用户名: 密码: 验证码:
微循环障碍和糖尿病及其慢性并发症的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分皮肤微血管舒张功能测定方法的建立及在糖耐量正常人中的检测
     目的:建立和优化无创伤性皮肤微血管舒张功能检测技术—毛细血管恢复试验并检测糖耐量正常人的微血管舒张功能。
     方法:在毛细血管显微镜下,观察受试者皮肤甲襞微血管加压致反应性充血后毛细血管密度的变化,用毛细血管恢复率作为测定微血管舒张功能的指标。选取糖耐量正常人53例,其中9例在不同日先后做2次微血管舒张功能检查,间隔时间大于7天,控制条件一样。在同日做微循环检查时,分别选择不同的加压时间(1分钟,4分钟,8分钟)比较毛细血管恢复率的变化情况。
     结果:阻断毛细血管血流1min后,毛细血管恢复率仅为(21.3士7.0)%,明显低于阻断时间为4min或8min组。而阻断4min后测定的毛细血管恢复率和阻断8min后测定值基本相似,没有统计学差异。毛细血管恢复率的变异系数(CV)值为18.7±2.0%。3例平均年龄为(65.6±6.7)岁的糖耐量正常者微血管舒张功能检测结果显示,平均毛细血管密度基础值为(37.5±8.2)支/mm~2,峰值为(50.3±9.6)支/mm~2,毛细血管恢复率为(37.50±6.8)%,男女之间没有明显差异。年龄与毛细血管恢复率呈负相关(r=-0.413,P<0.05)。
     结论:阻断血流时间设定为4min能够较好较快的反映微血管舒张功能。因此,本课题选择了阻断4min作为试验方案。毛细血管恢复试验操作简便,重复性高、稳定性好,是比较理想的研究微血管舒张功能的新方法。初步对糖耐量正常者做了微血管舒张功能的检测,年龄与毛细血管恢复率呈负相关。
     第二部分社区2型糖尿病人群中微血管舒张功能检测及和慢性并发症的关系
     目的:测定社区2型糖尿病人群的皮肤微血管舒张功能,观察其影响因素以及和慢性并发症之间的关系。
     方法:对上海市中心城区的社区2型糖尿病患者共367人进行了微血管舒张功能的检测,同时检查了尿白蛋白肌酐比、小瞳孔眼底成像、外周神经系统检查和颈动脉B超,按有无慢性并发症及并发症种类的多少分组,比较毛细血管恢复率(%)的差异,并对各种慢性并发症的危险因素进行分析。
     结果:2型糖尿病人平均年龄为(66.0±10.9)岁,平均毛细血管恢复率为(29.6±12.3)%。年龄、糖尿病病程、收缩压、糖化血红蛋白和毛细血管恢复率密切相关(P<0.05)。伴有糖尿病微血管并发症患者的毛细血管恢复率和毛细血管密度峰值都明显低于对照组(P<0.05)。与>30%的水平相比,毛细血管恢复率在20-30%组及<20%组是糖尿病视网膜病变的独立危险因素(OR:5.78,95%CI:2.064-16.184;OR:21.267,95%CI:7.180-62.989),校正了年龄、性别、糖尿病病程、HbA1c和收缩压混杂因素后,仍有统计学意义(adjusted OR:1.013,95%CI:1.006-1.020;adJusted OR:1.023,95%CI:1.015-1.030)。毛细血管恢复率20-30%组及<20%组也是白蛋白尿的独立危险因素(adjusted OR:1.007;95%CI:1.003-1.011;adjusted OR:1.015;95%CI:1.010-1-020)。此外,毛细血管恢复率<200%组是糖尿病外周神经病变的危险因素之一(OR:5.188;95%CI:2.201-12.23])。随着糖尿病微血管并发症种类的增多,毛细血管恢复率呈明显递减趋势(39.5±11.5 vs 27.8±9.4 vs 20.9±9.3 vs 15.1±5.0,P_(trend)<0.05)。伴有颈动脉斑块病变患者的毛细血管恢复率、毛细血管密度峰值和基础值都低于无斑块病变者,但无统计学差异(P>0.05)。
     结论:毛细血管恢复率是糖尿病视网膜病变、白蛋白尿和外周神经病变的独立危险因素,并且随着微血管并发症种类的增多呈明显递减趋势,但与大血管病变的关系不明显。检测微血管舒张功能,有助于早期观察糖尿病微血管并发症的发生和严重程度。
     第三部分2型糖尿病大鼠肠系膜微循环的改变及其发病机制的探讨
     目的:观察2型糖尿病大鼠肠系膜微血管和微血流的变化,脂质过氧化产物水平以及抗氧化酶表达的改变。
     方法:选取2型糖尿病大鼠(Otsuka long-evans tokushima fatty,OLETF)33只,非糖尿病大鼠(long-evans tokushima otsuka,LETO)7只,全麻状态下,使用带电脑图像处理装置的微循环活体观察电视显微镜进行活体肠系膜微循环观察。检测微血管分支数目、微动脉及微静脉口径、微静脉中沿壁滚动与贴壁黏附的白细胞数、微动脉边流和轴流的宽度、内皮细胞厚度等。实验结果经电视录像记录后用图像处理系统定量测定。ELISA方法测定大鼠尿8-iso-PGF2a水平,同时RT-PCR和Western Blot方法检测抗氧化酶的表达差异。
     结果:OLETF大鼠肠系膜微血管分支数LETO大鼠减少24.5%(P<0.01),微血管分支数与血糖水平呈负相关(r=-0.44,P<0.05)。OLETF大鼠的微动脉边流宽度小于对照组,边流与管径的比值显著减少(P<0.01),沿壁滚动与贴壁黏附白细胞明显增加(P<0.01)。OLETF大鼠尿8-iso-PGF2a水平明显升高(P<0.05),而SOD_2和过氧化氢酶的表达两组之间没有明显差异。
     结论:2型糖尿病大鼠肠系膜微循环出现明显微血流形态、结构和功能障碍;同时,糖尿病大鼠体内的氧化应激水平增强,与微循环障碍相互作用,形成恶性循环,这些变化可能共同导致了糖尿病微血管并发征的发生发展。
