用户名: 密码: 验证码:
嗜酸氧化亚铁硫杆菌铁硫簇生物合成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物冶金技术是一种利用微生物从矿物中提取有价金属的经济方法,具有成本低、投入少、能耗低,污染小等突出优点;针对我国有色矿产资源低品位、复杂、难处理的特点,生物冶金作为一种矿产资源高效提取的新技术具有广阔的应用前景。嗜酸氧化亚铁硫杆菌是最早发现和应用于微生物冶金的细菌,在微生物冶金中扮演极其重要角色,其作为硫化矿生物浸出机理研究的模式菌株一直是研究的热点。
     本论文以嗜酸氧化亚铁硫杆菌A.ferrooxidans ATCC23270为模板,研究了在其能量代谢过程中电子传递途径里起重要作用的铁硫簇的合成及转运机制。以嗜酸氧化亚铁硫杆菌的ISC铁硫簇系统为研究对象,克隆表达了ISC铁硫簇生物合成系统的三个核心蛋白:半胱氨酸脱硫酶蛋白IscS,铁硫簇组装的支架蛋白IscU以及另一个铁硫簇组装的支架蛋白/铁结合蛋白IscA。分别研究了它们在铁硫簇生物合成过程中的功能和作用机理,并探讨了它们在铁硫簇的生物合成和传递过程中相互作用机制,以及不同氧化应激条件下铁硫簇生物合成的差异表达;同时研究了嗜酸氧化亚铁硫杆菌硫代谢过程中催化硫酸盐发生首步同化反应的ATP硫酸化酶CysD1,进一步加深了对嗜酸氧化亚铁硫杆菌调控整个硫代谢途径从硫酸盐到半胱氨酸的电子传递过程cys操纵子的理解。希望通过这些工作为加深对嗜酸氧化亚铁硫杆菌铁硫代谢途径及电子传递机理的了解提供理论基础。
     本文的研究工作主要包括以下几个方面:
     (1)克隆了嗜酸氧化亚铁硫杆菌ATCC23270的isc操纵子中表达支架蛋白的IscU基因,并转入了含高效T7启动子的pET28b表达质粒。成功地在大肠杆菌BL21(DE3)中表达了IscU,并对蛋白诱导条件进行了优化。发现在IPTG浓度为0.5mM,室温过夜的诱导条件下能得到较高水平重组IscU的表达。表达后的重组蛋白主要以可溶性的形式存在于细胞上清中,应用饱和的鳌合型硫酸镍琼脂糖树脂柱对含组氨酸标签的IscU蛋白进行了纯化,得到分子量大小为16kD的IscU蛋白,每升LB培养液可获得6mg IscU蛋白。从大肠杆菌纯化得到的IscU蛋白呈无色透明状,自身不带有铁硫簇结构;铁结合实验发现IscU蛋白体外和体内均不具备结合铁的能力;IscU可以作为支架蛋白完成铁硫簇的组装,在体外添加外源铁离子和硫离子能够在20min内完成apo-IscU到[2Fe-2S]-IscU铁硫簇的组装。pH值对IscU上铁硫簇的生物合成具有明显的作用,在pH7.0-8.0时IscU可以较好的完成自身铁硫簇的生物组装,而当反应条件从pH7.0降低到6.0时,IscU上铁硫簇的生物合成受到极大的抑制。而当pH值小于6.0时,体系中蛋白发生变性出现沉淀,无法完成铁硫簇的组装。
     (2)克隆了嗜酸氧化亚铁硫杆菌ATCC23270的isc操纵子中表达半胱氨酸脱硫酶的IscS基因,转入了含T7高效启动子的pET28b表达质粒。成功地在大肠杆菌BL21(DE3)中表达了IscS,每1升LB培养液可表达并纯化获得5.2mg IscS蛋白。经纯化之后的IscS蛋白呈亮黄色,蛋白分子量为46kD。对纯化的IscS蛋白进行酶活测定,发现IscS具有较强的半胱氨酸脱硫酶活性,能催化L-半胱氨酸脱硫并把硫释放到溶液中。加入磷酸吡哆醛能促进IscS的酶活的表达。在温度为20-40℃之时IscS表现出较高的酶活性,其最适反应温度为37℃。而当反应温度低于20℃或者高于40℃时都将极大的抑制IscS的酶活性;pH8.0为IscS酶活的最适反应条件,在pH7.0和9.0之间IscS具有较强的酶活性,而超出这个范围将极大的削弱IscS的酶活。IscS在铁硫簇的体内和体外合成中都具有重要的作用,IscS可以催化L-半胱氨酸为apo-fdx体外组装[2Fe-2S]-fdx的铁硫簇组装提供硫源。在LB培养基中加入IscS酶活抑制剂L-烯丙基甘氨酸将极大的抑制IscS酶活的表达,从而阻断[2Fe-2S]-fdx体内的表达。IscS能和铁离子,半胱氨酸结合形成IscS-iron和IscS-iron-sulfur的复合物,复合物的存在将会抑制IscS半胱氨酸脱硫酶的活性。IscS的酶活受到反应体系中铁离子和硫离子的反馈调节作用对于铁硫簇生物合成机制的具有重要的作用。
     (3)克隆了嗜酸氧化亚铁硫杆菌ATCC23270的isc操纵子中的IscA基因,并构建了pET28b-IscA表达质粒。成功地在大肠杆菌BL21(DE3)中表达了IscA,每1升LB培养液可表达并纯化获得7.0mg IscA蛋白。经纯化之后的IscA蛋白呈亮黄色,蛋白分子量为11kD。从LB培养基中纯化得到的IscA是一个含4Fe-4S]铁硫簇的铁硫蛋白,加入EDTA和L-半胱氨酸处理后可以除去[4Fe-4S]簇形成apo-IscA。Apo-IscA在体外具有较强的铁的结合活性,可以结合铁离子形成iron-loaded IscA;而iron-loaded IscA可以在IscS (?)L-半胱氨酸存在的情况下在体外转化成[4Fe-4S]-IscA。以上apo-IscA, iron-loaded IscA和[4Fe-4S]-IscA三个不同状态的IscA代表了铁硫簇在IscA上合成时三个不同的阶段。IscA蛋白中Cys35, Cys99和Cys101是其结合铁和铁硫簇的关键位点,对这三个关键氨基酸位点进行定点突变成丙氨酸后的IscA蛋白失去了结合铁和铁硫簇的能力。IscA对三价铁具有较强的铁结合活性,氧气可以在IscA的铁结合位点上通过氧化二价铁成三价铁而促进了IscA对铁的结合作用。同时Iron-loaded IscA可以作为铁供体参与支架蛋白IscU上铁硫簇的生物组装。
