用户名: 密码: 验证码:
沙冬青群落及其根瘤菌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙冬青(Ammopiptanthus mongolicus(Maxim.)Cheng f.)是西北荒漠地区珍稀濒危的常绿阔叶灌木,为国家二级保护植物。本论文系统研究了沙冬青的群落生态学、种群生态学、及沙冬青种子的发芽生物学,为将来其它的后续研究奠定了良好的背景基础;因其为豆科植物,可与根瘤菌建立共生关系,根瘤菌对其生长发育和种群恢复有重要作用;因此调查沙冬青群落中根瘤的分布,收集并分离沙冬青及其伴生豆科植物的根瘤菌菌株,研究其生理抗性。该研究对沙冬青主要研究成果如下:
     (1)综合沙冬青分布区内气候、土壤和水分等因子,选取内蒙古磴口县作为研究样地,并于样地内根据不同生境选取3个典型样点,研究了3个样点沙冬青群落的物种组成、群落结构、群落多样性等方面。在240个灌木样方和480个草本样方中共计录到灌木7科13属14种,多年生草本3科4属4种,一年生草本3科5属5种,最大的科是菊科(5种)和蒺藜科(5种),其次是豆科(3种),蓼科(2种)和禾本科(2种)居第三位。沙冬青群落植物组成成分因生境异质性而表现出很大的差异性。根据群落中植物成分和其在群落中的作用,对三个样地的沙冬青群落类型划分如下:Plot1群落属于暖温型草原化荒漠亚带;Plot2和Plot3群落属于典型荒漠亚带。沙冬青群落结构因生境异质性也表现出一定的差异性。Plot1群落3个亚层发育较好;Plot2和Plot3草本层没有发育,而且两个亚层成分单调。沙冬青的盖度、最大高度、最大幅度、平均高度和平均幅度与群落丰富度指数成负相关;而沙冬青的密度与丰富度成正相关,相关系数为0.508。用所选用的物种多样性指数(H′,D)、丰富度指数(S,R)和均匀度指数(J_(sw),J_(si),E)测度磴口县沙冬青植物群落的多样性,都反映出基本一致的趋势,其多样性顺序为:Plot1(沙冬青—刺旋花—沙葱)>Plot2(沙冬青—油蒿)>Plot3(沙冬青—旱蒿);均匀度指数则近于相反。
     (2)采用相邻格子法收集数据,对沙冬青的高度和幅度进行分级和方差分析,研究了磴口县3个沙冬青种群的大小结构和年龄结构;并用矩阵法对沙冬青种群大小结构和群落物种多样性的关系进行了分析。结果表明,不同生境条件下的沙冬青种群的大小结构有差异,在高度和幅度上分别有极显著差异(P<0.01)和显著差异(P<0.05),但都呈现中间大两头小的态势,年龄结构呈现衰退趋势;群落的物种多样性水平与沙冬青种群的平均高度和幅度成负相关,物种间的竞争主要影响了沙冬青种群的整体高度和幅度,种群内个体间的竞争主要影响了影响了沙冬青种群内个体的高度和幅度大小的差异。
     (3)对沙冬青的株高和冠幅进行分级,应用扩散系数C、负二次指数K、平均拥挤度m~*、丛生指数,、Cassie指数1/K、聚块性指数m~*/m和扩散型指数7种聚集度指标确定不同生境条件下沙冬青种群的空间分布格局类型和动态,考察沙冬青种群在不同尺度上的空间分布格局。结果表明:不同生境条件下的沙冬青种群结构有差异,但都呈现衰退趋势。不同生境的沙冬青种群空间分布格局类型和聚集强度不同,聚集强度在不同尺度上表现出基本一致的变化趋势。样地2在25和100 m~2的范围内集群分布,样地3在150 m~2范围内集群分布,样地1在7个取样面积下,均成随机分布。不同发育阶段种群的分布格局为:幼龄和老龄植株均成随机分布,中龄植株呈聚集分布。环境是沙冬青种群空间分布格局形成和发展的决定因子之一。
     (4)为确定沙冬青最佳发芽温度,在15℃、28℃和37℃下进行发芽试验。结果发现,15℃下种子发芽延迟,37℃的高温使种子发芽率降低,且部分种子失活。28℃下种子发芽迅速整齐,胚根生长旺盛。然后测定了发芽过程中可溶性糖、糖组分、以及激素含量的变化。在28℃下,可溶性糖、糖组分、激素含量变化明显;激素在发芽4小时后出现峰值;20小时后多糖含量急剧下降,而四糖、二糖葡萄糖含量急剧上升,此时间与大部分胚根突破种皮的时间相近。28℃促进激素的活化和糖的代谢,有利于种子的发芽。
     (5)综合土壤、水分条件,选定宁夏中卫沙坡头、内蒙古阿拉善左旗、内蒙古磴口县、内蒙古乌拉特后旗4个地区作为调查样区,研究了沙冬青植物群落和沙冬青根瘤的特征。沙冬青植物群落组成较为丰富;因水分、土壤类型及地形差异,不同样区内沙冬青群落成分、结构有一定变化;水分是沙冬青植物群落的决定性生态因子。沙冬青根瘤的最佳采集时间是在结果期之前,根瘤的外部形态呈现多样性,不同样区根瘤的着生部位有差异;水分是根瘤菌侵染沙冬青根系并形成根瘤的主要限制因子。沙冬青群落其他豆科植物的根瘤与沙冬青根瘤具有相似的外部形态。
     (6)分离得到根瘤菌17株,对其耐盐性、耐酸碱性、生长温度范围和抗生素抗性进行了研究。结果表明,64.7%的菌株可以在含3%NaCl的YMA培养基上生长;94.1%的菌株可以在pH5~11的范围内生长;全部菌株在60℃处理10min后仍能生长;不同菌株对不同抗生素表现出不同的抗性,Zw_4和Wh_4~1对各抗生素表现出较强的抗性。分离自磴口县的根瘤菌普遍表现出较强的抗酸碱和抗高温的能力,这是对其环境的适应。
     以Medicago truncatula为材料,鉴定出共生受体下游潜在的信号蛋白RopGEF,见附录。
Ammopiptanthus mongolieus(Maxim.) Cheng f.is an endangered species of evergreen broad-leaf plant in northwest desert zone of China.In this work,community ecology,population ecology,and germination biology of A.mongolicus were studied,providing good background and basic knowledge for the research in this plant in the future.As a legume specieses,A.mongolicus can construct a symbiotic relationship with rhizobium,which is helpful to its development and population recovering.With above novel information,the distribution of nodules in A.mongolicus was analyzed.Subsequently,we studied the resistance of rhizobium isolated from A.mongolicus. The main experimental results are as following:
     (1) According to soil,water and other ecological factors,Dengkou was defined as research regions,where 3 research plots were selected according different habitats.Plot1 was on the bank of Yellow River,Plot2 was the old route of Yellow River,and Plot3 was on the east of Wulanbuhe Desert.Floristic composition,community structure and species diversity of A.mongolicus communities were studied in the research plots.There were 7 families,13 genera and 14 species shrubs,3 families,4 genera and 4 species perennial herbs,3 families,5 genera and 5 species annual herbs.The biggest families were Compositae(5 species) and Zygophyllaceae(5 species).The second families was Leguminosae(3 species),and the third families were Gramineae(2 species) and Polygonaceae(2 species).The floristic composition of A:mongolicus communities was different under different environmental conditions.According to the floristic composition and their function in the communities,the types of the 3 A.mongolicus communities were defined.The community of Plot1(A.mongolicus—Convolvulus tragacanthoides—Allium mongolicum) was belonged to warm-temperate steppe desert.The communities of Plot2(A. mongolicus—Artemisia ordosica) and of Plot3(A.mongolicus—Artemisia xerophytica) were belonged to typical desert.The community structure of the 3 A.mongolicus communities was also of dissimilitude under different environmental conditions.3 layers of Plot1 community developed well,but Plot2 and Plot3 communities hadn't herb layer,and floristic composition of their only 2 layers was very exiguous.The coverage(C),maximal height(Hmax),maximal width(Wmax), mean height(MH),and mean width(MW) of A.mongolicus were negatively correlated to richness index(S),while the destiny(D) positively correlated to S,and the coefficient of correlation was 0.508.Plant community diversity of A.mongolicus was estimated by species diversity index(H′, D),richness index(S,R) and evenness index(J_(sw),J_(st),E),which represented accordant trend.The order of diversity was Plot1>Plot2>Plot3,while the result of evenness was opposite.