Part One: Establish the method to test dysfunction of skin vasodilation and study on the microcirculation function in individuals with normal glucose tolerance
     Objective: To investigate the reproducibility of the capillary recruitment and the influence of occlusion time on postocclusive skin reactive hyperemia using computerized videophotometric capillaroscopy and to measure microcirculation function in individuals with normal glucose tolerance.
     Methods: We estimated baseline capillary density by counting the number of continuously erythrocyte-perfused capillaries and used postocclusive reactive hyperemia to estimate the functional reserve. Postocclusive capillary recruitment was calculated by dividing the increase in density by the baseline density. 53 individuals with normal glucose tolerance were enrolled and analyzed. Nailfold capillaries in finger skin were recorded before and after 1, 4 or 8 minutes of arterial occlusion with a digital cuff in 9 individuals to investigate the influence of different occlusion time. Duplicate measurements were performed in 9 individuals on 2 separate days to determine the day-to-day coefficient of variation of postocclusive capillary recruitment.
     Results: The percent increase of capillary density was only (21.3±7.0) % when the occlusion time was 1 minute, lowed than those with the occlusion time of 4 and 8 minutes. There was no difference in the percent increase between 4 or 8 minutes occlusion. The average age of non-diabetic subjects was (65.6±6.7) years old. The average baseline capillary density was (37.5±8.2) /mm~2, with an average peak capillary density of (50.3±9.6) /mm~2. The average percent increase was (37.50±6.8) %, and there was no difference between male and female subjects. Age was statistically associated with percent increase(r=0.413, P<0.05). The day-to-day coefficient of variation of postocclusive capillary recruitment was 18.7±2.0%.
     Conclusion: Capillary recruiment is an ideal method to measure the microcirculation dysfunction because of high reproducibility and stability. We selected 4 minutes as the occlusion time for its convenience and precise. We performed Capillary recruitment in individuals with normal glucose tolerance and found that age was associated with the percent increase of capillary density.
     Part Two: Study on the microcirculation dysfunction in type 2 diabetic patients and its relation with diabetic complications
     Objective: To measure microcirculation function in type 2 diabetic patients and to analyze its relation with diabetic complications.