     (4)支架蛋白IscU在低铁离子浓度下无法完成自身铁硫簇的生物组装,而IscA可以竞争性的结合反应体系中的铁离子,并将结合的铁离子传递给IscU完成IscU上铁硫簇的组装。L-半胱氨酸可以修饰iron-loaded IscA中铁的活性中心,使铁离子得以释放到反应体系中。同时L-半胱氨酸可以作为IscS酶活反应的底物脱硫产生硫离子,而IscU可以结合iron-loaded IscA中被L-半胱氨酸修饰的铁离子以及L-半胱氨酸脱硫产生的硫离子,完成[2Fe-2S]铁硫簇的组装。对嗜酸氧化亚铁硫杆菌isc操纵子中的IscU和IscA在铁硫簇生物合成过程中的相互作用研究发现,IscU是一个优先被选择的铁硫簇组装的支架蛋白,而高铁结合活性的IscA是一个优先被选择的铁结合蛋白。含有铁硫簇的支架蛋白可以把自身的铁硫簇传递给apo形式的铁硫蛋白。带[4Fe-4S]铁硫簇的holo-IscA可以把自身的铁硫簇传递给apo-fdx和apo-APS reductase完成[2Fe-2S]-fdx和[4Fe-4S]-APS reductase的组装,完成铁硫簇传递后的holo-fdx和holo-APS reductase的铁硫蛋白具有完整的生物学活性。
     (5)克隆了嗜酸氧化亚铁硫杆菌ATCC23270的硫代谢途径cys操纵子中编码ATP硫酸化酶的CysD1基因,并构建了pET28b-CysD1表达质粒。成功地在大肠杆菌BL21(DE3)中表达了CysD1,每1升LB培养液可表达并纯化获得4.3mgCysD1蛋白。经纯化之后的CysD1蛋白透明无色,蛋白分子量为33kD。从LB培养基中纯化得到的CysD1紫外扫描在420nm处存在一个特征吸收峰,具有催化硫酸根离子和ATP生成APS和焦磷酸的能力,采用生物发光法测定其ATP硫酸化酶的活性为3.0×103U/mg。对CysD1蛋白序列进行同源性比对,结合蛋白三维结构的模拟,采用蛋白定点突变,将170位Gln,173位的Arg和211位的Asp分别突变为Ser后,紫外扫描发现CysD1在420nm处的特征吸收峰消失,同时也极大的削弱了其ATP硫酸化酶催化硫酸根离子和ATP生成APS和焦磷酸的酶活能力,说明Q170,R173和D211这三个关键位点是嗜酸氧化亚铁硫杆菌ATCC23270的ATP硫酸化酶结合ADP活性的关键位点。
Acidithiobacillus ferrooxidans is a widely studied bacterium that lives in acid mine drainage, which obtains energy through the oxidation of ferrous ion to ferric ion with O2as the terminal electron acceptor. Acidithiobacillus ferrooxidans has attracted much attention in studying the mechanism of bioleaching. Iron sulfur clusters are one of the most ancient and ubiquitous redox centre in almost all living organism and play an important role in photosynthesis, respiration and nitrogen fixation. In this study, we usd the Acidithiobacillus ferrooxidans ATCC23270as the type strain to study the biogenesis and transfer mechanism of iron-sulfur clusters. The primary subjects of which include six parts as follows:
     (1) We cloned the gene of iron-sulfur cluster assembly scaffold protein IscU from the isc operon and constituted the plasmid pET28b-IscU. The recombinant plasmid was successfully expressed in LB medium with0.5mM IPTG under the room temperature overnight. The recombinant IscU protein was expressed as fusion proteins with a His-tag and purified by affinity chromatography using Ni-NTA agarose gel attached with the AKTA explore. IscU had a molecular weight of16kD and are colourless. The purified IscU did not have any iron-sulfur cluster and could not bind iron neither in vitro nor in vivo. IscU colud act as a scaffold protein to assemble the [2Fe-2S] cluster within30min. pH is an important impact factor for biogenesis of iron-sulfur cluster in IscU, the suitable pH value for iron sulfur cluster assemble is pH7.0-8.0, decreasing the pH value will restrain the iron-sulfur cluster assembly.