     (2) The population structure of A.mongolicus in Dengkou,Inner Mongolia was studied. According to the date which was obtained by contiguous grid quadrate method,the height and width of A.mongolicus were classified and analyzed by ANOVA method.The relation of population structure of A.mongolicus and species diversity of A.mongolicus community was analyzed with correlation matrix.The result indicated that the population structure of A. mongolicus was different under different environmental conditions.The mean individual height of different population were significantly different(P<0.01),while the mean width were markedly different(P<0.05).The age structure of the 3 A.mongolicus populations presented senescent type. The mean height(MH) and mean width(MW) of A.mongolicus population were negatively correlated to richness index(S) of A.mongolicus community and their coefficient of correlation were -0.994 and -1 in turn.The competition among species influenced the unitary population height and width,while the competition among individuals of A.mongolicus population influenced the height and width of individuals in the same population.
     (3) According to the data,the height and width of A.mongolicus were classified.The results indicated that the population structures of A.mongolicus were different in diferent environmental conditions.The age structures of three A.mongolicus populations showed the decline trend.The spatial distribution patterns and pattern dynamics of A.mongolicus populations were studied by applying seven aggregate indices(C,K,m~*,I,1/K,m~*/m and I_δ)in different environmental conditions.And the spatial distribution pattern with diferent quadrat scale was examined.The results indicated that the spatial distribution pattern and aggregation intensity were different in diferent environmental conditions,while the tendency of pattern aggregation was generally paralle1.The figure of pattern scale and pattern intensity showed that plot 2 clumped in 25 and 100 m~2,and plot 3 clumped in 150 m~2,while plot 1 performed the pattern of random distribution in all quadrat scale.With the population age increased,the distribution pattern had a trend from random to clustering and finally to random.The young and old individuals performed the pattern of random distribution,while the individuals of middle age stage clumped.The environmental factors principally influenced the formation and development of the spatial distribution pattern of A.mongolicuus populations.
     (4) In order to ascertain optimal temperature for germination,seeds were germinated under 15℃、28℃、37℃.It was found that seeds growed slowly under 15℃,while the temperature of 37℃had a detrimental effect on seedling growth,some seeds were less likely to survive in the germination test.Seeds could bourgeond quickly with strong radicel at 28℃.Subsequently the change of saccharide and hormone were tested duing seed germination.Saccharide and hormone changed intensively under 28℃.The level of disaccharide、tetrasaccharide and glucose in seeds increased intensively at 20h,while the peak value of IAA and cytokinin appeared at 4h.28℃is the best temperature for seed germination of A.mongolicus.
     (5) According to soil,water and other ecological factors,we defined Shapotou,Alashan, Dengkou and Wulatehouqi as our research regions where we studied characters of A.mongolicus plant communities and nodules.The plant community was rich.The components and structure were different in different research regions because of the diversity of ecological factors.Water is the decisive ecological factor which influenced the components and structure of A.mongolicus. plant communities.Nodules morphology of A.mongolicus was various.The best time to collect nodules should be before fruit stage of its host.Nodules were in different root parts in different research regions.Water was the primary ecological factor which influenced the infection of rhizobia and the generation of nodules.Nodules isolated from other legumes had similar morphology with nodules of A.mongolicus.
     (6) Seventeen rhizobia strains were isolated from A.mongolicus.It was found that nodules were various in their attachment mode,size,shape and color,which were related to the differences of their eco-environment.And water may be the principal influencing factor.Several biochemical characteristics were detected,including resistance to salt,acid-alkali,temperature variation and intrinsic antibiotics.The results indicated that 64.7%strains could tolerate NaCl stress at 3% concentration,94.1%strains could grow during pH 5-11,and all strains could grow after disposed at 60℃C for 10 min.Differences in resistance to different intrinsic antibiotics existed among strains, ZW_4 and Wh_4~1 had high resistance to different intrinsic antibiotics.Rhizobia strains from Dengkou had higher resistance to acid-alkali and temperature,which was the adaptation of rhizobia to its environment
     Identify the potential signaling proteins in downstram of symbiotic receptors from legume model system Medicago truncatula(Appendix).
引文
1.白永飞,许志信,李德新.内蒙古高原针茅草原群落土壤水分和碳、氮分布的小尺度空间异质性.生态学报,2002,22(8):1215-1223
    2.曹景勤.影响三叶草根瘤菌生存条件的研究和分析.微生物学通报,1994,21(4):199-201..
    3.蔡飞,宋永昌.武夷山木荷种群机构和动态的研究.植物生态学报,1997,21(2):138-148
    4.陈吉泉.景观生态学的基本原理及其在生态系统经营中的应用.现代生态学讲座,北京:科学出版社,1995,108-128
    5.陈劲松,苏智先.缙云山马尾松种群生物量生殖配置研究.植物生态学报,2001,25(6):704-708
    6.陈灵芝.对生物多样性研究的几个观点.生物多样性,1999,7(4):308-31
    7.陈文新,汪恩涛,陈文峰.根瘤菌—豆科植物共生多样性与地理环境的关系.中国农业科学,2004,37(1):81-86
    8.陈曦,卢存福,蒋湘宁等.植物抗冻蛋白及其基因工程研究的新进展.北京林业大学学报,2002,24(3):94-98.
    9.党承林.生态系统的冗余与营养结构模型.生态学杂志,1997,16(4):39-46
    10.党承林.植物群落的冗余结构一对生态系统稳定性的一种解释.生态学报,1998a,18(6):665-672
    11.党承林.也谈作物的冗余.生态学杂志,1998b,17(4):70-74
    12.党承林.生态系统的能量冗余与热力学第二定律.生态学杂志,1999,18(1):53-58
    13.丁琼.共生菌在濒危植物沙冬青引种栽培中应用研究.硕士论文,北京:北京林业大学
    14.丁晓莉.沙冬青组织培养的初步研究.干旱区研究,1998,15(4):44-54
    15.费云标,孙龙华,黄涛等.沙冬青高活性抗冻蛋白的分离与鉴别.植物学报,1994,36(8):649-650.