     Methods: 367 type 2 diabetic patients in Shanghai downtown were enrolled and categorized into several groups, those with diabetic retinopathy or not, those with albuminuria or not, those with diabetic peripheral neuropathy or not, and those with carotid artery plaque or not. We examined the capillary recruitment, the randomized morning urinary albumin creatinine ratio, the digitally stored fundus images, the carotid artery intima media thickness and carotid plaque by the Doppler, and compared the percentage increase of capillary density among these groups.
     Results: The average age of diabetic patients was (66.0±10.9) years old. The average percentage increase of capillary density was (29.6±12.3) %. Age, diabetes duration, HbAlc, and systolic blood pressure were statistically associated with the percent increase of capillary density (P<0.05). The percentage increases of capillary density in those with diabetic retinopathy, albuminuria, and peripheral neuropathy were significantly decreased as compared of those of controls. There was no significant difference between patients with diabetic macrovascular complications and controls. The percentage increase of capillary density of 20-30% or<20% was an independent risk factor of diabetic retinopathy (adjusted OR: 1.013, 95%CI: 1.006-1.020; adjusted OR: 1.023, 95%CI: 1.015-1.030) and albuminuria (adjusted OR: 1.007; 95%CI: 1.003-1.011; adjusted OR: 1.015; 95%CI: 1.010-1.020). Also, the percent increase of<20% was an independent risk factor of diabetic peripheral neuropathy (adjusted OR: 5.188; 95%CI: 2.201 -12.231).
     Conclusion: The percentage increase of capillary density was an independent risk factor of diabetic retinopathy, albuminuria, and diabetic peripheral neuropathy. There was no significant relation between dysfunction of microcirculation and diabetic macrovascular complications. Measurement of capillary recruitment might help us to observe the occurrence and progression of diabetic microvascular complications.
     Part Three: Study on the changes of mesentery microcirculation in type 2 diabetic rats and the possible mechanism
     Objective: To study the dysfunction of microvessels and micro-blood-flow in mesentery microcirculation of type 2 diabetic rats.
     Methods: Thirty-three OLETF (otsuka long-evans tokushima fatty) type 2 diabetic rats and seven LETO (long-evans tokushima otsuka) non-diabetic control rats were used in the study. After general anesthesia, a video microscope with image analysis system was used to observe the mesentery microcirculation in diabetic rats and controls. The microvascular number, diameter of arterioles and venules, number of rolling and sticking leukocytes on the surface of venules endothelium, width of marginal flow and axial flow in the arterioles, and thickness of endothelium were measured. The results were analysed quantitatively with the video microscopic image analysis system. Semi-quantitative RT-PCR and Western blotting were performed to verify the differential expression of some important antioxidative enzymes.
     Results: Compared with control rats, the microvascular number in the mesentery of diabetic rats was reduced by 24.5 % (P<0.01), which was inversely correlated to blood glucose level (r=-0.44, P<0.05). The width of marginal flow in diabetic rats was decreased, and the ratio of width of marginal flow to width of arteriole reduced significantly (P<0.01). The rolling and sticking leukocyte number adhered to the endothelium in the venule was increased significantly (P<0.01). Results of RT-PCR and Western blotting showed no significantly different expression of SOD2 and catalase between OLETF and LETO rats. Meanwhile, the level of urine 8-iso-PGF2a was significantly increased in OLETF rats(P<0.05).
     Conclusions: The overt microvascular abnormality and micro-blood-flow dysfunction was shown in mesentery microcirculation of diabetic rats. Meanwhile, the level of oxidative stress in diabetic rats was increased, acting with microcirculation dysfunction to make a vacious cycle, which together might contribute to the development of diabetes and its complications. They were the pathogenetic basis of microangiopathy and various complications in diabetic rats.
引文
1. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998, 21 (9): 1414-1431.
    2.全国糖尿病研究协作组调查研究组.全国14省市30万人口中糖尿病调查报告.中华内科杂志.1981,20:678-683.
    3. Pan XR, Liu J, Yang WY, et al. Prevalence of diabetes and its risk factors in China, 1994. National Diabetes Prevention and Control Cooperative Group. Diabetes Care. 1997, 20(11 ): 1664-1669.
    4.向红丁,吴纬,刘灿群,等.1996年全国糖尿病流行病学特点基线调查报告.中国糖尿病杂志.1998,6(3):131—133。
    5. B. Lu, J. Wen, X.Y. Song, et al. High prevalence of albuminuria in population-based patients diagnosed with type 2 diabetes in the Shanghai downtown. Diabetes Res Clin Pract. 2007, 75(2): 184-192.
