用户名: 密码: 验证码:
hBrd4 BD2和hMog1溶液结构与功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作的重点分为两部分:第一部分是人类Brd4中两个bromodomain的克隆、表达和纯化,研究了它们在溶液中的存在状态,并用核磁共振的方法解析了溶液中Brd4 BD2的结构,研究了两个bromodomain与乙酰化的组蛋白尾巴的相互作用,测定了它们的解离常数,分析了Brd4 BD2分别在游离状态下和配基结合状态下主链的动力学特性,并用分子动力学模拟的方法计算了由一个双乙酰化的组蛋白小肽和两个BD2组成的三元复合物模型;第二部分是关于人类Mogl蛋白的表达纯化以及溶液结构的解析,并初步研究了它与Ran·GDP的相互作用。
     论文的第一章阐述了第一部分的内容。
     第一章的第一部分详细介绍了Brd4在生物体内的重要作用。Brd4是一个多功能蛋白,它与不同的蛋白结合以发挥不同的功能。通过结合P-TEFb和mediator,调控转录的延长过程;通过结合RFC,调控DNA复制过程,并调节细胞G1/S期的转变;通过与SPA-1结合,参与细胞信号传导途径,并调控细胞G2/M期的转变;Brd4还参与到某些病毒的生命周期中去,或者调控病毒基因的转录及复制,或者辅助病毒在细胞有丝分裂时均匀的分布到子代细胞中。所有的这些功能都是与它结合乙酰化的染色质相联系的。Brd4是BET家族的成员,解读属于它自己的组蛋白密码,并将其翻译成不同的细胞调控过程。
     第一章的第二部分详尽的描述了各种蛋白质的克隆、表达、纯化过程以及论文中所涉及到的其它实验过程。
     第一章的第三部分是实验的结果和讨论。Brd4 BD2的溶液结构表明,它是由保守的左手四螺旋束构成,长的ZA loop上一些独特的二级结构的修饰使得BD2呈现出一个独特的疏水口袋,以识别某些乙酰化的组蛋白尾巴。Brd4的BD1和BD2都能够结合H4-AcK5和H4-AcK12,只是亲和性有一些微小的差别,而且它们与单乙酰化的小肽结合都很弱,解离常数都在毫摩尔数量级。我们鉴定了BD1和BD2在溶液中都主要以单体存在,而且当它们以等摩尔比例混合时,也没有异二聚体形成,这一结果与之前其它研究小组的预测是完全不同的。Brd2BD1和TAFⅡ250通过形成同二聚体或者异二聚体而极大程度的增强了与乙酰化组蛋白尾巴的亲和性。而Brd4不能以类似的方式增强与组蛋白尾巴的结合,因此,我们推测应该有其它的机制来辅助这一过程。HPV E2蛋白建立了一个很好的模型,很可能在正常细胞中,一个尚未被发现的类似E2的蛋白辅助Brd4与染色质的结合,当然这个蛋白也可能就是mediator中的某一组分。主链动力学分析表明,Brd4 BD2在结合了配基之后,微秒-毫秒数量级的交换过程在一定程度上受到抑制,而皮秒-纳秒数量级的快速运动则变化的不规律。
     论文的第二章阐述了第二部分的内容。
     到目前为止Mogl这个蛋白研究的并不多,而且主要都是来自于酵母的信息。论文中列举了已有文献报道的一些已知的功能,其中最主要的就是它能够与Ran结合,参与调控生物分子的核质转运过程。Ran在这一转运体系中扮演着重要的角色,Mogl与Ran·GTP和Ran·GDP都能够紧密结合,并促使Ran将核苷酸释放出去,空载状态下的Ran仍然能够与Mogl紧密结合。但这种结合在核质转运系统中确切的分子机制还不清楚。Mogl参与SLN1-SKN7信号传导途径,能够直接与途径中的某些蛋白相互作用,而且从某种意义上说,这一功能应该还是与核质转运相联系的。此外,Mogl可能还参与RNA代谢和脂类代谢过程。
     我们表达纯化了人类Mogl和Ran蛋白,并用核磁共振方法解析了hMogl的溶液结构,研究了它们相互作用的特性,希望能够找到它们的结合界面,或者得到复合物的晶体结构,这部分的工作还在进行中。
     这部分工作中,hMogl和hRan的表达质粒构建是由孙建平博士完成的,hMogl的表达纯化以及所有蛋白样品的制备是我完成的,hMogl溶液结构的解析是胡琦博士完成的,其它的实验包括长晶体的尝试是由我和胡琦共同完成的。
This PhD thesis focuses on two parts: The first part is the cloning, expression and purification of the two bromodomains in human Brd4. Their properties in solution were studied, and the solution structure of Brd4 BD2 was determined. The interactions between BDs of Brd4 and acetylated histone tails have also been studied, and their dissociation constants were measured. Backbone dynamic properties of both apo- and ligand bound- BD2 were analyzed. A ternary complex model is presented, which is composed of one molecule of diacetylated histone peptide and two molecules of Brd4 BD2. It was calculated by molecular dynamics simulation. The second part is about the expression, purification and structure determination of human Mogl. Interactions between hMogl and hRanGDP were investigated primarily. Chapter I describes the first part of our work.