    16.冯金朝,周宜君,周海燕等.沙冬青对土壤水分变化的生理响应.中国沙漠,2001,21(3),223-226
    17.冯显逵,宋玉霞.沙冬青的核型分析.宁夏农林科技,1988,3:29
    18.傅华,陈亚明,王彦荣等.阿拉善主要草地类型土壤有机碳特征及其影响因素.生态学报,2004,24(3):469-476
    19.高丽锋.毛乌素沙地中间锦鸡儿根瘤菌遗传多样性对柠条生态系统功能的影响[学位沦为].北京:中科院植物所,2001
    20.关桂兰等.新疆干旱地区固氮生物资源.北京:科学出版社,1991a,5-28
    21.关桂兰等.新疆干早地区根瘤菌资源研究I根瘤菌种类及其共生固氮作用.微生物学报,1991b,31(5):396-404
    22.关桂兰,李仲元,王卫卫等.新疆干旱区豆科植物结瘤的固氮特性.植物生理学报,1986,12(4):324-332
    23.郭华,王孝安,肖娅萍.秦岭太白红杉种群空间分布格局动态及分形特征研究.应用生态学报,2005,16(2):227-232
    24.郭勤峰.物种多样性研究的现状及趋势现代生态学讲座,北京:科学出版社,1995,89-117
    25.韩素芬,陈景荣,谢文娟.豆科树种根瘤凶与四种豆科植物的接种试验.林业科学研究,1996,6:610-615
    26.侯平,尹林克.沙冬青生物草研究.干旱区研究,1994,11(1):16-22
    27.侯向阳,韩进轩.长白山红松林主要树种空间格局的模拟分析.值物生态学报,1997,21(3):242-249
    28.胡志昂,王洪新.研究遗传多样性的基本原理和方法生物多样性研究的原理利方法.北京:中国科学技术出版社,1994,117-12
    29.黄建辉.生态系统内的物种多样性对稳定性的影响生物多样性研究的原理和方法.北京:中国科学技术出版社,1994,178-191
    30.黄银晓,林舜华,孔令韶等.内蒙阿拉善地区植物与土壤元素背景值特征及其相互关系.应用与环境生物学报,1996,2(4):329-339
    31.江洪.云杉种群生态学.北京:中国林业出版,1992.
    32.刘果厚.阿拉善荒漠特有植物沙冬青濒危原冈的研究.植物研究,1998,18(3):341-345
    33.刘家琼,邱明新,杨堃等.沙冬青植物群落研究[J].中国沙漠,1995,15(2):109-115.
    34.李博.普通生态学.呼和浩特:内蒙古大学出版社,1993,92-112
    35.李海涛.植物种群分布格局研究概况.植物学通报,1995,12(2):19-26
    36.李慧卿,马文元,李慧勇.沙冬青抗逆性及开发利用前景分析研究.世界林业研究,2000,13(5):67-71
    37.李文瑞,冯金朝,江天然等.沙冬青几种光合特性的季节性变化的研究.植物学报,1999,41(2):190-193
    38.李先琨,黄玉清,苏宗明.元宝山南方红豆杉种群分布格局及动态.应用生态学报,2000,11(2):169-172
    39.李永宏.草原生态系统持续管理原则生物多样性与生产力的维持.现代生态学讲座,北京:科学出版社,1995,79-88
    40.李智佩,张维吉,王岷等.中国北方东部沙质荒漠化的地学观.西北地质,2002,3:7-22
    41.林稚兰,黄秀梨.现代微生物学与实验技术.北京:科学出版社,2000
    42.刘果厚.阿拉善荒漠特有植物沙冬青濒危原冈的研究.植物研究,1998,18(3):341-345
    43.刘家琼,丘明新.我国荒漠特有常绿植物—沙冬青的生态生理及解剖学特征.植物学报,1982,24(6):568-574
    44.刘家琼,邱明新,杨垄等.沙冬青植物群落研究.中国沙漠,1995,15(2):109-115
    45.刘瑛心.我国荒漠植物区系形成的探讨.植物分类学报,1982,20(2):131-141
    46.刘永生,王俊年.早生常绿灌小沙冬青引种实验报告.甘肃林业科技,1988,3:27-29
    47.马克明,祖元刚.兴安落叶松种群格局的分形特征记盒维数[1].植物研究,2000,20(1):104-111
    48.马克平,黄建辉,于顺利等.北京东灵山地区植物群落多样性的研究.生态学报,1995,15(3):268-277
    49.马克平,钱迎倩,王晨.生物多样性研究的现状与发展趋势生物多样性研究的原理和方 法.北京:中国科学技术出版社,1994,1-12
    50.马克平.生物群落多样性的测度方法生物多样性研究的原理和方法.北京:中国科学技术出版社,1994,141-165
    51.麦秀兰.沙冬青的引种育苗试验.宁夏农林科技,1988,3:27-28
    52.潘伯荣,黄少甫.沙冬青属的细胞学研究.植物学报,1993,35:314-317
    53.宋朝枢,贾昆峰.乌拉特梭梭林自然保护区科学考察集.北京:中国林业出版社,2000
    54.宋萍,洪伟,吴承祯等.珍稀濒危植物桫椤种群结构与动态研究.应用生态学报,2005,16(3):413-418
    55.苏智先,钟章成.缙云山慈竹种群生物量结构研究.植物生态学与地植物学学报,1991,15(3):240-251
    56.孙祥,于卓.沙冬青根系的研究.干旱区研究,1994,11(1):53-56
    57.王伯荪,李鸣光,彭少麟.植物种群学.广州,广东高等教育出版社,1995
    58.王刚,张大勇.生物竞争理论.西安:陕西科学技术出版社,1996,138-14
    59.王华.沙冬青共生菌种筛选及结瘤影响因素的研究.北京林业大学,博士论文,2008
    60.王继林,郭志中,于红波等.濒危灌木沙冬青育苗方式对比试验.中国沙漠,2000,20(3):320-322
    61.王静,马玉珍,史清亮等.山西根瘤菌资源多样性与特异性研究.应用与环境生物学报,5,79-84
    62.王庆锁,李勇,张灵芝.珍稀濒危植物沙冬青研究概况.生物多样性,1995,3(3):153-156
    63.王巍,刘灿然,马克平,等.东灵山两个落叶阔叶林中辽东栎种群结构和动态.植物学报,1999,41(4):425-432
    64.王卫卫,胡正海.几种生态因素对西北干旱地区豆科植物结瘤固氮的影响.西北植物学报,2003,23(7):1163-1168
    65.王跃,李森,王建华等.青藏高原的上升及其对中国荒漠形成和演变的影响.干旱区研究,1996,13(2):20-24
    66.吴征镒.中国植被.北京:科学出版社,1980,583-611
    67.谢宗强,陈伟烈,刘正宇,等.银杉种群的空间分布格局.植物学报,1999,41(1):95-101
    68.许国英,潘伯荣,谢明玲.沙冬青生物碱成分研究.干旱区研究,1994,11(1):50-52
    69.许国英.沙冬青中化学成分研究.干旱区研究,1997,14(3):69-713
    70.杨江克,周琴,周俊初.应用生态学报,应用生态学报,2001,12:639-640
    71.尹林克,王烨.沙冬青开花期生物学特性的初步研究.新疆林业科技,1:19-22
    72.殷淑燕,刘玉成.大头茶构件种群生物量及叶面积动态.植物生态学报,1997,21(1):83-89
    73.尤崇杓,宋鸿遇,姜涌明.生物固氮.北京:科学出版社,1987,184-195
    74.蔚秋实,王继和,李昌龙等.不同生境条件下沙冬青种群分布格局与特征的初步研究.植物生态学报,2005,29(4),591-598
    75.张金屯.植物种群空间分布的点格局分析.植物生态学报,1998,22(4):344-349
    76.张金屯,孟东平.芦芽山华北落叶松林不同龄级立木的点格局分析.生态学报,2004,24(1):35-40
    77.张金屯.数量生态学.北京:科学出版社,2004,243-266
    78.张庆费,陈小勇,吴化前,宋永昌.安徽黄山甜槠种群的结构与分布格局.植物资源与环境,1997,6(4):35-39
    79.张涛.沙冬青生理结构特征的研究.林业科学,1988,24(4):508-509
    80.张文辉.裂叶沙参的种群生态学研究.哈尔滨:东北林业大学,1998
    81.张文辉,祖元刚,刘国彬.十种濒危植物的种群生态学特征及致危因素分析.生态学报,2002,22(9):1512-1520
    82.张文辉,王延平,康永祥等.太白红杉种群结构与环境的关系.生态学报,2004,24(1):41-47
    83.张新时.天山北部山地—绿洲—过渡带—荒漠系统的生态建设与可持续农业范式.植物学报,2001,43(12):1294-1299
    84.赵士洞.生物多样性科学的内涵及基本问题一介绍“Diversitas”的实施计划.生物多样性,1997,5(1):1-4
    85.赵志模,郭依泉.群落生态学原理与方法.重庆科学技术出版社重庆分社,1990,170-172
    86.郑元润.不同方法在沙地云杉种群分布格局分析中的适用性研究.植物生态学报,1997,21(5):480-484
    87.中国科学院内蒙古宁夏综合考察队编.内蒙古植被.北京:科学出版社,1985
    88.中国植物志编辑委员会.中国植物忐[M].北京:科学出版社,1997
    89.周易君,刘春兰,冯金朝.沙冬青抗旱、抗寒机理的研究进展.中国沙漠,200l,21(3):312-316
    90.祝宁,臧润国.剌五加种群生态学的研究Ⅰ.刺五加的种群结构.应用生态学报,1993,4(2):113-119
    91.Abrams P.Monotonic or unimodal diversity-productivity gradients:what does competition theory predict? Ecology,1995,76(7):2019-2027
    92.Abramsky Z,Rosenzweig M.Tilman's predicted productivity-diversity relationship shown by desert rodents.Nature,1984,309:150-151
    93.Alatalo R V.Problems in the measurement of evenness in ecology.Oikos,1981,37:199-204.