     (2) The gene of cysteine desulfurase protein iscS from the isc operon was cloned and constituted the into the plasmid pET28b. The recombinant plasmid pET28b-IscS was successfully expressed in LB medium and purified by affinity chromatography. IscS had a molecular weight of46kD and was light yellow in color. The purified IscS had high cysteine desulfurase activity, could catalyze desulfurization of L-cysteine. Incubating IscS with PLP would greatly increase the activity of IscS. The most suitable condition for IscS cysteine desulfurase activity was37℃and pH8.0. IscS was very important for iron-sulfur cluster assembly both in vitro and in vivo, it could catalyze desulfurization of L-cysteine and transfer sulfur for iron-sulfur cluster assembly on apo-fdx in vitro, inactivation of IscS serious affected the iron-sulfur cluster assembly on fdx in vivo.
     (3) The gene of IscA from A. ferrooxidans ATCC23270was cloned, expressed and purified by affinity chromatography. The purified IscA had a molecular weight of11kD and was brown in color. Acidithiobacillus ferrooxidans IscA is a [4Fe-4S] cluster binding protein, and it can bind iron in the presence of DTT with an apparent iron association constant of4×1020M-1. The iron binding in IscA can be promoted by oxygen through oxidizing ferrous iron to ferric iron. Furthermore, we show that the iron bound form IscA can be converted to iron sulfur cluster bound form in the presence of IscS and L-cysteine in vitro. Substitution of the invariant cysteine residues Cys35, Cys99or Cys101in IscA abolishes the iron binding activity of the protein; the IscA mutants that fail to bind iron are unable to assemble the iron sulfur clusters. Further studies indicate that the iron-loaded IscA could act as an iron donor for the assembly of iron-sulfur clusters in the scaffold protein IscU in vitro.
     (4) L-cysteine could mobilize the iron centre in IscA and to provide sulfur via IscS for iron-sulfur cluster assembly in IscU. When equal amounts of IscA and IscU are incubated with ferrous iron in the presence of IscS, L-cysteine and DTT, iron-sulfur cluster are assembled in IscU, suggested IscU is a preferred iron-sulfur cluster assembly scaffold protein. In contract, when equal amounts of IscA and IscU are incubated with ferrous iron in the presence of IscS and DTT, nearly all iorn is bound to IscA, suggested IscA is a preferred iron binding protein. Iron sulfur clusters could be transfer from pre-assembled scaffold proteins to apo-form iron sulfur proteins. Holo-IscA could transfer its [4Fe-4S] cluster to apo-fdx and apo-APS reductase to form [2Fe-2S]-fdx and [4Fe-4S]-APS reductase. After the iron-sulfur cluster transferring, the reconstitution iron sulfur proteins could restore their physiological activities.
     (5) The gene of ATP sulfurylase cysDl from the cys operon was cloned and constituted the into the plasmid pET28b. The recombinant plasmid pET28b-CysDl was successfully expressed in LB medium and purified by affinity chromatography. CysDl had a molecular weight of33kD and was colorless. The purified ATP sulfurylase could catalysis ATP and sulfate to form APS and pyrophosphate, the specific activity of the purified ATP sulfurylase was3.0×103U/mg. We constructed the mutant expression plasmid (Q170S, R173S, D211S) of the protein using the Site-directed mutagenesis. Molecular modelling for the protein, UV-Vis scanning and enzyme activity revealed that Q170, R173and D211were curcial sites for ATP sulfurylase bindings.
引文
[1]杨显万,沈庆峰,郭玉霞.微生物湿法冶金.2003,北京:冶金工业出版社.
    [2]Brierley J A, Brierley C L. Present and future commercial applications of biohydrometallurgy. Hydrometallurgy,2001,59:233-239.
    [3]Brieriey L.细菌的氧化作用.湿法冶金,1996,4:44-47.
    [4]Rohwerder T, Gehrke T, Kinzler K, et al. Bioleaching review part A:Progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiology Biotechnology,2003,63:239-248.
    [5]徐匡迪.中国科学技术前沿.1998,第一版,北京:高等教育出版社,中国工程院.
    [6]Colmer A R, Hinckle M E. The role of microorganisms in acid mine drainage, A Preliminary Report. Science,1947,106:253-256.
    [7]Beck J V, Davis D B. Microorganisms in leaching of sulfide minerals. Industrial and Engineering Chemistry,1954,46:2587-2592.
    [8]Brierley C L. Biohydrometallurgical prospects. Hydrometallurgy,2010,104: 324-328.
    [9]Valdes J, Pedroso I, Quatrini R, et al. Acicithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Gemonic,2008, 9:597-621.
    [10]Shi S Y, Fang Z H. Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans. Hydrometallurgy,2004,75:1-10.
    [11]Tuovinen O H, Kelly D P. Studies on the growth of Thiobacillus ferrooxidans, Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with 14 CO2 fixation and iron oxidation as measures of growth. Archrv fur Mikrobiologie,1973,88:285-298.
    [12]Rawlings D E. Heavy metal mining using microbes. Annual review of Microbiology,2002,56:65-91.
    [13]Acharya C, Kar R N, Sukla L B. Bacterial removal of sulphur from three different coals. Fuel,2001,80:2207-2216.
