zakharov, T C Tozer. Frequency estimator with dichotomous[J]. Electronics Letters, Sep 1999, 35 (9): 1608-1609
    [56] 贾平生. 一种适用于多相相干解调的载波同步方法[J]. 电讯技术,2001( 5): 70-73
    [57] Steven Kay. A fast and accurate single frequency estimator [J]. IEEE Transactions on Acoustic, Speech, and Signal Processing, Dec 1989, 37(12): 1987-1989
    [58] B C Lovell and R C Williamson. The statistical performance of some instantaneous frequency estimators [J]. IEEE Trans Acoust., Speech, Signal Processing, July 1992, 40(7): 1708–1723
    [59] M P Fitz. Planar filtered techniques for burst mode carrier synchronization[C]. In Proc. IEEE GLOBECOM’91, Phoenix, AZ, Dec. 1991, pp.: 365-369
    [60] M Luise and R Reggiannini. Carrier frequency recovery in all-digital modems forburst-mode transmissions[J]. IEEE Trans Commun, Mar 1995, 43(3): 1169–1178
    [61] Umberto Mengali and M Moreli. Data-aided frequency for burst digital transmission[J]. IEEE Transactions on communications, Jannuray 1997, 45(1): 23-25
    [62] 李鹏,何燕. 基于周期图何自相关函数的频偏估计方法[J]. 电讯技术,2004(5): 107-110
    [63] 张公礼. 全数字接收机理论与技术[M]. 科学出版社,北京,2005:107-110
    [64] 周德锁,田红心,李建军,易克初. 一种用于全数字化 QPSK 解调德大频偏矫正算法[J]. 电子学报,2000(7):45-47
    [65]John G. Proakis. Digital Communications (Fourth Edition)[M]. 电子工业出版社,北京,2003:244-248
    [66] Ling Chen, Kusaka H, Kominami M. Blind phase recovery in QAM communication systems using higher order statistics.[J] Signal Processing Letters, IEEE, May 1996.3(5): 147 – 149.
    [67] Cartwright K V. Blind phase recovery in general QAM communication systems using alternative higher order statistics.[J] Signal Processing Letters, IEEE, Dec. 1999. 6(12): 327 - 329
    [68] .Cartwright K V. Blind phase recovery in cross QAM communication systems with eighth-order statistics.[J] Signal Processing Letters, IEEE, Dec. 2001. 8(12): 304 - 306
    [69] CHEN L, KUSAKA H, KOMINAMI M. Blind phase recovery in QAM communication systems using Higher order statistics [J]. IEEE Signal Processing Letters, 1996, 3(5):147 - 149.
    [70] Bergmans J W M. Effect of loop delay on stability of discrete-time PLL [J]. Circuits and Systems I: Fundamental Theory and Applications. IEEE Transactions on, Apr 1995. 42(4): 229 –231
    [71] Takhar G, Gupta S. Analysis of Synchronous Digital-Modulation Schemes for Satellite Communication [J]. Communications, IEEE Transactions on Jun 1975. 23(6): 666 –670.
    [72] Meyers M, Franks L. Joint Carrier Phase and Symbol Timing Recovery for PAM Systems[J]. Communications, IEEE Transactions on [legacy, pre - 1988]. Aug 1980. 28(8): 1121 –1129
    [73] Franks L. Carrier and Bit Synchronization in Data Communication--A Tutorial Review [J]. Communications, IEEE Transactions on [legacy, pre - 1988]. Aug 1980. 28(8): 1107 –1121
    [74] Proakis J, Drouilhet P, Price R. Performance of Coherent Detection Systems Using Decision-Directed Channel Measurement[J]. Communications, IEEE Transactions on [legacy, pre - 1988]. Mar 1964. 12(1): 54 –63.
    [75] Simon M, Smith J. Hexagonal Multiple Phase-and-Amplitude-Shift-Keyed Signal Sets[J]. Communications, IEEE Transactions on [legacy, pre - 1988]. Oct 1973.21(10): 1108 –1115.
    [76] Natali F. Synchronization Properties of a Near-Comma-Free[J]. Communications, IEEE Transactions on [legacy, pre - 1988]. Aug 1969. 17(4): 500-502.
