用户名: 密码: 验证码:
约束混凝土空心砌块结构静力非线性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于我国的基本国情,砌体结构在今后相当长一段时间内仍将是在我国广泛采用的建筑结构形式之一。而通过在混凝土砌块墙体中设置芯柱、在纵横墙交接处设置钢筋混凝土构造柱与圈梁连接构成弱框架而形成的约束混凝土砌块结构体系,不仅其墙体材料—混凝土砌块符合节约土地、节省能源、合理利用工业废料、保护环境的基本国策,而且具有较高的抗剪承载力和很好的变形能力。目前约束砌块结构体系已经成为我国建材行业优先发展的重点领域,在国内某些省份已经颁布了约束砌体结构设计与施工规程。同时,该种结构体系的抗震性能也越来越成为工程界关注的焦点。
     基于性态的结构抗震设计作为建筑结构抗震设计的发展趋势已经被普遍认同,而结构非线性分析是实现结构性态抗震设计的基本技术。从目前来说,静力非线性分析—推覆分析和反应谱分析相结合是进行结构非线性分析的一种最简便、有效的办法。这一方法已被多个国家的抗震规范所采用。
     本文以约束混凝土空心砌块结构为研究对象,主要针对静力非线性分析方法中的反应谱分析展开研究。首先采用Bispec反应谱分析程序,对单自由度体系进行了弹塑性反应谱分析,得出了延性系数为1—8时的单自由度体系弹塑性延性谱和位移谱,并对起主要影响因素进行了分析;然后结合推覆分析将弹塑性反应谱研究结果应用于某一典型混凝土空心砌块房屋,同时对该房屋进行非线性时程分析,最后将得出的地震反应结果与非线性时程分析进行了对比。
     本文主要得出了以下结论:
     1.单自由度体系滞回模型、阻尼比和屈服后刚度系数对其弹塑性反应谱分析均有影响,其中前两者较大。
     2.延性系数、震中距和场地类型均对结构等延性强度需求谱和位移需求谱均有一定影响,其中延性系数是强度谱的主要决定因素,震中距对后者的影响因素最大。
     3.对于约束混凝土空心砌块结构,在抗震设防地震作用下满足抗震要求时,罕遇地震不一定满足抗震要求,建议对其进行罕遇地震作用下的变形验算。
As one of the most important structures, the masonry structure will continue to be widely used in our country for a long period of time according to the Chinese present conditions. And, the bound masonry structure, which was formed by setting up core columns through the concrete block wall and Constructional columns at the corners of the vertical and horizontal walls to make up a weak frame, not only its main materials– the concrete block meet the necessity of Land and energy conservation, rational utilization of industrial castoff the environmental protection, and also has a high shear bearing capacity and good deformability. At present, the bound block structure system has become a priority to be developed in the China's building materials industry and in some provinces ,the related design and construction regulations have been issued. At the same time, this system's seismic performance has increasingly become the focus of attentions.
     Performance-Based Seismic Design(PBSD) of the structures has been generally accepted as the development trend of the structure seismic engineering, and the non-linear analysis is the basic means to carry it. From the time being, the non-linear static analysis– the push-over analysis and response spectrum analysis combined is one of the most simple and effective ways. This approach has been adopted by a number of countries’seismic Design Code.
     This paper mainly focuses on the concrete hollow block structures and its seismic performance. The main research methods are the nonlinear spectrum analysis, pushover analysis and the non-linear time-history analysis. First of all, adopting the Bispec–the response spectrum analysis program, the SDOF’s plastic response spectrum analysis was carried out and the Constant-ductility strength and displacement demand spectrums with ductility coefficient of from 1 to 8, the major influence factors of them was also considered. Then they are combined with the push-over analysis to be applied to a typical concrete hollow block structure. In the end, the non-linear static analysis results and non-linear time-history analysis results were compared and some conclusions were drawn.
     This article mainly drew the following conclusions:
     1.The SDOF system’s hysteretic model, damping factor and the stiffness after-yielding coefficient can affect the elastic-plastic response spectrum analysis results, especially for the former two.
     2.The ductility factor, the epicentral distance and the site type plays very important roles in the analysis of the SDOF system’s constant-ductility strength and displacement demand spectrums, and the ductility factor determines the constant-ductility strength demand spectrum and the epicentral distance affects the constant-ductility displacement demand spectrum most.
     3. A deformation checking computation was suggested against the concrete hollow block structures under the acting of the rarely happening earthquakes.