    [14]Tian A Y, Chen J C. Thiobacillus ferrooxidans and its utilization in environmental engineering. Enviroment Technology,2003,4:16-18.
    [15]Jr Davis R A, Welty A T, Borrego J, et al. Rio Tinto estuary (Spain):5000 years of pollution. Environmental Geology 2000,39:1107-1116.
    [16]Rawlings D E. Characteristics and adaptability of iron- and sulfur- oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories,2005,4:13-28.
    [17]Bennefoy V. Bioinformatics and genomics of iron- and sulfur- oxidizing acidophiles. In L.L. Bartion, M.Mandl (Eds.), Geomicrobiology:molecular and environmental persective. Dordrecht, Heidelberg, London, New York:Springer, 2010:163-192.
    [18]Quatrini R, Appia-Ayme C, Denis Y, et al. Extending the models for iron and sulfur oxidation in the extreme acidophilic Acidithiobacillus ferrooxidans. BMC Gemonic,2009,10:394-413.
    [19]Harrison A P. Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and a genomic comparison with Thibacillus thiooxidans. Archives of Microbiology,1982,131:68-76.
    [20]Pronk J T, Liem K, Bos P, et al. Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans. Applied and Environmental Microbiology. 1991,57:2063-2068.
    [21]Valdes J, Pedroso I, Quatrini R, et al. Comparative genome analysis of Acidithiobacillus ferrooxidans, A.thiooxidans and A.caldus:insights into their metabolism and ecophysiology. Hydrometallurgy,2008,94:180-184.
    [22]Tateo Y, Yoshihiro F. Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. FEMS Microbiology Reviews.1995,17:401-413.
    [23]Amouric A, Brochier-Armanet C, Johnosn DB, et al. Phylogenetic and genetic variation among Fe(Ⅱ)-oxidizing acidithiobacilli support the view that these comorise multiple species with different ferrous iron oxidation pathways. Microbiology,2011,157:111-122.
    [24]Valdes J, Cardenas J P, Quatrini R, et al. Comparative genomics begins to unravel the ecophysiology of bioleaching. Hydometallurgy,2010,104: 471-476.
    [25]Yarzabal A, Duquesne K, Bonnefoy V. Rusticyanin gene expression of Acidithiobacillus ferrooxidans ATCC 33020 in sulfur-and in ferrous iron media. Hydrometallurgy,2003,71:107-114.
    [26]Yarzabal A, Appoa-Ayme C, Ratouchniak J, et al. Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology,2004,150:2113-2123.
    [27]Amouric A, Appia-Ayme C, Yarzabal A, et al. Regulation of the iron and sulfur oxidation pathways in the acidophilic Acidithiobacillus ferrooxidans. Advanced Material Research,2009,163:71-73.
    [28]Brasseur G, Bruseella P, Bonnefoy V, et al. The bc(1) complex of the iron-grown acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans functions in the reverse but not in the forward direction. Is there a second bc(1) complex. Biochimica et Biophysica Acta,2002,15:37-43.
    [29]Yamanaka T, Yano T, Kai M, et al. The Electron Transfer System in an Acidophilic Iron Oxidizing Bacterium. In Mutohata Yed. New Area of Bioenergetics. Tokyo:Academic Press,1991:223-246.
    [30]Elbehti A, Brasseur G, Lemesle, Meunier D. First evidence for existence of an uphill electron transfer through the bcl and NADH2Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion oxidizing bacterium Thiobacillus ferrooxidans. Journal of Bacteriology,2000,182:3602-3606.
    [31]Prange A, Dahl C. Bacterial sulfur globules:occurrence, structure and metabolism. Microbiology Monographs,2006,1:21-51.
    [32]Valenzuela L, Chi A, Beard S, et al. Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnology Advances,2006,2:197-211.
    [33]Frigaard N U, Dahl C. Sulfur metabolism in phototrophic sulfur bacteria. Advances in Microbial Physiology,2009,54:103-200.
    [34]张成桂,夏金兰,王晶,邱冠周.嗜酸硫杆菌属硫氧化系统研究进展.生物技术通报,2007,1:59-65.
    [35]Sampson M I, Phillips C V, Blake R C. Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides. Minerals Engineering,2000,13: 373-389.
    [36]Gehrke T, Telegdi J, Thierry D, et al. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Applied Environmental Microbiology,1998,64:2743-2747.
    [37]Wakai S, Tsujita M, Kikumoto M, et al. Purification and characterization of sulfide:quinine oxidoreductase from an acidophic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans. Bioscience Biotechnology and Biochemistry,2007, 71:2735-3742.
    [38]Kanao T, Kamimura K, Sugio T. Identification of a gene encoding a tetrathionate hydrolase in Acidithiobacillus ferrooxidans. Journal of Biotechnology,2007,132: 16-22.
    [39]Chi A, Valenzuela L, Beard S, et al. Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans:a high throughput proteomics analysis. Molecular and Cellular Proteomics,2007,6:2239-2251.
    [40]Lochowska A, lwanicka-Nowicka R, Plochocka D, et al. Functional dissection of the LysR-type CysB transcriptional regulator. Regions important for DNA bingding, inducer response, ologomerization, and positive control. Journal of Biological Chemistry,2001,276:2098-2107.