    [77] Lindsey W, Simon M. Carrier Synchronization and Detection of Polyphase Signals[J]. Communications, IEEE Transactions on [legacy, pre - 1988]. Jun 1972. 20(3): 441 –454.
    [78] La Frieda J, Lindsey W. Transient analysis of phase-locked tracking systems in the presence of noise[J]. Information Theory, IEEE Transactions on, Mar 1973. 19(2): 155 –165
    [79] I Bar-David, A Elia. Incremental Frequency, Amplitude and Phase Tracker (IFAPT) for Coherent Demodulation over Fast Flat Fading Channels[J]. IEEE Communications Letters, Nov 1999. 3(11): 314 - 316
    [80] Achilleas Anastasopoulos, Keith M. Chugg. Adaptive Iterative Detection for Phase Tracking in Turbo-Coded Systems[J]. IEEE Trans. Commun., Dec 2001. 49(12): 2135 - 2144
    [81] I Bar-David, A Elia. Augmented APP (A2P2) Module for a posterior probability calculation and channel parameter tracking[J]. IEEE Commun. Lett., Jan 1999. 3(1): 18 - 20
    [82] Dongmin Lim. A modified Gardner detector for symbol timing recovery of M-PSK signals[J]. IEEE Transactions on Communications, Oct. 2004. 52(10): 1643 - 1647
    [83] Yong Chul Kim,Young Ho Oh, Seong-Joon Baek, Young-Chul Kim, Dae Jin Kim. Timing-offset compensation techniques in ATSC DTV receivers[J]. IEEE Transactions on Consumer Electronics, Aug. 2003. 49(3): 519 - 523
    [84] Mueller K, Muller M. Timing Recovery in Digital Synchronous Data Receivers[J]. IEEE Transactions on Communications, May 1976. 24(5): 516 - 531
    [85] Agazzi O, Chin-Pyng Tzeng, Messerschmitt D, Hodges D. Timing Recovery in Digital Subscriber Loops[J]. IEEE Transactions on Communications, Jun 1985. 33(6): 558 - 569
    [86] Yung-Liang Huang, Kang-Dar Fan, Chia-Chi Huang. A fully digital noncoherent and coherent GMSK receiver architecture with joint symbol timing error and frequency offset estimation[J]. Vehicular Technology, IEEE Transactions on, May 2000. 49(3): 863 - 874
    [87] D'Andrea A N, Mengali U, Morelli M. Symbol timing estimation with CPM modulation[J]. Communications, IEEE Transactions on, Oct. 1996. 44(10): 1362 - 1372
    [88] Morelli M, Mengali U, Vitetta G M. Joint phase and timing recovery with CPM signals[J]. Communications, IEEE Transactions on, July 1997. 45(7): 867 - 876
    [89] Panayirci E, Bar-Ness E K. A new approach for evaluating the performance of a symbol timing recovery system employing a general type of nonlinearity[J].Communications, IEEE Transactions on, Jan. 1996. 44(1): 29 - 33
    [90] Iltis R A. A Bayesian maximum-likelihood sequence estimation algorithm for a priori unknown channels and symbol timing[J]. Selected Areas in Communications, IEEE Journal on, April 1992. 10(3): 579 - 588
    [91] Iltis R A. A Bayesian maximum-likelihood sequence estimation algorithm for a priori unknown channels and symbol timing[J]. Selected Areas in Communications, IEEE Journal on, April 1992. 10(3): 579 - 588
    [92] Yung-Liang Huang, Kang-Dar Fan, Chia-Chi Huang. A fully digital noncoherent and coherent GMSK receiver architecture with joint symbol timing error and frequency offset estimation[J]. Vehicular Technology, IEEE Transactions on, May 2000. 49(3): 863 - 874
    [93] Gardner F. A BPSK/QPSK Timing-Error Detector for Sampled Receivers[J]. Communications, IEEE Transactions on, May 1986. 34(5): 423 - 429
    [94] D'Andrea A N, Luise M. Optimization of symbol timing recovery for QAM data demodulators[J]. Communications, IEEE Transactions on, March 1996. 44(3): 399 - 406
    [95] Watkins G. Optimal Farrow coefficients for symbol timing recovery[J]. IEEE Communications Letters, Sept. 2001. 5(9): 381 – 383
    [96] Oetken G. A new approach for the design of digital interpolating filters [J]. Acoustics, Speech, and Signal Processing, IEEE Transactions on, Dec 1979. 27(6): 637 - 643