引文
[1]《地震工程概论》编写组,地震工程概论,北京:科学出版社,1985,58-61
    [2]丁建国,弹塑性反应谱及其在抗震设计中的应用,南京理工大学学报,2007,31(6):780-783
    [3] Fajfar P,A nonlinear analysis method for performance-based seismic design.Earthquake Spectra,2000,16(3):573-592
    [4] GB50011-2001,建筑抗震设计规范
    [5] A.S.Veletos ,N.M. Newmark, Effect of Inelastic Behavior on the Response of Simple Systems to Earthquake Motion ,2WCEE ,1960,234-245
    [6] N.M.Newmark ,高耸结构的地震分析和设计的新趋势,地震工程学(中译本) ,北京:科学出版社,1978,211-223
    [7]王前信,弹塑性反应谱,地震工程研究报告集,第二集,北京:科学出版社,1965,198-208
    [8]陈聃,抗震结构的延性谱,清华大学抗震抗爆工程研究报告集,清华大学出版社,1980,97-105
    [9] Krawinkler H,Seneviratna G D P K,Pros and cons of a pushover analysis of seismic performance evaluation,Engineering Structures,1998,20(4-6):452-464
    [10] Chopra AK and Goel RK,A modal pushover analysis procedure to evaluate seismic demands for buildings:Theory and preliminary evaluation, PEER Report,2001
    [11] Vidic T,Fajfar P and Fischinger M,Consistent inelastic design spectra:strength and displacement,Earthquake Engineering and Structural Dynamics,1994,23:507-521
    [12]范立础,卓卫东,结构抗震设计中的强度折减系数研究,地震工程与工程振动,2001,21(1):84-88
    [13]周定松,吕西林,延性需求谱在基于性能的抗震设计中的应用,地震工程与工程振动,2004,24(1):30-38
    [14]王东升,李宏男,王国新,弹塑性地震反应谱的比较分析,防震减灾工程研究与进展—全国首届防震减灾工程学术研讨会论文集,2004,212-217
    [15]翟长海,谢礼立,考虑P-△效应的弹塑性位移比谱,哈尔滨工业大学学报,2007,34(3),38-46
    [16]易建伟,张海燕,弹塑性反应谱的比较及其应用,湖南大学学报,2005,32(2):42-45
    [17]徐福江,钱嫁茹,常延性系数弹塑性位移谱及其应用,工程力学,2007,24(6):15-21
    [18] Tomazewic M,Klemenc I,Seismic behavior of confined masonrybuildings:an experimental study,Proc.lllh international Brick/Masonry Conf,Tongji University,Shanghai China,14-16 October 1997,vol.1,542-551
    [19] Koji YOSHIMURA,Kenji KIKUCHI,Effect of wall reinforcements,applied lateral forces and vertical axial loads seismic behavior of confined concrete masonry walls[A],12WCEE[A],2000
    [20]八度区混凝土空心砌块抗震性能研究成果鉴定资料集,1988,109-124
    [21]施卫星,徐磊,七层混凝土小型空心砌块房屋振动台试验研究,工程抗震,1999,3:22—25
    [22]杨德建,高永孚,孙锦镖等,构造柱-芯柱体系混凝土砌块砌体抗震性能试验研究,建筑结构学报,2000,21(4):22—27
    [23] Hachem M, BISPEC–A computer program for spectra analysis of earthquake record,2004,http://www.ce.berkeley.edu/~hachem/bispec/
    [24] R.W.克拉夫,J.彭津,结构动力学[M],王光远等译,北京:科学出版社,1981,108-124
    [25]李小军,地震工程中动力方程求解的逐步积分方法,工程力学,1996,13(2):110-118
    [26]储德文,王元丰,精细直接积分法的积分方法选择,工程力学,2002,19(6): 115-119
    [27] Pacific Earthquake Engineering Research Center: NGA Database,2008,http://peer.berkeley.edu/nga/
    [28] FEMA 450,NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings[R].Federal Emergency Management Agency,Washington,D.C.,2002
    [29]罗文斌,钱稼茹,特征延性系数谱及RC框架的目标位移,建筑结构,2004, 34(10): 24-30
    [30]吕西林,周定松,考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱.地震工程与工程振动,2004,24(1),39-49
    [31]李刚,程耿东,基于性能的结构抗震设计—理论、方法和应用,北京:科学出版社,2004,293-312
    [32] FEMA 273,NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings,Federal Emergency Management Agency,Washington, D.C., 1997
    [33] FEMA 274,NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings,Federal Emergency Management Agency,Washington, D.C., 1997
    [34] ATC-40,Seismic Evaluation and Retrofit of Concrete Buildings[R]. Applied Technology Council,Red wood City,California,1996
    [35]熊立红,多层混凝土砌块结构性态抗震研究:[国家地震局工程力学所博士学位论文],哈尔滨:国家地震局工程力学所,2004
    [36]杜修力,框架结构弹塑性地震反应的计算机方针研究:[国家地震局工程力学所博士学位论文],哈尔滨:国家地震局工程力学所,1989
    [37]熊立红,张敏政,设置芯柱—构造柱混凝土砌块墙体抗震剪切承载力计算,地震工程与工程振动,2004,24(2):82~87
    [38] Nassar A,Osteraas,D and Krawinkler.H,Seismic design based on strength and ductility demands,Proc World Conf on Earthquake Engineering,Madri,Spain,vol.9 ,5861-5866,1992
    [39]王亚勇,戴国莹主编,建筑抗震设计规范算例,北京:中国建筑工业出版社,2006,45-56
    [40]李荣华,框架结构抗震性能的静力非线性研究:[河北工程大学硕士学位论文],2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700