    [41]Campanini B, Speroni F, Salsi E, et al. Interaction of serine acetyltransferase with O-acetylserine sulfhydrylase active site:Evidence from fluorescence spectroscopy. Protein Science,2005,14:2115-2124.
    [42]Valdes J, Veloso F, Jedlicki E, et al. Metabolic reconstruction of sulfur assimilation in the extremophile A. ferrooxidans based on genome analysis. BMC Genomics,2003,4:1-16.
    [43]Bogdanova N, Bork C, Hell R. Cysteine biosynthesis in plants:isolation and functional identification of a cDNA encoding a serine acetyltransferase from Arabidopsis thaliana. FEBS Letters,1995,358:43-47.
    [44]Beinert H, Holm R H, Munck E. Iron-sulfur cluster:nature's modular, multipurpose structures. Science,1997,277:653-659.
    [45]Lill R, Muhlenhoff U. Iron-sulfur protein biogenesis in eukaryotes:components and mechanisms. Annual Review of Cell and Developmental Biology,2006,22: 457-486.
    [46]Eric M S, Eric S B, Joan B B, et al. Biosynthesis of complex iron-sulfur enzymes. Current Opinion in Chemical Biology,2011,15:319-327.
    [47]Xu X M, Moller S G. Iron-Sulfur Clusters:Biogenesis, Molecular Mechanisms, and Their Functional Significance. Antioxidants and Redox Signaling,2011,15: 271-307.
    [48]Johnson D C, Dean D R, Smith A D, et al. Structure, function, and formation of biological iron-sulfur clusters. Annual Review of Biochemistry,2005,74: 247-281.
    [49]Lill R. Function and biogenesis of iron-sulphur proteins. Nature,2009,460: 831-838.
    [50]Kiley P J, Beinert H. The role of Fe-S proteins in sensing and regulation in bacteria. Current Opinion in Microbiology,2003,6:181-185.
    [51]Rouault T A, Tong W H. Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nature Reviews Molecular Cell Biology,2005,6:345-351.
    [52]Lill R, Muhlenhoff U. Iron-sulfur-protein biogenesis in eukaryotes. Trends in Biochemical Sciences,2005,30:133-141.
    [53]Peters J W, Stowell M H, Soltis S M, et al. Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry,1997,36:1181-1187.
    [54]Layer G, Ollagnier-de Choudens S, Sanakis Y, et al. Characterization of the Escherichia coli CyaY as an iron donor for the assembly of [2Fe-2S] cluster in the scaffold IscU. Journal of Biological Chemistry,2006,281:16256-16263.
    [55]Harrison P M, Ford G C, Rice D W, et al. Structural and functional studies on ferritins. Biochemical Society Transactions,1997,15:744-748.
    [56]Kutty R, Bennett G N. Characterization of a novel ferredoxin with N-terminal extension from Clostridium acetobutylicum ATCC 824. Archives of Microbiology, 2007,187:161-169.
    [57]Ding H, Demple B. Direct Nitric Oxide Signal Transduction via Nitrosylation of Iron-Sulfur Centers in the SoxR Transcription Activator. Proceedings of the National Academy of Sciences of the United States of America,2000,97: 5146-5150.
    [58]Schwartz C J, Giel J L, Patschkowski T, et al. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proceedings of the National Academy of Sciences of the United States of America,2001,98:14895-14900.
    [59]Rouault T A. Biogenesis of iron-sulfur clusters in mammalian cells:new insights and relevance to human disease. Disease Models and Mechanisms,2012,5: 155-164.
    [60]Ren B, Zhang N, Yang J, et al. Nitric oxide-induced bacteriostasis and modification of iron-sulphur proteins in Escherichia coli. Molecular Microbiology, 2008,70:953-964.
    [61]Ayala-Castro C, Saini A, Outten F W. Fe-S clusters assembly pathways in bacteria. Microbiology and Molecular Biology Reviews,2008,72:110-125.
    [62]Balk J, Lobreaux S. Biogenesis of iron-sulfur proteins in plants. Trends in Plant Science,2005,10:324-331.
    [63]Zheng L, Cash V L, Flint D H, et al. Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. Journal of Biological Chemistry,1998,273:13264-13272.
    [64]Rees D C, Howard J B. Nitrogenase:standing at the crossroads. Current Opinion in Chemical Biology,2000,4:559-566.
    [65]Fu W, Jack R F, Morgan T V, et al. nifU gene product from Azotobacter vinelandii is a homodimer that contains two identical [2Fe-2S] clusters. Biochemistry,1994,33:13455-13463.
    [66]Krebs C, Agar J N, Smith A D, et al. IscA, an alternate scaffold for Fe-S cluster biosynthesis. Biochemistry,2001,40:14069-14080.
    [67]Evans D J, Jones R, Woodley P R, et al. Nucleotide sequence and genetic analysis of the Azotobacter chroococcum nifUSVWZM gene cluster, including a new gene (nifP) which encodes a serine acetyltransferase. Journal of Bacteriology, 1991,173:5457-5469.
    [68]Fontecave M, Choudens S O, Py B, et al. Mechanisms of iron-sulfur cluster assembly:the SUF machinery. Journal of Biological Inorganic Chemistry,2005, 10:713-721.
    [69]Tan G, Lu J, Bitoun J P, et al. IscA/SufA paralogues are required for the [4Fe-4S] cluster assembly in enzymes of multiple physiological pathways in Escherichia coli under aerobic growth conditions. Biochemical Journal,2009,420:463-472.