    94.Allen O N,Allen E K.The Leguminosae,a source book of characteristics,uses and nodulation.Madison:The Univ.of Wisconsin Press.1981:707-727
    95.AL-Mufti M M,Sydes C L,Fumess S B,et al.A quantitative analysis of shoot phenology and dominance in herbaceous vegetation.Journal of Ecology,1977,65:759-79
    96.Anderson D J.Studies on structure in plant communities V.Pattern in Atriplex vesicaris communities in south-eastern Australia.Australian Journal of Botany,1967,15:451-458
    97.Anderson D J.Pattern in desert perennials.Journal of Ecology,1971,59:555-560
    98.Ané JM,Kiss G B,Riely B K,et al.Medicago truncatula DMH required for bacterial and fungal symbioses in legumes.Science,2004,303:1364-1367
    99.Ardourel M,Demont N,Debellé F,et al.Rhizobium meliloti lipooligosaccharide nodulation factors:Different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses.Plant Cell,1994,6:1357-1374
    100.Arrighi J F,Barre A,Ben Amor B,et al.The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodules-expressed genes.Plant Physiol.,2006,142:265-279
    101.Barea J M.Mycorrhizas and their significance in nodulation nitrogen-fixing plants.Adv.Agron.,1983,36:1-54
    102. Barnet Y M. The effect of rhizobiophages on populations of Rhizobium trifolii in the root zone of clover plants. Can. J. Microbiol, 1980, 26: 572-576
    
    103. Basu D, Le J, Zakharova T, et al A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes. Proc Natl Acad Sci USA, 2008, 105: 4044-4049
    104. Ben Amor B, Shaw S L, Oldroyd G E D, Maillet F, Penmetsa R V, Cook D, et al. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J, 2003, 34: 495-506
    105. Beals E W. Spatial pattern of shrubs on a desert plain in Ethiopia. Ecology, 1968, 49: 744-746
    106. Berken, A., Thomas, C, and Wittinghofer, A. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature, 2005, 436, 1176-1180
    107. Blundon D J, D A MacIsaac, M R T Dale. Nucleation during primary succession in the Canadian Rockies. Canadian Journal of Botany, 1993, 71: 1093-1096
    108. Bohnert H J, et al. Adaptation to Environmental stresses. Plant cell, 1995, 7:1099-1111
    109. Borcard D, Legendre P, Drapeau P. 1992. Partialling out the spatial component of ecological variation. Ecology, 73, 1045-1055
    110. Bottomley D J. Ecology of Bradyrhizobium and Rhizobium in biological nitrogen fixation. edited by G. starey et al. New York ,Chapman and Hall, 1992
    111. Brown A H D, D R Marshall. Evolutionary changes accompanying colonization in plants. In G. G Scudder, and J. L. [eds.], Reveal Evolution Today: Proc. 2nd Int. Congr. Syst.Evol. Biol., 351-363. Hunt Inst, Carnegie-Mellon University, Pittsburgh Pa. 1981
    112. Brown A H D, J J Burdon, A M Jarosz. Isozyme analysis of plant mating systems. In D. E. Soltis, and P. S. Soltis [eds.], Isozymes in plant biology. Dioscorides Press, Portland. 1989. 73-86
    113. Brown J H, Davidson D W. Competition between seed-eating rodents and ants in desert ecosystems. Science, 1977, 196:880-882
    114. Buchanan B B, Gruissem W, Jones R L. Biochemitry & Molecular Biology of Plants.Stevenson: American Socioty of Plant Physiogists, 2000
    115. Cale W G, G M Henebry, J A Yeakley. Inferring process from pattern in natural communities. BioScience, 1989, 39: 600-605
    116. Cardenas L, Martinez A, Sanchez F, Quinto C. Fast, transient and specific intracellular ROS changes in living root hair cells responding ot Nod factors (NFs). Plant Journal, 2008, 56: 802-813
    117. Carroll B J, McNeil D L, and Gresshoff P M. Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA, 1985, 82: 4162-4166
    118. Catoira R, Galera C, de Billy F, et al. Four genes of Medicago truncatula controlling components of aNod factor signal transduction pathway. Plant Cell, 2000, 12: 1647-1666
    119. Charron D, Pingret J, Chabaud M, et al. Pharmacological evidence that multiple phospholipid signaling pathways link rhizobium nodulation factor perception in Medicago truncatula root hairs to intracellular responses, indicating Ca~(2+) spiking and specific ENOD gene expression. Plant Physiol, 2004, 136: 3582-3593
    120. Chen W X, Li G S, Qi Y L. Rhizobium huakuii nov. isolated from the root nodules of Astragalus sinisus. Int. J. Syst. Bacteriol, 1991,41: 275-280
    121.Cline G R, Kaul K. Inhibitory effects of acidified soil on the soybean/Bradyrhizoibium symbiosis. Plant and Soil, 1990, 127(2): 10746-10753
    122. Cock J M, Vanoostuyse V, and Gaude T. Receptor kinase signaling in plant and animals; distinct molecular systems with mechanistic similarities. Curr. Opin. Plant Biol., 2002, 14: 230-236
    123. Complainville A, Brocard L, Roberts I, et al. Nodule initiation involves the creation of a new symplasmic field in specific root cells of Medicago species. Plant Cell, 2003, 15: 2778-2791
    124. Condit R, Ashton P S, Barker P, et al. Spatial patterns in the distribution of tropical tree species. Science, 2000, 288: 1414-1418
    125. Cook, D. Medicago truncatula—A model in the making! Curr Opin Plant Biol, 1999, 2: 301-304
    126. Cooper C F. The ecology of fire. Scientific American, 2001, 204: 150-160
    127. Crawley M J. The structure of plant communities. In M. J. Crawley [eds.], Plant Ecology. Blackwell Scientific Publications, London, UK. 1986. 1-50
    128. Cturie D J. Energy and large-scale patterns of animal- and plant-species richness. American Naturalist, 1991, 137:27-39
    129. Dale M R T, D A MacIsaac. New methods for the analysis of spatial pattern in vegetation. Journal of Ecology, 1989, 77: 78-91
    130. Dale M R T. Spatial Pattern Analysis in Plant Ecology. Cambridge University Press, UK. 1999
    131. Dandekar A M, et al. A Single base pair change in prolinebiosynthesis genes causes osmotic stress tolerance. J. Bacteriol., 1988, 17:5943-5945.