    6. Jonsson B, CODE-2 Advisory Board. Revealing the cost of Type Ⅱ diabetes in Europe.Diabetologia.2002, 45 (7):S5-12.
    7.唐玲,陈兴宝,陈慧云,等.中国城市2型糖尿病及其并发症的经济负担.中国卫生经济.2003,12(22):21—23.
    8. Setter SM, Campbell RK, Cahoon CJ. Biochemical pathways for microvascular complications of diabetes mellitus.Ann Pharmacother. 2003, 37(12): 1858-1866.
    9. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature.2001,414(6865): 813-820.
    10. Huiming Jin, Guoping Zhang, Xiang Cao, et al. Treatment of hypertension by Lingzhi combined with hypotensor and its effects on arterial, arteriolar and capillary pressure and microcirculation [M]. Microcirculation approach to Asian traditional medicine. Niimi H, Ru-juan X, Sawada T and Chaoqiang Z (Editors). Elsevier Science, Adamsterdam, 1996: 131-138.
    11. de Jongh RT, Seme EH, Ijgerman RG, et al. Impaired microvascular function in obesity. Implications for obesity -associated microangiopathy, hypertension and insulin resistence. Circulation, 2004,109(21):2529-2535.
    12. de Jongh RT, Seme EH, Ijgerman RG, et al. Free fatty acid levels modulate microvascular function: relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes. 2004, 53 (11):2873~2882.
    1.金惠铭,卢建,殷莲华.细胞分子病理生理学[M].郑州:郑州大学出版社,2002:110.
    2.田牛.微循环基础与临床[M].北京:人民军医出版社,1986:343.
    3. Scarpello JHB. Ultrasound measurements of pulse-wave velocity in the peripheral arteries of diabetic patients. Clin Sci Mol Med. 1980, 58(1):53-57.
    4. Archer AG. Blood flow patterns in painful diabetic neuropathy. Diabetoiogia. 1984, 27(6): 563-567.
    5. Gundersen HJG. Peripheral blood flow and metabolic control in juvenile diabetes. Diabetologia. 1974, 10(3): 225-231.
    6. Huiming Jin, Guoping Zhang, Xiang Cao, et al. Treatment of hypertension by Lingzhi combined with hypotensor and its effects on arterial, arteriolar and capillary pressure and microcirculation [M]. Microcirculation approach to Asian traditional medicine. Niimi H, Ru-juan X, Sawada T and Chaoqiang Z (Editors). Elsevier Science, Adamsterdam, 1996: 131-138.
    7. de Jongh RT, Seme EH, Ijgerman RG, et al. Impaired microvascular function in obesity. Implications for obesity-associated microangiopathy, hypertension and insulin resistence. Circulation. 2004,109(21):2529-2535.
    8. de Jongh RT, Seme EH, Ijgerman RG, et al. Free fatty acid levels modulate microvascular function: relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes. 2004, 53 (11):2873-2882.
    9.田牛.微循环方法学(增订版)[M].北京:原子能出版社,1993.
    10.陈文杰,出牛.微循环的理论和应用[M].北京:人民卫生出版社,1987.
    11.朱雅宜.下肢闭塞性动脉硬化症患者手甲襞微循环的动态观察[J].中国动脉硬化杂志,1995,3(1):66.
    12. Rayman G, Hassan A, Tooke JE. Blood flow in the skin of the foot related to posture in diabetes. BMJ. 1985, 292(6513): 87-89.
    13. Flynn MD, Edmonds ME, Tooke JE, et al. Direct measurement of capillary blood flow in the diabetic neuropathic foot. Diabetologia. 1988, 31 (9): 652-656.
    14. Jorneskog G, Brismar K, Fagrell B. Skin capillary circulation severely impaired in toes of patients with IDDM, with and without late diabetic complications. Diabetologia. 1995, 38(4): 474-480.
    15.翁维良,廖福龙,吴云鹏.血液流变学研究方法及其应用[M].北京:科学出版社,1989.
    16. Tee GB, Rasooi AH, Halim AS, et al. Dependence of human forearm skin postocclusive reactive hyperemia on occlusion time. J Pharmacol Toxicol Methods. 2004, 50(1):73-78.