    [70]Lu J, Yang J, Tan G, et al. Complementary roles of SufA and IscA in the biogenesis of iron-sulfur clusters in Escherichia coli. Biochemical Journal,2008, 409:535-543.
    [71]Outten F W, Wood M J, Munoz F M, et al. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. Journal of Biological Chemistry,2003,278:45713-45719.
    [72]Wollers S, Layer G, Gaecia-Serres R, et al. Iron-sulfur (Fe-S) cluster assembly: the SufBCD complex is a new type of Fe-S scaffold with a flavin redox cofactor. Journal of Biological Chemistry,2010,285:23331-23341.
    [73]Saini A, Mapolelo D T, Chahal H K, et al. SufD and SufC ATPase activity are required for iron acquisition during in vivo Fe-S cluster formation on SufB. Biochemistry,2010,49:9402-9412.
    [74]Mihara H, Kurihara T, Yoshimura T, et al. Kinetic and mutational studies of three NifS homologs from Escherichia coli:mechanistic difference between L-cysteine desulfurase and L-selenocysteine lyase reactions. Journal of Biochemistry,2000,127:559-567.
    [75]Schwartz C J, Djaman O, Imlay J A, et al. The cysteine desulfurase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America,2000,97: 9009-9014.
    [76]Agar J N, Krebs C, Frazzon J, et al. IscU as a scaffold for iron-sulfur cluster biosynthesis:sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry,2000,39:7856-7862.
    [77]Adinolfi S, Rizzo F, Masino L, et al. Bacterial IscU is a well folded and functional single domain protein. European Journal of Biochemistry,2004,271:2093-2100.
    [78]Tong W H, Rouault T A. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell Metabolism, 2006,3:199-210.
    [79]Chandramouli K, Unciuleac M C, Naik S, et al. Formation and properties of [4Fe-4S] clusters on the IscU scaffold proteins. Biochemistry,2007,46: 6804-6811.
    [80]Bertini I, Cowan J A, Del Bianco C, et al. Thermotoga maritima IscU. Structural characterization and dynamics of a new class of metallochaperone. Journal of Molecular Biology,2003,331:907-924.
    [81]Ramelot T A, Cort J R, Goldsmith-Fischman S, et al. Solution NMR structure of the iron-sulfur cluster assembly protein U (IscU) with zinc bound at the active site. Journal of Molecular Biology,2004,344:567-583.
    [82]Bilder P W, Ding H, Newcomer M E. The crystal structure of the ancient, Fe-S scaffold IscA reveals a novel protein fold. Biochemistry,2004,43:133-139.
    [83]Cupp-Vickery J R, Silberg J J, Ta D T, et al. Crystal structure of IscA, an iron-sulfur cluster assembly protein from Escherichia coli. Journal of Molecular Biology,2004,338:127-137.
    [84]Ollagnier-de-Choudens S, Mattioli T, Takahashi Y, et al. Iron-sulfur cluster assembly:characterization of IscA and evidence for a specific and functional complex with ferredoxin. Journal of Biological Chemistry,2001,276: 22604-22607.
    [85]Gupta V, Sendra M, Naik S G, et al. Native Escherichia coli SufA, coexpressed with SufBCDSE, purifies as a [2Fe-2S] protein and acts as an Fe-S transporter to Fe-S target enzymes. Journal of the American Chemical Society,2009,131: 6149-6153.
    [86]Ding H, Clark R J. Characterization of iron binding in IscA, an ancient iron-sulphur cluster assembly protein. Biochemical Journal,2004,379:433-440.
    [87]Ding H, Yang J, Coleman L C, et al. Distinct iron binding property of two putative iron donors for the iron-sulfur cluster assembly:IscA and the bacterial frataxin ortholog CyaY under physiological and oxidative stress conditions. Journal of Biological Chemistry,2007,282:7997-8004.
    [88]Ding H, Clark R J, Ding B. IscA mediates iron delivery for assembly of iron-sulfur clusters in IscU under the limited accessible free iron conditions. Journal of Biological Chemistry,2004,279:37499-37504.
    [89]Ding H, Harrison K, Lu J. Thioredoxin reductase system mediates iron binding in IscA and iron delivery for the iron-sulfur cluster assembly in IscU. Journal of Biological Chemistry,2005,280:30432-30437.
    [90]Tan G, Lu J, Bitoun J P, et al. IscA/SufA paralogues are required for the [4Fe-4S] cluster assembly in enzymes of multiple physiological pathways in Escherichia coli under aerobic growth conditions. Biochemical Journal,2009,420:463-472.
    [91]Balasubramanian R, Shen G, Bryant D A, et al. Regulatory roles for IscA and SufA in iron homeostasis and redox stress responses in the cyanobacterium Synechococcus sp. strain PCC 7002. Journal of Bacteriology,2006,188: 3182-3191.
    [92]Hoff K G, Ta D T, Tapley T L, et al. Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU. Journal of Biological Chemistry,2002,277:27353-27359.
    [93]Hoff K G, Cupp-Vickery J R, Vickery L E. Contributions of the LPPVK motif of the iron-sulfur template protein IscU to interactions with the Hsc66-Hsc20 chaperone system. Journal of Biological Chemistry,2003,278:37582-37589.