    132. Day T A, R G Wright. Positive plant spatial association with Erigonum ovalifolium in primary succession on cinder cones: seed-trapping nurse plants. Vegetatio, 1989, 80: 37-45
    133. De Koninck P, Schulman H. Sensitively of CaM kinase II to the frequency of Ca~(2+) oscillations. Science, 1998, 279: 227-230
    134. Ding H J, Kuo S R, Lee Y C. Studies on the nitrogen-fixation efficiency of Casuarina (11). Factors affecting the formation and nitrogen-fixation efficiency of nodules. Quarterly Journal of Chinese Forestry, 1987,20: 29-51
    135. Dowling D N, et al. Competition for nodulation of legumes. Auu. Rev. Microbiol, 1986, 40:131-157
    136. Ehrlich P R, Wilson E O. Biodiversity Studies: Science and Policy. Science, 1991,253: 758-762
    137. Endre G, Kereszt A, Kevei Z, et al. A receptor kinase gene regulating symbiotic nodule development. Nature, 2002,417: 962-966
    138. Esseling J J, Lhuissier F G P, and Emons A M C. A nonsymbiotic root hair tip growth phenotype in NORK-mutated legumes: implications for nodulation factor-induced signaling and formation of a multifaceted root hair pocket for bacteria. Plant Cell, 2004, 16: 933-944
    139. Fester T, Strack D, and Hause B. Reorganization of tobacco root plastids during arbuscule development. Planta, 2001, 213: 864-868
    140. Francisco P B, and Harper J E. Translocatable leaf signal autoregulates soybean nodulation. Plant Sci, 1995, 107: 167-176
    141.Galiano E F. The small-scale pattern of Cynodon dactylon in Mediterranean pastures. Vegetatio, 1985,63: 121-127
    142. Gardner M R, Ashby W R. Connections of large dynamic (cybernetic) systems: critical values for stability. Nature, 1970, 228:784
    143.Gemell L G, Roughley R J. Field evaluation in acid soils of strains of Rhizobium leguminosarum by.Tdfolit selected for their tolerance or sensitivity to acid soil factors in agar medium.Soil Biology and Biochemistry,1993,25(10):1447-1452
    144.Geurts R,Heidstra R,Hadri A E,et al.Sym2 of pea is involved in a nodulation factor-perception mechanism that controls the infection process in the epidermis.Plant Physiol,1997,115:351-359
    145.Glaser P H,G A Wheeler,E Gorham,H E Wright.The patterned mires of Red Lake peatland,northern Minesota:Vegetation,water chemistry,and landforms.Journal of Ecology,1981,69:575-599
    146.Gignac L D and D H Vitt.Habitat limitations of Sphagnum along climatic,chemical and physical gradients.The Bryologist,1990,93:7-22
    147.Glenn A R,Dilworth M J.The life of root nodule bacteria in the acidic underground.FEMS Microbiology Letters,1994,123:6-9
    148.Goldberg D E,Miler T E.Effects of different resource additions on species diversity in an annual plant community.Ecology,1990,71(1):213-235
    149.Goldberg B E,Estabrook GF.Separating the effects of number of individuals 130 sampled and competition on species diversity:an experimental and analytic approach.Journal of Ecology,1998,86:983-98
    150.Gregan P B,Keyser H H.Soybean genotype restricting nodulation of a previously unrestricted serocluster 123 Bradyrhizobiua.Crop Sci.,1989,29:307-312
    151.Greig-Smith P.Data on pattern within plant communities.Ⅰ.The analysis of pattern.Journal of Ecology,1961,49:695-702
    152.Greig-Smith P,M J Chadwick.Data on pattern within plant communities.Ⅲ.Acacia-Capparis semi-desert scrub in the Sudan.Journal of Ecology,1965,53:465-474
    153.Greig-Smith P.Pattern in vegetation.Journal of Ecology,1979,67:755-779
    154.Greig-Smith P.Quantitative plant ecology[M].Oxford:Blackwell,1983,68-97
    155.Grime J P.Competitive exclusion in herbaceous vegetation.Nature,1973,242:344-347
    156.Grime J P.Control of species density in herbaceous vegetation.Journal of Environmental Management,1973,2:151-167
    157.Grime J P.Benefits of plant diversity to ecosystems:immediate,filter and founder effects.Journal of Ecology,1998,86:902-910
    158.Grime J P.Biodiversity and ecosystem function:the debate deepens[J].Science,1997,277:1260-1261
    159.Gu Y,Li S,Lord E M,Yang Z..Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth.Plant Cell 2006,18:366-81
    160.Hairston N G,Allan J D,Colwell R K,et al.The relationship between species diversity and stability:an experimental approach with protozoa and bacteria.Ecology,1968,49:1091-1101
    161.Hamrick J L.Gene flow,distribution of genetic variation in plant population.In K.Urbanska [eds.],Differentiation Patterns in Higher Plants.Academic Press,New York,USA.1987,53-67
    162.Hamrick J L,M J W Godt.Allozyme diversity in plant species.In A.H.D.Brown,M.T.Clegg,A.L.Kahler.[eds.],Plant population genetics,breeding and genetic resources.Sunderland,Mass:Sinauer.1989.43-63
    163.Hamrick J L,M D Loveless.The genetic structure of tropical tree populations:associations with reproductive biology.In J.H.Bock,and Y.B.Linhart[eds.],The Evolutionary Ecology of Plants. Westview Press, Boulder, Colorado, USA. 1989. 139-146
    164. Hamrick J L, M J W Godt. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London B, 1996, 351: 1291-1298
    
    165. Hamrick J L, M J W Godt, S L Sherman-Broyles. Factors influencing levels of genetic diversity in woody plant species. New Forests, 1992, 6: 95-124
    
    166. Hamrick J L, D A Murawski, J D Nason. The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetatio, 1993, 107/108: 281-297
    
    167. Handel S N. The intrusion of clonal growth patterns on plant breeding systems. American Naturalist, 1985, 125: 367-384
    168. Hanks S K, and Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily; kinase (catalytic) domain structure and classification. FASEB, 1995, 9: 576-596.
    169. Hastings A. The invasion question. Journal of Theoretical Biology, 1986, 121: 211 -220
    170. Hastings A. Food web theory and stability. Ecology, 1988, 69:1665-166
    171. Heidstra R, Geurts R, Franssen H ,et al. Root hair deformation activity of nodulation factors and their fate on Hcia saliva. Plant Physiology, 1994,105:787-79
    172. Heidstra R, Yang W C, Yalcin Y, et al. Ethylene provides positonal information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development, 1997, 124: 1781-1787
    173. Imaizumi-Anraku H, Takeda N, Charpentier M, et al. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature, 2005, 433: 527-531
    174. Jones M A, Shen J J, Fu Y, Li H, Yang Z, Grierson C S. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. The Plant Cell, 2002, 14: 763-776
    175. Kalo P, Gleason C, Edwards A, et al. Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptionl regulators. Science, 2005, 308: 1786-1789
    176. Kanzadi M. Regeneration in subalpine coniferous forest. I . Mosaic structure and plant processes in a Tsuga diversifolia forest. The Botanical Magazine, 1984, 97: 297-311
    177. Kershaw K A. An investigation of the structure of a grassland community. II. The pattern of Dactylis glomerata, Lolium perenne, and Trifolium repens. Journal of Ecology, 1959a, 47: 31-43
    178. Kershaw K. A. An investigation of the structure of a grassland community. III. Discussion and conclusions. Journal of Ecology, 1959b, 47: 4-53
    179. Kershaw KA. Quantitative and Dynamic Ecology. Edward Arnold, London, UK. 1964
    180. Kenkel N C. Pattern of self-thinning in jack pine: testing the random mortality hypothesis. Ecology, 1988,69: 1017-1024
    181. King T J, S R J Woodell. The causes of regular pattern in desert perennials. Journal of Ecology, 1973,61:761-765
    182. Kiss G B, EvaMZoltan V, Gabor T. Identification and cDNA cloning of a new nodule-specific gene,Nms-25(nodulin-25) of Medicago sativa. 1990, 14: 467-475
    183. Kistner C, Parniske M. Evolution of signal trunsduction in intracellular symbiosis. Trends Plant Sci, 2002, 7:511-518
    184. Kistner C, Winzer T, Pitzschke A, et al. Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 2005, 17:2217-2229
    185. Kosuta S, Chabaud M, Lougnon G, et al. A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENODll expression in roots of Medicago truncatula. Plant Physiol, 2003, 131: 952-962
    186. Krebs C. Ecology: the experimental analysis of distribution and abundance [M]. New York: Harper & Row Publisher, 1978.