    17. Yvonne-Tee GB, Rasool AH, Halim AS, et al. Reproducibility of different laser Doppler fluximetry parameters of postocclusive reactive hyperemia in human forearm skin. J Pharmacol Toxicol Methods. 2005, 52(2):286-292.
    1.金惠铭.加强微血管病发病机制的研究[J].中国微循环,2006,10(2):77—78.
    2. Huiming J in, QinhangL, Xiang C, et al. Dysfunction ofmicrovascu2 lar endothelial cells induced by necrosis factor (TNFα): cellular and molecularmechanism [J]. Clin Hemorheol & Microcire. 2000, 23:109-112.
    3. Zetter BR. The endothelial cells of large and small blood vessels.Diabetes. 1981, 30(Suppt 2): 24-28.
    4. Huiming Jin, Guoping Zhang, Xiang Cao, et al. Treatment of hypertension by Lingzhi combined with hypotensor and its effects on arterial, arteriolar and capillary pressure and microcirculation [M]. Microcirculation approach to Asian traditional medicine. Niimi H, Ru-juan X, Sawada T, Chaoqiang Z (Editors). Elsevier Science, Adamsterdam, 1996: 131-138.
    5. de Jongh RT, Seme EH, Ijgerman RG, et al. Impaired microvascular function in obesity. Implications for obesity -associated microangiopathy, hypertension and insulin resistence. Circulation. 2004, 109(21):2529-2535.
    6. de Jongh RT, Seme EH, Ijgerman RG, et al. Free fatty acid levels modulate microvascular function: relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes. 2004, 53 (11):2873-2882.
    7. Lu B, Wen J, Song XY, et al. High prevalence of albuminuria in population-based patients diagnosed with type 2 diabetes in the Shanghai downtown. Diabetes Res Clin Pract. 2007, 75(2):184-92
    8. American Diabetes Association. Standards of medical care in diabetes-2006. Diabetes Care. 2006,29(Suppl):S4-S42.
    9. H Murgatroyd, A Ellingford, A Cox, et al. Effect of mydriasis and different field strategies on digital image screening of diabetic eye disease. Br J Ophthalmol. 2004, 88(7): 920-924.
    10. PH Scanlon, C Foy, R Malhotra, et al. The influence of age, duration of diabetes, cataract, and pupil size on image quality in digital photographic retinal screening. Diabetes Care. 2005, 28(10): 2448-2453.
    11. Epidemiology of diabetes interventions and complications (EDIC) research group. Effect of intensive diabetes treatment on carotid artery wall thickness in the epidemiology of diabetes interventions and complications. Diabetes. 1999, 48(2): 383-390.
    12. Fried LP, Borhani NO, Enright P, et al. The Cardiovascular Health Study: design and rational. Ann Epidemiol. 1991, 1 (3): 263-276.
    13. D'Agostino RB, Burke G, O'Leary D, et al. Ethnic differences in carotid wall thickness: the Insulin Resistance Atherosclerosis Study. Stroke. 1996, 27(10): 1744-1749.
    14. Wei M, Gonzalez C, Haffner SM, et al. Ultrasonography assessed maximum carotid wall thickness in Mexico City residents and Mexican- Americans in San Antonio, TX: association with diabetes and cardiovascular risk factors. Atheroscler Thromb Vasc Biol. 1996, 16(11):1184-1188.
    15. Wilkinson CP, Ferris FL 3rd, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003, 110(9):1677-1682.
    16. Poli A, Tremoli E, Colombo A, et al. Ultrasonographic measurement of the common carotid artery wall thickness in hypercholesterolemic patients: A new model for the quantitation and follow-up of preclinical atherosclerosis in living human subjects. Atherosclerosis. 1988, 70(3): 253-261.
    17. O'Leary DH, Polak JF, Wolfson SK Jr, et al. Use of sonography to evaluate carotid atherosclerosis in the elderly. The Cardiovascular Health Study. CHS Collaborative Research Group. Stroke. 1991,22(9):1155-1163.
    18. Wagenknecht LE, D'Agostino RB Jr, Haffner SM, et al. Impaired glucose tolerance, type 2 diabetes, and carotid wall thickness: the Insulin Resistance Atherosclerosis Study. Diabetes Care. 1998, 21 (11): 1812-1818.