    [97] Ramstad T. Digital methods for conversion between arbitrary sampling frequencies[J]. Acoustics, Speech, and Signal Processing, IEEE Transactions on. Jun 1984. 32(3): 577 - 591
    [98] Oerder M, Mey H. Digital filter and square timing recovery[J]. Communications, IEEE Transactions on, May 1988. 36(5): 605 - 612
    [99] Joon Tae Kim. Efficient implementation of polynomial interpolation filters or full digital receivers[J]. IEEE Transactions on Consumer Electronics Feb. 2005. 51(1): 175 - 178
    [100] Hamila R, Gunnarsson G, Renfors M. New design approach for polynomial-based interpolation[C]. In Communications, Computers and Signal Processing, 1999 IEEE Pacific Rim Conference on 2-24 Aug. 1999, Page(s):544 - 547
    [101] Erup L, Gardner F M, Harris R A. Interpolation in digital modems. II. Implementation and performance[J]. Communications, IEEE Transactions on, June 1993. 41(6): 998 - 1008
    [102] Gardner F M. Interpolation in digital modems. I. Fundamentals[J]. Communications, IEEE Transactions on, March 1993. 41(3): 501 - 507
    [103] Farrow C W. A continuously variable digital delay element[C]. In Circuits and Systems, 1988., IEEE International Symposium on, 7-9 June 1988. 3: 2641 - 2645
    [104] Yli-Kaakinen J, Saramaki T. An algorithm for the optimization of adjustablefractional-delay all-pass filters[C]. In Circuits and Systems, 2004. ISCAS '04. Proceedings of the 2004 International Symposium on, 23-26 May 2004.
    [105] Soo-Chang Pei, Chien-Cheng Tseng. An efficient design of a variable fractional delay filter using a first-order differentiator[J]. Signal Processing Letters, IEEE, Oct. 2003. 10(10): 307 - 310
    [106] Wei-Ping Zhu, Yupeng Yan, Ahmad, M O, Swamy, M N S. Feedforward symbol timing recovery technique using two samples per symbol[J]. Circuits and Systems I: Regular Papers, IEEE Transactions on, Nov. 2005. 52(11): 2490 – 2500.
    [107] Yik-Chung Wu, Tung-Sang Ng. Symbol timing recovery for GMSK modulation based on squaring algorithm[J]. Communications Letters, IEEE, May 2001. 5(5): 221 - 223
    [108] Mielczarek B, Svensson A. Timing error recovery in turbo-coded systems on AWGN channels [J]. Communications, IEEE Transactions on, Oct. 2002, 50(10): 1584 - 1592
    [109] Morelli M, D'Andrea A N, Mengali U. Feedforward ML-based timing estimation with PSK signals[J]. Communications Letters, IEEE, May 1997. 1(3): 80 - 82
    [110] Yan Wang, Ciblat P, Serpedin E, Loubaton P. Performance analysis of a class of nondata-aided frequency offset and symbol timing estimators for flat-fading channels[J]. IEEE Transactions on Signal Processing, Sept. 2002. 50(9): 2295 – 2305
    [111] Panayirci E, Bar-Ness E K. A new approach for evaluating the performance of a symbol timing recovery system employing a general type of nonlinearity[J]. Communications, IEEE Transactions on, Jan. 1996. 44(1): 29 – 33
    [112] Yik-Chung Wu, Serpedin E. Low-complexity feedforward symbol timing estimator using conditional maximum-likelihood principle[J]. IEEE Communications Letters, March 2004. 8(3): 168 - 170
    [113] PHamila R, Vesma J, Renfors M. Polynomial-based maximum-likelihood technique for synchronization in digital receivers[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Aug. 2002. 49(8): 567 - 576
    [114] Seung Joon Lee. A new non-data-aided feedforward symbol timing estimator using two samples per symbol[J]. IEEE Communications Letters, May 2002. 6(5): 205 - 207
    [115] Yan Wang, Serpedin E, Ciblat P. An alternative blind feedforward symbol timing estimator using two samples per symbol[J]. IEEE Transactions on Communications, Sept. 2003. 51(9): 1451 - 1455