    187. Krusell L, Madsen L H, Sato S, et al. Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature, 2002,420: 422-426
    188. Kucey R M N,et al. Carbons flow, photosythesis and fixation in mycorrhizal and nodulated faba beansvicia nitrogen faba. Soil Biol. Biochem, 1982, 14: 407-412.
    189. Kvalseth T O. Note on biological diversity, evenness, and homogeneity measures. Oikos, 1991,62(1): 123-127
    190. Laguerre G, Allard M R, Revoy F, et al. Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR amplified 16S rRNA gene. Appl Environ Microbiol, 1994, 60(1): 56-63
    191. Lawton J H, Brown V K. Redundancy in ecosystems. In Schulze E D and Mooney H A, editors. Biodiversity and ecosystem function. Ecological Studies Analysis and Synthesis, 1993,99:255-270
    192. Legendre P, Fortin M J. 1989. Spatial pattern and ecological analysis. Vegetatio, 80: 107-138.
    193. Leps, J. Can underlying mechanisms be deduced from observed pattern? In F. Krahulec, A. D. Q. Agnew, S. Agnew, and J. H. Willem [eds.], Spatial Processes in Plant Communities. Academia Press, Prague. 1990, 1-11
    194. Levin D A, H W Kerater. Neighborhood structure in plants under diverse reproductive methods. American Naturalist, 1971, 105:345-354
    195. Levin D A. The seed bank as a source of genetic novelty in plant. American Naturalist, 1990, 135:563-572
    196. Levy J, Bres C, Geurts R, Chalhoub B, et al. A putative Ca~(2+) and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science, 2004, 303: 1361-1364
    197. Lewin A, Rosenberg C, Meyer Z A H. Cloning and characterization of hydrogen uptake gene from Rhizobium leguminosarum. J. Bacteriol. 1987, 169: 4929-4934
    198. Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science, 2003, 302: 630-633
    199. Linhart Y B. Restoration, revegetation, and the importance of genetic and evolutionary perspectives. In B. A. Roundy, E. D. McArthur, J. S. Haley, and D. K. Mann [eds.], Proceedings of the Wildland Shrub and Arid Land Restoration Symposium, 19-21 October 1993, Las Vegas, Nevada. General technical report INT-GTR-315. U.S. Forest Service, Ogden, Utah, USA. 1995. 271-287.
    200. Madsen E B, Madsen L H, Radutoiu S, Oibryt M, Rakwalska M, Szcyglowski K, et al. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature, 2003, 425: 637-640
    201.Mahdi A, R Law. On the spatial organization of plant species in a limestone grassland community. Journal of Ecology, 1987, 75: 459-476
    202. Magurran A E. Ecological diversity and its measurement . Princeton: Princeton University Press, 1988.
    203. Maranon T and Garcia L V. The relationship between diversity and productivity in plant communities: facts and artefacts. Journal of Ecology; 1997, 85:95-96
    204. Margalef R. Information theory in ecology. General Systems Yearbook, 1958, 3: 36-71.
    205. Mark S, Ross M L, Richard G, and Hans W H. Metabolite levels in specific cells and subcellular compartments of plant leaves. Methods in Enaymology, 1989, 174:519-522
    206. Martinez-Ronnero E and J Caballero-Mellado. Rhizobium phylogenies and bacterial genetic diversity. Crit Rev Plant Sci, 1996, 15:113-140.
    207. Marx J. The roots of plant-microbe collaborations. Science, 2004, 304: 234-236.
    208. Maslov A A. Small-scale patterns of forest plants and environmental heterogeneity. Vegetatio, 1989,84: 1-7134.
    209. May R M. Stability and Complexity in Model systems. Princeton: Princeton University Press, 1973,447
    210. McNaughton S J. Diversity and Stability of ecological communities: a comment on the role of empiricism in ecology. American Naturalist, 1977, 111: 515—525
    211. McNaughton S J. Diversity and Stability. Nature, 1988, 333: 204-205
    212. Mitra R M, Gleason C A, Edwards A, et al. A Ca~(2+)/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcription-based cloning. Proc Natl Acad Sci USA, 2004, 101: 4701-4705
    213. Molendijk A J, Bischoff F, Rajendrakumar C S V, et al. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO Journal, 2001, 20: 2779-2788
    214. Molendijk A J, Ruperti B, Singh M K, et al. A cysteine-rich receptor-like kinase NCBK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. Plant Journal, 2008, 53: 909-923
    215. Moore D R J, Keddy P A.The relationship between species richness and standing crop in wetland: the importance of scale. Vegetation, 1989, 79:99-106
    216. Mulder L, Lefebvre B, Cullimore J, et al. LysM domains of Medicago truncatula NFP protein involved in Nod factor perception. Glycosylation state, molecular modeling and docking of chitooligosaccharide and Nod factor. Glycobiology, 2006, 16: 801-809
    217. Naeem S, Thompson L J, Lawler S P, et al. Declining biodiversity can alter the performance of ecosystems. Nature, 1994, 368:734-73
    218. Naeem S. Species Redundancy and Ecosystem Reliability. Conservation Biology, 1998, 12(1):39-45i
    219. Nishmura R, Ohmori M, Fujita H, and Kawaguchi M. A Lotus basic leucine zipper protein with a RING-finger motif negatively regulates the developmental program of nodulation. Proc Natl Acad Sci USA, 2002a, 99: 15206-15210
    220. Nishimura R, Ohmori M, and Kawaguchi M. The novel symbiotic phenotype of enhanced-nodulating mutant of Lotus japonicus: astray mutant is an early nodulating mutant with wider nodulation zone. Plant Cell Physiol, 2002b, 43: 853-859
    221. Oksanen J. Is the humped relationship between species richness and biomass an arte fact due to plot size? Journal of Ecology, 1996, 84:293-295
    222. Oksanen J. The no-interaction model does not mean that interactions should not be studied. Journal of Ecology, 1997, 85:101 -102
    223. Olah B, Briere C, Becard G, Denarie J, Gough C. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signaling pathway. Plant J, 2005, 44: 195-207
    224. Oldroyd G E D, Engstrom E M, Long S R. Ethylene Inhibits the nod factor signal transduction pathway of Medicago truncatula. Plant Cell, 2001a, 13: 1835-1849
    225. Oldroyd G E D, Long S R. Identification and characterization of nodulation-signaling pathway 2, a gene of Medicago truncatula involved in nod factor signaling. Plant Physiol, 2003,131:1027-1032
    226.Oldroyd G E D,Mitra R M,Wais R J,and Long S R.Evidence for structurally specific negative feedback in the Nod factor signal transduction pathway.Plant J.,2001 b,28:191-199
    227.Quinn J F,Dunham A E.1983.On hypothesis testing in ecology and evolution.Amer.Nat.,122:602-617
    228.Oyama T,Shimura Y,and Okada K.The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl.Genes Dev,1997,11:2983-2995
    229.Pankhurst CE,et al.The effect of bacterial strain and temperature changes on the nitrogenase activity of lotus pedunculatus caltivar Maku root nodules.Physiol.Plant,1984,62:404-409
    230.Pamiske M.Intracellular accommodation of microbes by plants:a common development program for symbiosis and disease? Curt Opin Plant Biol,2000,3:320-328
    231.Peart D R.Species interactions in a successional grassland.III.Effects of canopy gaps,gopher mounds,and grazing on colonization.Journal of Ecology,1989,77:267-289
    232.Penmetsa R V,Cook D.A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont.Science,1997,275:527-530
    233.Penmetsa R V,Frugoli J A,Smith L S,Long S L,Cook D.Dual genetic pathways controlling nodule number in Medicago truncatula.Plant Physiol,2003,131:998-1008
    234.Perlick A M,Matin F,Gerald S.The broad bean gene VfNOD32 encodes a nodulin with sequence similarities to chitinase that is homologous to(a/p) 8-barrel-type seed proteins.Plant Physiol,1996,110:147-154
    235.Perret X,Staehelin C,W J Broughton,Molecular basis of symbiotic promiscuity.Microbial and Mot Biol Reviews,2000,64:180-201
    236.Perry J A,Wang T L,Welham T J,et al.A TILLING reverse genetics tool and a web-accessible collectioin of mutants of legume lotus japonicus.Plant Physiology,2003,131:866-871.