    19. Kitamura A, Iso H, Imano H, et al. Prevalence and correlates of carotid atherosclerosis among elderly Japanese men. Atherosclerosis. 2004, 172(2):353-359.
    20. Salonen R, Seppa"nen K, Rauramaa R, et al. Prevalence of carotid atherosclerosis and serum cholesterol levels in eastern Finland. Arterioscler Thromb Vasc Biol. 1988, 8(6):788-792.
    21. Goya K, Kitamura T, Inaba M, et al. Risk factors for asymptomatic atherosclerosis in Japanese type 2 diabetic patients without diabetic microvascular complications. Metabolism. 2003, 52(10):1302-1306.
    22. Young MJ, Breddy JL, Veves A, et al. The prediction of diabetic neuropathic foot ulceration using vibration perception thresholds. A prospective study. Diabetes Care. 1994, 17(6):557-560.
    23. Abbott CA, Vileikyte L, Williamson S, et al. Multicenter study of the incidence of and predictive risk factors for diabetic neuropathic foot ulceration. Diabetes Care. 1998, 21(7):1071-1075.
    24. The Diabetes Control and Complications Trial Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993, 329(14): 977-986.
    25. UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352(9131): 837-853.
    26. UK Prospective Diabetes Study (UKPDS) Group: Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998, 352(9131):854-865.
    27. UK Prospective Diabetes Study Group: Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998, 317(7160):703-713.
    28. Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy: the Collaborative Study Group. N Engl J Med. 1993, 329(20): 1456-1462.
    29. Laffel LM, McGill JB, Gans DJ. The beneficial effect ofangiotensin-converting enzyme inhibition with captopril on diabetic nephropathy in normotensive IDDM patients with microalbuminuria: North American Microalbuminuria Study Group. Am J Med. 1995, 99(5):497-504.
    30. Bakris GL, Williams M, Dworkin L, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach: National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis. 2000, 36(3):646-661.
    31. Meijer JW, Smit AJ, Lefrandt JD, et al.Back to basics in diagnosing diabetic polyneuropathy with the tuning fork ! Diabetes Care. 2005, 28(9):2201-2205.
    32. Quattrini C, Jeziorska M, Malik RA, et al. Small fiber neuropathy in diabetes: clinical consequence and assessment, lnt J Low Extrem Wounds. 2004, 3(1): 16-21.
    33. Bansal V, Kalita J, Misra UK. Diabetic neuropathy. Postgrad Med J, 2006, 82(964): 95-100.
    36. Viswanathan V, Madhavan S, Gnanasundaram S, et al. Effectiveness of different types of footwear insoles for the diabetic neuropathic foot: a follow-up study. Diabetes Care. 2004, 27(2):474-7.
    37. Colagiuri S, Cull CA, Holman RR, UKPDS Group. Are lower lasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes?: U.K. prospective diabetes study 61. Diabetes Care. 2002, 25 (8): 1410-1417.
    38. van Deursen RW, Sanchez MM, Derr JA, et al. Vibration perception threshold testing in patients with diabetic neuropathy: ceiling effects and reliability. Diabet Med. 2001, 18(6):469-75.
    39. Khoury Z, Schwartz R, Gottlieb S, et al. Relation of coronary artery disease to atherosclerotic disease in the aorta, carotid, and femoral arteries evaluated by ultrasound. Am J Cardiol. 1997, 80(11):1429-1433.
    40.李建卫,林宁.糖尿病患者颈动脉内膜中膜厚度与血管内皮功能相关性彩色多普勒超声研究[J].中国超声医学杂志,2001,17(12):940-941.
    41. Wong M, Edelstein J, Wollman J, et al. Ultrasonic-pathological comparison of the human arterial wall. Verification of intima-media thickness. Arterioscler Thromb. 1993, 13(4): 482-486.
    42. Pignoli P, Tremoli E, Poli A, et al. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 1986, 74(6): 1399-1406.
    43. Ubbink-DT, Spincemaille-GH, Reneman-RS, et al. Prediction of imminent amputation in patients with non-reconstructible leg ischemia by means of microcirculatory investigations. J Vasc Surg. 1999, 30(1):114-121.
    44.王浩然,邱鸿鑫,宁滇平.糖尿病红细胞膜钠泵K—PNP Pase活性与红细胞变形能力的关系[J].中国病理生理杂志,1993,9(6):715.