    [94]Zeng J, Huang X, Liu Y, et al. Expression, Purification, and Characterization of a [Fe2S2] Cluster Containing Ferredoxin from Acidithiobacillus ferrooxidans. Current Microbiology,2007,55:518-523.
    [95]Smith A D, Jameson G N, Dos Santos P C, et al. NifS-mediated assembly of [4Fe-4S] clusters in the N- and C-terminal domains of the NifU scaffold protein. Biochemistry,2005,44:12955-12969.
    [96]Balasubramanian R, Shen G, Bryant D A, et al. Regulatory roles for IscA and SufA in iron homeostasis and redox stress responses in the cyanobacterium Synechococcus sp. strain PCC 7002. Journal of Bacteriology,2006,188: 3182-3191.
    [97]Layer G, Ollagnier-de Choudens S, Sanakis Y, et al. Characterization of the Escherichia coli CyaY as an iron donor for the assembly of [2Fe-2S] cluster in the scaffold IscU. Journal of Biological Chemistry,2006,281:16256-16263.
    [98]Nuth M, Yoon T, Cowan J A. Iron-sulfur cluster biosynthesis:characterization of iron nucleation sites for assembly of the [2Fe-2S]2+ cluster core in IscU proteins. Journal of the American Chemical Society,2002,124:8774-8775.
    [99]Urbina H D, Silberg J J, Hoff K G, et al. Transfer of sulfur from IscS to IscU during Fe/S cluster assembly. Journal of Biological Chemistry,2001,276: 44521-44526.
    [100]Fontecave Marc and Ollagnier-de-Choudens Sandrine. Iron-sulfur cluster biosynthesis in bacteria:Mechanisms of cluster assembly and transfer. Archives of Biochemistry and Biophysics,2008,474:226-237.
    [101]Yang J, Bitoun J P, Ding H. Interplay of IscA and IscU in biogenesis of iron-sulfur clusters. Journal of Biological Chemistry,2006,281:27956-27963.
    [102]Nishio K, Nakai M. Transfer of iron-sulfur cluster from NifU to apoferredoxin. Journal of Biological Chemistry,2000,275:22615-22618.
    [103]Unciuleac M C, Chandramouli K, Naik S, et al. In vitro activation of apo-aconitase using a [4Fe-4S] cluster-loaded form of the IscU [Fe-S] cluster scaffolding protein. Biochemistry,2007,46:6812-6821.
    [104]Wu S P, Wu G, Surerus K K, et al. Iron-sulfur cluster biosynthesis. Kinetic analysis of [2Fe-2S] cluster transfer from holo ISU to apo Fdx:role of redox chemistry and a conserved aspartate. Biochemistry,2002,41:8876-8885.
    [105]Ollagnier-de-Choudens S, Sanakis Y, Fontecave M. SufA/IscA:reactivity studies of a class of scaffold proteins involved in [Fe-S] cluster assembly. Journal of Biological Inorganic Chemistry,2004,9:828-838.
    [106]Crack J C, Green J, Thomson A J, et al. Iron-sulfur cluster sensor -regulators. Current Opinion in Chemical Biology,2012,16:35-44.
    [107]Frazzon J, Dean D R. Feedback regulation of iron-sulfur cluster biosynthesis. Proceedings of the National Academy of Sciences of the United States of America,2001,98:14751-14753.
    [108]Schwartz C J, Giel J L, Patschkowski T, et al. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proceedings of the National Academy of Sciences of the United States of America,2001,98:14895-14900.
    [109]Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology,2003,149:1699-1709.
    [110]郭尧君.蛋白质电泳实验技术.北京:科学出版社,1999:132-144.
    [111]Fischer D S. A method for the rapid detection of acute iron toxicity. Clinical Chemistry,1967,13:6-11.
    [112]Siegel L M. A Direct Microdetermination for Sulfide. Analytical Biochemistry, 1965,11:126-132.
    [113]Zeng J, Zhao W, Liu Y, et al. Expression, purification and characterization of an iron-sulfur cluster assembly protein, IscU, from Acidithiobacillus ferrooxidans. Biotechnology Letters,2007,29:1965-1972.
    [114]Zeng J, Zhang Y, Liu Y, et al. Expression, purification and characterization of a cysteine desulfurase, IscS, from Acidithiobacillus ferrooxidans. Biotechnology Letters,2007,29:1983-1990.
    [115]Zheng L, White R H, Cash V L, et al. Mechanism for the desulfurization of L-cysteine catalyzed by the nifS gene product. Biochemistry,1994,33: 4714-4720.
    [116]Cupp-Vickery J R, Urbina H, Vickery L E. Crystal structure of IscS, a cysteine desulfurase from Escherichia coli. Journal of Molecular Biology,2003,330: 1049-1059.
    [117]Qian C, Mo H Y, Tang L, et al. Assembly mechanism of [Fe2S2] cluster in ferredoxin from Acidithiobacillus ferrooxidans. Journal of Microbiology and Biotechnology,2011,21:124-128.
    [118]Wu G F, Li P, Wu X C. Regulation of Escherichia coli IscS desulfurase activity by ferrous iron and cysteine. Biochemical and Biophysical Research Communications,2008,374:399-404.
    [119]Iannuzzi C, Adinolfi S, Howes B D, et al. The role of CyaY in iron sulfur cluster assembly on the E. coli IscU scaffold protein. PLoS One,2011,6:e21992.