    237.Pianka E R.On lizard species diversity:North American flatland deserts.Ecology,1967,48:333-351
    238.Picket S T A,Cadanasso M L.Landscape ecology,spatial heterogeneity in ecological systems.Science,1995,269:331-334
    239.Phillips D L,J A MacMahon.Competition and spacing patterns in desert shrubs.Journal of Ecology,1981,69:97-115
    240.Pimm S L.The complexity and stability of ecosystem.Nature,1984,307:321-326
    241.Platt W J,D R Strong.Gaps in forest ecology.Ecology,1989,70:535-576
    242.Powell R D.The role of spatial pattern in the population biology of Centaurea diffusa.Journal of Ecology,1990,78:374-388
    243.Price M V,O J Reichman.Distributions of seeds in Sonoran desert soils:implications for heteromyid rodent foraging.Ecology,1987,68:1797-1811
    244.Price M V,J W Joyner.1997.What resources are available to desert granivores:seed rain or soil seed bank? Ecology,78:764-773.
    245.Potts M.Desiccation tolerance in prokaryotes.Microbiol rev 1994,58:755-805.
    246.Radutoiu S,Madsen L H,Madsen E B,Felle H H,Umehara Y,Gronlund M,et al..Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases.Nature,2003,425:585-592
    247.Rapport D J,Whitford W G.How ecosystems respond to stress.BioScience,1999,49:193-203
    248. Rapson G L, Thompson K, Hodgson J G. The humped relationship between species richness and biomass-testing its sensitivity to sample quadrat size. Journal of Ecology, 1997,85: 99-100
    249. Rao Subba N S. Soil Microbiology . Washington: Inc. USA. Science Publishers, 1999
    250. Rosenzweig M L. Species diversity gradients: we know more and less than we thought. Journal of Mammalogy, 1992, 73: 715-730
    251. Russell P E, et al. Variation in the selection of Rhizobium trifolii by varieties of red and while clover. Soil. Biol. Biochem, 1975, 7: 15-18.
    252. Rydin H. Competition and niche separation in Sphagnum. Canadian Journal of Botany, 1986, 64: 1817-1824
    253. Sanjuan J, Olivares J. Multicopy plasmids carrying the Klebsiella pneumoniae nifA gene enhance Rhizobium malilotii modulation competitiveness on alfalfa. Mol. Plant Microb. Interaction. 1991a, 4(2):365-36
    254. Sanjuan J, Olivares J. Nif-NIrA regulatory system activates transcription of nfe, a gene locus involved in nodulation competitiveness of Rhizobium nialilotii. Arch. Microbioi, 1991b, 155: 543-548.
    255. Schauser L, Roussis A, Stiller J, and Stougaard J. A plant regulator controlling development of symbiotic root nodules. Nature, 1999, 402: 191-196
    256. Schmidt J, Rohrig H, .John M, et al. Alteration of plant growth and development by Rhizobium nodA and nod13 genes involved in the synthesis of oligosaccharide signal molecules. Plant J, 1993,4:651-658
    257. Schmidt J S, Harper J E, Hoffman T, and Bent A F. Regulation of soybean nodulation independent of ethylene signaling. Plant Physiol, 1999, 119: 951-959
    258. Schnable E, Journet E P, De Carvalho Niebel F, Duc G, Frugoli J. The Medicago truncatula SUNN gene encodes a CLV-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol, 2005, 58: 809-822
    259. Searle I R, Men A E, Laniya T S, et al. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science, 2003, 299: 109-112
    260. Shaw S L, Long S R. Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells. Plant Physiol. 2003a, 131: 976-984
    261. Shaw S L, Long S R. Nod factor inhibition of reactive oxygen efflux in a host legume. Plant Physiol., 2003b, 132: 2196-2204
    262. Shipley B, P A Keddy. The individualistic and community-unit concepts as falsifiable hypotheses. Vegetalio, 1987,69:47-55166
    263. Shmida A, R H Whittaker. Pattern and biological microsite effects in two shrub communities, Southern California. Ecology, 1981, 61: 234-251
    264. Shreve F. The desert vegetation of North America. Botanical Review, 1942, 8: 195-246
    265. Sih A, M S Baltus. Patch size, pollinator behavior, and pollinator limitation in catnip. Ecology, 1987, 68: 1679-1690
    266. Smit P, Raedts J, Portyanko V, et al. NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science, 2005, 308: 1789-1791
    267. Sowig P. Effects of flowering plant's patch size on species composition of pollinator communities, foraging strategies, and resource partitioning in bumblebees (Hymenoptera: Apidae). Oecologia, 1989, 78: 550-558
    268. Spaink H P. Regulation of plant morphogenesis by lipo-chitin oligosaccharides. Critical Reviews in Plant Sciences, 1996, 15(586):559-582.