    45.沈志祥,王鸿利,支立民.糖尿病患者高凝状态的临床研究[J].中华内分泌代谢杂志,1990,6(4):206
    46.朱禧星,金惠铭,俞茂华.糖尿病人微循环改变的观察[J].中华内分泌代谢杂志,1987,3(1):19
    47. Podolsky S. Clinical diabetes modern management, Appletoncentury-croftes, New York, 1980:363.
    48.杨毅.Ⅱ型糖尿病并发视网膜病变患者甲襞微循环改变[J].眼科,1998,7(4):231-234.
    49. Stitt AW: The role of advanced glycation in the pathogenesis of diabetic retinopathy. Exp Mol Pathol. 2003, 75(1):95-108.
    50. Barile GR, Pachydaki SI, Tari SR, et al. The RAGE axis in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 2005, 46(8):2916-2924.
    51. Aiello LP: The potential role of PKC beta in diabetic retinopathy and macular edema. Surv Ophthalmol. 2002, 47(Suppl 2):S263-S269.
    52. Caldwell RB, Bartoli M, Behzadian MA, et al. Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress. Curr Drug Targets. 2005, 6(4):511-524.
    53. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005, 115(5): 1111-1119.
    54. Cotran RS, Kumar V, Collins T. Robbins Pathologic Basis of Disease. Philadelphia, Saunders, 1999.
    55. Malik RA, Tesfaye S, Thompson SD, et al. Endoneurial localization of microvascular damage in human diabetic neuropoathy. Diabetologia, 1993, 36(5):454-459.
    56. Flynn MD, Tooke JE. Diabetic neuropathy and the microcirculation. Diabetic Med. 1995, 12(4):298-301.
    57.武宝玉,袁申元,朱良湘.糖尿病神经病变与微循环的关系[J].微循环学杂志,1998,8(2):18—20.
    1. Jorneskog G, Kuhl J, Katz A, et al. Early microvascular dysfunction in healthy normal-weight males with heredity for type 2 diabetes. Diabetes Care, 2005,28(6):1495-1497.
    2. Caballero AE, Arora S, Saouaf R, et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes, 1999, 48(9): 1856-1862.
    3. Calles-Escandon J and Cipolla M. Diabetes and endothelial dysfunction: a clinical perspective. Endocrine Review. 2001 (1), 22:36-52.
    4. Huiming J in, QinhangL, Xiang C, et al. Dysfunction of microvascular endothelial cells induced by necrosis factor (TNFα): cellular and molecularmechanism. Clin Hemorheol &Microcire. 2000, 23 (2-4): 109-112.
    5. ZetterBR. The endothelial cells of large and small blood vessels. Diabetes. 1981, 30(Suppl 2): 24-28.
    6. Kawano K, Hirashima T, Mori S, et al. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes. 1992, 41(11):1422-1428.
    7. Kawano K, Hirashima T, Mori S, et al. Establishment of the OLETF rat. In: Shima K, ed. Obesity and NIDDM: Lessons From the OLETF Rat. Amsterdam: Elsevier; 1999:1-11.
    8. Schiekofer S, Galasso G, Sato K, et al. Impaired revascularization in a mouse model of type 2 diabetes is associated with dysregulation of a complex angiogenic-regulatory network. Arterioscler Thromb Vase Biol. 2005, 25(8): 1603-1609.
    9. Spontaneously diabetic rat "OLETF" as a model for NIDDM in humans. In: Shafrir E ed. Lessons From Animal Diabetes. Boston: Birkhauser Press; 1996, 6:227-238.
    10. Hirashima T, Kawano K, Mori S, et al. A diabetogenic gene (ODB-I) assigned to the X-chromosome in OLETF rats. Diabetes Res Clin Pract. 1995, 27(2):91-96.
    11. Forst T, Lubben G, Hohberg C, et al. Influence of glucose control and improvement of insulin resistance on microvascular blood flow and endothelial function in patients with diabetes mellitus type 2. Microcirculation. 2005, 12(7):543-550.
    12.姚泰.人体生理学[M].北京:人民卫生出版社,2001:1096.
    13. Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension. 2003, 42(6): 1075-1081.