    [120]Bridwell-Rabb J, Iannuzzi C, Pastore A, Barondeau D P. Effector role reversal during evolution:the case of frataxin in Fe-S cluster biosynthesis. Biochemistry, 2012,51:2506-2514
    [121]Pandolfo M, Pastore A. The pathogenesis of Friedreich ataxia and the structure and function of frataxin. Journal of Neurology,2009,256:9-17.
    [122]Adinolfi S, Iannuzzi C, Prischi F, Pastore C, Iametti S, Martin S R, Bonomi F, Pastore A. Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS. Nature Structural and Molecular Biology,2009, 16:390-396
    [123]Wollenberg M, Berndt C, Bill E, Schwenn J D, and Seidler A. A dimmer of the FeS cluster biosynthesis protein IscA form cyanobacteria binds a [2Fe-2S] cluster between two protomers and transfers it to [2Fe2S] and [4Fe4S] apo proteins. European Journal of Biochemistry,2003,270:1662-1671.
    [124]Wang W, Huang H, Tan G, et al. In vivo evidence for the iron-binding activity of an iron-sulfur cluster assembly protein IscA in Escherichia coli. Biochemical Journal,2010,432:429-436.
    [125]Liu J, Oganesyan N, Shin D H, Jancarik J, Yokota H, Kim R, Kim S H. Structural characterization of an iron-sulfur cluster assembly protein IscU in a zinc-bound form. Proteins,2005,59:875-881.
    [126]Wada K, Hasegawa Y, Gong Z, Minami Y, Fukuyama K, Takahashi Y. Crystal structure of Escherichia coli SufA involved in biosynthesis of iron-sulfur clusters: implications for a functional dimer. FEBS Letters,2005,579:6543-6548.
    [127]Xu D, Liu G, Xiao R, Acton T, Goldsmith-Fischman S, Honig B, Montelione GT, Szyperski T. NMR structure of the hypothetical protein AQ-1857 encoded by the Y157 gene from Aquifex aeolicus reveals a novel protein fold. Proteins,2004 54:794-796.
    [128]Truper H G, Lynne A R. Purification and properties of adenylys sulfate reductase from the phototrophic sulfur bacterium, Thiocapsa roseopersicina. Journal of Bacteriology,1971,108:1112-1121.
    [129]Bick J A, Dennis J J, Zylstra G J, et al. Identification of a new class of 5'-adenysulfate(APS) reductase from sulfate-assimilating bacterial. Journal of Bacteriology,2000,182:135-142.
    [130]Saito K. Sulfur assimilatory metabolism-The long and smelling road. Plant Physiology,2004,136:2443-2450.
    [131]Leustek T, Martin M N, Bick J A, et al. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annual Review of Plant Physiology and Plant Molecular Biology,2000,52:141-159.
    [132]Macrae I J, Segel I H, Fisher A J. Crystal structure of ATO sulfurylase from Penicillium chrysogenum:insights into the allosteric regulation of sulfate assimilation. Biochemistry,2001,40:6795-6804.
    [133]Taguchi Y, Sugishima M, Fukuyama K. Crystal structure of a novel zinc-binding ATP sulfurylase from Thermus thermophilus HB8. Biochemistry, 2004,43:4111-4118.
    [134]Phartiyal P, Kim W S, Cahoon R E, et al. Soybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment. Archives of Biochemistry and Biophysics, 2006,450:20-29.
    [135]Nocito F F, Lancilli C, Crema B, et al. Heavy metal stress and sulfate uptake in maize roots. Plant Physiology,2006,141:1138-1148.
    [136]Karamohamed S, Nyren P. Real-time detection and quantification of adenosine triphosphate sulfurylase activity by a bioluminometric approach. Analytical Biochemistry,1999,271:81-85.
    [137]Rachel P, Quing XT, Warwick JB, et al. The Mycobacterium tuberculosis cysD and cysNC genes form a stress-induced operaon that encodes a tri-functional sulfate-activating complex. Microbiology,2004,150:1681-1686.
    [138]Mathew C, Susanna L, John M, et al. Complex formation between recombinant ATP sulfurylase and APS reductase of Allium cepa(L). FEBS Letters,2007, 581:4139-4147.
    [139]Carla S, Christel V, Ismael H, et al. Identification of a third sulfate activation system in Sinorhizobium sp. strain BR816:the cysDN sulfate activation complex. Applied and Environmental Microbiology,2003,69:2006-2014.
    [140]Yu Z H, Lansdon E B, Segel I H and Fisher A J. Crystal structure of the bifunctional ATP sulfurylase-APS kinase from the chemolithotrophic thermophile Aquifex aeolicus. Journal of Molecular Biology,2007,365:732-7'43.
    [141]Taguchi Y, Sugishima M, Fukuyama K. Crystal structure of a novel zinc-binding ATP sulfurylase from Thermus thermophilus HB8. Biochemistry, 2004,43:4111-4118.
    [142]Leyh T S, Taylor J C, Markham G D. The sulfate activation locus of Escherichia coli K12:cloning, genetic and enzymatic characterization. Journal of Biological Chemistry,1988,263:12886-12892.
    [143]钱林,郑春丽,柳建设.嗜酸氧化亚铁硫杆菌ATP硫酸化酶的表达、纯化及鉴定.生物技术通报,2012,06:136-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700