    269.Spaink H P,Rob J H Okker,Caret A Wijffehuan,et al.Symbiotic Properties of Rhizobia Containing a Flavonoid-Independent Hybrid nodD Product.Journal of Bacteriology,1989a,171(7):4045-4053
    270.Spaink H P,Wiiffehnan C A,Pees E.Location and functional regions of the Rliizobium nodD product using hybrid nodD genes.Plant Molecular Biology,1989b,12:59-73
    271.Steinauer E M,S L Collins.Effect of urine deposition on small-scale patch structure in prairie vegetation.Ecology,1995,76:1195-1205
    272.Sterling A B,Peco M A,Casado E F,Galiano,F D Pineda.Influence of microtopography on floristic variation in the ecological succession in grassland.Oikos,1984,42:334-342
    273.Stigter J,Schneider M,de Bruijin F J.Azorhizobium caulinddans nitrogen fixation(niflfix)gene regulation:mutagenesis of the nifA-24/12 promoter clement,characterization of a ntrA(tpoN) gene and derivation of a model.Mul,Plant-Microbe Interact,1993,6:238-252
    274.Stougaard J.Genetics and genomics of root symbiosis.Curr Opin Plant Biol,2001,4:328-335
    275.Stracke S,Kistner C,Yoshida S,et aL A plant receptor-like kinase required for both bacterial and fungal symbiosis.Nature,2002,417:959-962
    276.Swanson D K,D F Grigal.A simulation model of mire patterning.Oikos,1988,53:309-314
    277.Tadege M,Ratet P,and Mysore K S.Insertional mutagenesis:a Swiss army knife for functional genomics of Medicago truncatula.Trends Plant Sci,2005,10:229-235
    278.Takayama S,Shimosato H,Shiba H,Funato M,et al.Direct ligand-receptor complex interaction controls Brassica self-incompatibility.Nature,2001,413:534-538
    279.Takeda S,Gapper C,Kaya H,et al.Local positive feedback regulation determines cell shape in root hair cells.Science,2008,319:1241-1244
    280.Tansengco M L,Hayashi M,Kawaguchi M,et al.crinkle,a novel symbiotic mutant that affects the infection thread growth and alters the root hair,trichome,and seed development in Lotusjaponicus.Plant Physiol,2003,131:1054-1063
    281.Thomas J.Development of Rhizobimn and indigenous and Azospirillum inoculatns with enhanced potential for field application.In:Nitrogen Fixation,Fundamentals and Application.1995,659-66
    282.Thompson J N.Within-patch structure and dynamics in Pastinaca sativa and resource availability to a specialized herbivore.Ecology,1978,59:443-448
    283.Thomson D,R Henry.Use of DNA from dry leaves for PCR and RAPD analysis.Plant molecular Biological Reports,1993,11:202-206
    284.Till J,Uwe S,Lothar W,Mohammad H,Mark S.Pyrophosphate content and metabolites in potato and tobacco plants expressing E.coli pyrophosphatase in their cytosol.Planta,1992,188:238-244
    285.Tilmam D,Pacala S.The maintenance of species richness in plant communities,page 13-25in R.E.Ricklefs and D.Schluter,editors species diversity in ecological communities:historical and geographical perspectives.Chicago:University of Chicago Press,1993
    286.Tilman D.Competition and biodiversity in spatially structured habitats.Ecology,1994,75(1):2-16
    287.Tilman D,Downing J A.Biodiversity and Stability in grasslands.Nature,1994,367:363-365
    288.Tilman D.Resource competition and community structure.Princeton:Princeton University Press,1982
    289.Tilman D,Wedln D,Knops J.Productivity and sustainability influenced by biodiversity in grassland ecosystems.Nature,1996,379:718-720
    290. Trotochaud A E, Hao T, Wu G, et al. The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell, 1999, 11: 393-405
    291. Turner F B. Some sampling characteristics of plants and arthropods of the Arizona deserts. Ecology, 1962,43:567-571
    292. Turner M G, S P Bratton. Fire, grazing and the landscape heterogeneity of a Georgia barrier island. In M. G. Turner [eds.], Landscape Heterogeneity and Disturbance. Springer-Verlag, New York, USA. 1987. 85-101
    293. Udvardi M K, Tabata S, Parniske M, Stougaard J (2005). Lotus japonicus: legume research in the fast lane. Trends Plant Sci 10, 222-228
    294. Usher M B. Pattern in the simple moss-turf communities of the Sub-Antarctic and Maritime Anatarctic. Journal of Ecology, 1983, 71: 945-958
    295. Umbanhowar C E Jr. Abundance, vegetation, and environment of four patch types in northern mixed prairie. Canadian Journal of Botany, 1992, 70: 227-284
    296. Van Rlrijn P, Vanderleyden J. The rhizobium-plant symbiosis. Microbiol. 1995, 59(1): 124-142
    297. VandenBosch K, and Stacey G. Summaries of legume genomics project from around the globe. Community resources for crops and models. Plant Physiol, 2003, 131: 840-865
    298. Veblen T T. Regeneration dynamics. In D. C. Glenn-Lewin, R. K. Peet, and T. T. Veblen [eds.], Plant Succession: Theory and Prediction. Chapman and Hall, London, UK. 1992. 152-187
    299. Vincent J M. A Manual for the Practical Study of Root nodule Bacteria. IBP Handbook No.15: Blackwell Scientific Publications, Oxford, 1970
    300. Vitousek P M, Hopper D U. In Schulze E D and Mooney H A, editors. Biodiversity and ecosystem function. Ecological Studies Analysis and Synthesis, 1993, 99:3-14
    301. Vitousek P M. Beyond Global Warming: Ecology and Global Change. Ecology, 1994, 75(7): 1861-1876
    302. Wais R J, Galera C, Oldroyd G, et al. Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proc Natl Acad Sci USA, 2000, 97: 13407-13412
    303. Waisel Y. Patterns of distribution of some xerophytic species in the Negev, Israel. Israel Journal of Botany, 1971,20:101-110
    304. Walker B H. Biodiversity and ecological redundancy. Conservation Biology, 1992,6:18-23
    305. Wallace A, E M Romney. Radioecology and Ecophysiology of Desert Plants at the Nevada Test Site. United States Atomic Energy Commission Report TID-25954. 1972.
    306. Wang K L C, and Ecker J R. Ethylene biosynthesis and signaling network. Plant Cell, 2002, 14(Suppl.):S131-S151
    307. Waser N M, R J Mitchell. Nectar standing crops in Delphinium nelsonii flowers: spatial autocorrelation among plants? Ecology, 1990, 71: 116-123
    308. Watt A S. Pattern and process in the plant community. Journal of Ecology, 1947, 35: 1-22
    309. Weber C F, et al. Effect of soil temperature on Rhizobium japonicum serogroup distribution in soybean nodules. Agron. J., 1972, 64:796-798
    310. Went F W. The ecology of desert plants. Scientific American, 1955, 192: 68-75
    311. West N E. Biodiversity of rangelands. Journal of Range management, 1992, 46: 2-13
    312. Whittaker R H. Evolution and measurement of species diversity. Taxon, 1972, 21: 213-251
    313. Wilson J B, A D Q Agnew. Positive-feedback switches in plant communities. Advances in Ecological Research,1992,23:263-336
    314.Woodell S R J,H A Mooney,A J Hill.The behaviour of Larrea divaricata(creosote bush) in response to rainfall in California.Journal of Ecology,1969,57:37-44
    315.Wopereis J,Pajuelo E,Dazzo FB,et al.Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype.Plant J,2000,23:97-114
    316.Wright R A.The distribution ofLarrea divaricata(D.C.) Coville in the Avra Valley,Arizona.Journal of the Arizona Academy of Science,1970,6:58-63
    317.Wright S.The genetical structure of populations.Annals of Eugenics,1951,15:323-354
    318.Yarranton G A,R G Morrison.Spatial dynamics of a primary succession:nucleation.Journal of Ecology,1974,62:417-427
    319.Yodzis P Y.The stability of real ecosystems.Nature,1981,289:674-676
    320.Yoshida S,and Parniske M.Regulation of plant symbiosis receptor kinase through serine and threonine phosphorylatoin.J.Biol.Chem.,2005,280:9203-9209
    321.Young N D,Mudge J,Ellis T H N(2003).Legume genomes:more than peas in a pod.Curr Opin Plant Biol 6,199-204
    322.Zavala-Hurtado J A,P L Valverde,M C Herrera-Fuentes,A Diaz-Solis.Influence of leaf-cutting ants(Atta mexicana) on performance and dispersion patterns of perennial desert shrubs in an inter-tropical region of Central Mexico.Journal of Arid Environments,2000,46:93-102
    323.Zhang W,C Skarpe.Small-scale species dynamics in semi-arid steppe vegetation in Inner Mongolia.Journal of Vegetation Science,1995,6:583-592
    324.Zhang Y,McCormick S.A distinct mechanism regulating a pollen-specific guanine nucleotide exchange factor for the small GTPase ROP in Arabidopsis thaliana.Proc.Natl.Acad.Sci.USA 2007,104:18830-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700