    14. Woodman RJ, Piayford DA, Watts GF. Basal production of nitric oxide (NO) and non-NO vasodilators in the forearm microcirculation in Type 2 diabetes: associations with blood pressure and HDL cholesterol. Diabetes Res Clin Pract. 2006, 71 (1):59-67.
    15. Creager MA, Luscher TF, Cosentino F, et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part Ⅰ. Circulation. 2005, 108 (12):1527-1532.
    16. Inoguchi T, Sonta T, Tsubouchi H. Protein kinase c2dependent increase in reactive oxygen species (ROS) production in vascular tissue of diabetes: role of vascularNAD (P) H oxidative. JASN. 2003, 14 (8 sup 3): 227-232.
    17. KrankelN, AdamsV, Linke A, et al. Hyperglycemia reduces survival and impairs function of circulating blood2derived progenitor cells. Arterioscler Thromb Vsac Biol. 2005, 25(4): 698-703.
    18. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000, 404(6779):787-790.
    1. Midttun M, Sejrsen P, Paaske WP. Blood flow rate during orthostatic pressure changes in the pulp skin of the first toe. Eur J Vasc Endovasc Surg. 1997, 13(3): 278-284.
    2. Midttun M, Sejrsen P, Paaske WP. Peripheral blood flow rates and microvascular responses to orthostatic pressure changes in claudicants before and after revascularisation. Eur J Vasc Endovasc Surg. 1999, 17(3): 225-229.
    3. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980,288(5789):373-376.
    4. Brain SD, Grant AD. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev. 2004, 84(3):903-934.
    5. Harrison S, Geppetti P. Substance P. lnt J Biochem Cell Biol. 2001,33(6): 555-576.
    6. Fagrell B. Advances in microcirculation network evaluation: an update. Int J Microcirc Clin Exp. 1995, 15(Suppl 1):34-40.
    7. Wyss CR, Matsen FA Ⅲ, Simmons CW, et al. Transcutaneous oxygen tension measurements on limbs of diabetic and nondiabetic patients with peripheral vascular disease. Surgery. 1984, 95(3):339-346.
    8. Jorneskog G, Brismar K, Fagrell B. Skin capillary circulation severely impaired in toes of patients with IDDM, with and without late diabetic complications. Diabetologia.1995, 38(4):474-480.
    9. Steinberg HO, Chaker H, Leaming R, et al. Obesity/insulin resistance is associated with endothelial dysfunction. J Clin Invest. 1996, 97(11):2601-2610.
    10. McVeigh GE, Brennan GM, Johnston GD, et al. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992, 35(8):771-776.
    11. Caballero AE, Arora S, Saouaf R, et al. Micro and macrovascular reactivity is impaired in subjects at risk for type 2 diabetes. Diabetes. 1999, 48(9):1863-1867.
    12. Johnstone MT, Creager SJ, Scales KM, et al. Impaired endothelium-dependent vasodilation in patients with insulindependent diabetes mellitus. Circulation.1993, 88(6):2510-2516.
    13. Williams SB, Cusco JA, Roddy M, et al. Impaired nitric oxide-mediated vasodilation in patients with non-insulin dependent diabetes mellitus. J Am Coil Cardiol. 1996, 27(3):567-574.
    14. Szabo C, Zanchi A, Komjati K, et al. Poly(ADP-ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation. 2002, 206(22):2680-2686.
    15. Makita Z, Radoff S, Rayfield EJ. Advanced glycosylation end products in patients with diabetic neuropathy, N Engl J Med 1991,325(12):836-842.
    16. Cisek PL, Eze AR, Camerota AJ, et al. Microcirculatory compensation to progressive atherosclerotic disease. Ann Vasc Surg. 1997, 12(1): 49-53.
    17. Arora S, Smakowski P, Frykberg RG, et al. Differences in foot and forearm skin microcirculation in diabetic patients with and without neuropathy. Diabetes Care. 1998, 21 (8):1339-1344.
    18. Hamdy O, Abou-Elenin K, LoGerfo FW, et al. Contribution of nerve-axon reflex-related vasodilation to the total skin vasodilation in diabetic patients with and without neuropathy. Diabetes Care. 2001,24(2): 344-349.
    19. Arora S. Pomposelli F, LoGerfo FW, et al. Cutaneous microcirculation in the neuropathic diabetic foot improves significantly but not completely after successful lower extremity revascularization. J Vasc Surg. 2002, 35(3):501-505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700