    [116] Hamila R, Renfors M. New maximum likelihood based frequency estimator for digital receivers[C]. In Wireless Communications and Networking Conference, 1999. WCNC. 1999 IEEE, 21-24 Sept. 1999, Page(s):206 - 210
    [117] Zhu, W P, Ahmad M O, Swamy M N S. A fully digital timing recovery schemeusing two samples per symbol[C]. In Circuits and Systems, 2001. ISCAS 2001, The 2001 IEEE International Symposium on, Sydney, NSW, Australia, May 2001. 2(6-9): 421 - 424
    [118] SHU LIN and PHILIP S YU. A Hybrid ARQ Scheme with Parity Retransmission for Error Control of Satellite Channels[J]. IEEE Transaction on Communications, July 1982, 30(7): 1701-1719,
    [119] Ajay Dholakia, Mladen A Vouk, Donald L Bitzer. A Variable-Redundancy Hybrid ARQ Scheme Using Invertible Convolutional Codes[C]. In Vehicular Technology Conference, 1994 IEEE 44th, Stockholm, Sweden, 8-10 June 1994,3: 1417-1420
    [120] Krishna R Narayanan, Gordon L Stilber. A Novel ARQ Technique using the Turbo Coding Principle[J]. IEEE Communications Letters, MARCH 1997, 1(2): 49-51,
    [121] Moncef Elaoud, Parameswaran Ramanathan. Adaptive Use of Error-Correcting Codes for Real-time Communication in Wireless Networks[C]. In INFOCOM'98. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, San Francisco, March-2 April 1998, 2(2): 548 - 555
    [122] Sungrae. Adaptive Error Control Scheme for multimedia Applications in Integrated Terrestrial-Satellite Wireless Networks[C]. In Wireless Communications and Networking Conference, 2000. WCNC. 2000 IEEE, Chicago, Sept. 2000, 2: 629 - 633
    [123] Branka Vucetic. An Adaptive Coding Scheme for Time-Varying Channels[J]. IEEE Transaction on Communications, May 1991, 39(5): 653-662
    [124] 王新梅,肖国镇编著,纠错码-原理与方法(修订版)[M],西安:西安电子科技大学出版社,2001
    [125] Simon Haykin, Adaptive Filter Theory (Third Edition)[M] 北京:电子工业出版社,1998
    [126] R Raheli, A Polydoros, and C Tzou. Per-survivor processing: A general approach to MLSE in uncertain environments[J]. IEEE Trans. Commun., Feb.–Apr. 1995. 43: 354–364
    [127] R G Gallager. Low-density parity-check codes[J]. IEEE Transactions on Information Theory, Jan 1962. 8(1): 21 – 28.
    [128] MacKay D J C. Good error-correcting codes based on very sparse matrices[J]. IEEE Transactions on Information Theory, March 1999. 45(2): 399 – 431.
    [129] Sae-Young Chung, Richardson T J, Urbanke R L. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation[J]. IEEE Transactions on Information Theory, Feb 2001. 47(2): 657 – 670
    [130] Richardson T J, Urbanke R L. The capacity of low-density parity-check codes under message-passing decoding[J]. IEEE Transactions on Information Theory, Feb 2001. 47(2): 599 – 618
    [131] Djurdjevic I, Jun Xu, Abdel-Ghaffar K, Shu Lin. A class of low-density parity-check codes constructed based on Reed-Solomon codes with two information symbols[J]. IEEE Communications Letters, July 2003. 7(7): 317 – 319
    [132] S J Johnson, S R Weller. Codes for iterative decoding from partial geometries[J]. IEEE Transactions on Communications, Feb. 2004. 52 (2): 236-243
    [133] Ammar B, Honary B, Kou Y, Xu J, Lin S. Construction of Low-Density Parity-Check Codes Based on Balanced Incomplete Block Designs[J]. IEEE Transactions on Information Theory, June 2004. 50 (6): 1257 – 1268
    [134] J Campello, D S Modha, S Rajagopalan. Designing LDPC codes using bit-filling[C]. In IEEE International Conference on Communications,11-14 June 2001,1: 55-59
    [135] J Campello, D S Modha. Extended bit-filling and LDPC code design[C]. In IEEE Global Telecommunications Conference, 25-29 Nov. 2001, 2: 985-989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700