     In the first part of Chapter I, there is a particular description of the importance of Brd4 in organisms. It is a multifunctional protein, and plays different roles through interaction with different binding partners. Brd4 regulates transcription elongation process through interaction with P-TEFb and mediator. It regulates DNA replication process and G1/S transition through interaction with RFC. It is involved in signal transduction pathway, and regulates G2/M transition by association with SPA-1. It is also involved in the life cycles of some viruses. It regulates the transcription or replication of viral genes, or facilitates their partition during mitosis. All these functions are linked to its association with acetylated chromatin. Brd4 belongs to the BET family. It reads its own histone code, and then translates it into its own regulatory processes.
     The protein cloning, expression, purification and other experimental processes were described in detail in the second part of Chapter I.
     The third part of Chapter I describes the results and discussion of the corresponding experiments. Solution structure of Brd4 BD2 demonstrates a conserved left-handed four-helix bundle. Special decorations on the long ZA loop present a unique surface on the functional hydrophobic pocket, which determines the recognition for acetylated histone tails. Both BD1 and BD2 bind to H4-AcK5 and H4-AcK12, but with subtle difference. Their bindings are rather weak. The dissociation constants were estimated at milimolar scale. BD1 and BD2 of Brd4 were both identified to be mainly monomeric in solution. No heterodimers were observed when they were mixed at equal molar. These results are different from the predictions of another group. While Brd2 BD1 and TAFII250 enhance their affinities with acetylated histone tails through formation of a homodimer or a heterodimer, and Brd4 fails to function similarly. We predict that this protein should have its own mechanism to hold onto chromosomes during mitosis and regulation of associated cellular processes. HPV E2 sets up a good model. It is possible that, in normal living cells, an unknown E2 like protein facilitates the reinforcement of Brd4 and acetyl-chromatin association. It is also possible that this unknown protein comes from the mediator complex. Analysis of backbone dynamics demonstrated that, ligand binding depressed the microsecond-millisecond conformational exchanges in some degree, while changes in picosecond-nanosecond time scale fast motions were irregular.
     Chapter II describes the second part of our work.
     Mog1 has not been investigated well up to now. The primary information comes from the yeast. We list some of its functions that have been published. One of the most important is that, Mog1 binds to Ran, and participates in the regulation of nucleocytoplasm transport. Ran plays important roles in this system. Mog1 interacts with both Ran-GTP and Ran-GDP. The interaction makes Ran release the nucleotide. The unloaded Ran still binds to Mog1. But the mechanism of this interaction in the transport system is not known. Mog1 is also involved in the SLN1-SKN7 pathway. It directly binds to some components of the pathway. In some sense, this function still links to nuclear transport. Besides, Mog1 may participate in RNA and lipid metabolism.
     We expressed and purified the Mog1 and Ran protein, determined the solution structure of hMog1, and investigated some properties of their interaction. We hope to find the binding interface or obtain the crystal structure of their complex. This part of work is still in process.
     This part of work was done cooperatively with Jianping Sun and QiHu. Plasmids of hMog1 and hRan were constructed by Dr. Jianping Sun. Solution structure of hMog1 was determined by Dr. QiHu. Expression, purification, and all the sample preparation of hMog1 were of my work. All other experiments, including protein complex crystallization, were carried out by QiHu and me.
引文
Abbate, E.A., Voitenleitner, C, and Botchan, M.R. (2006). Structure of the papillomavirus DNA-tethering complex E2:Brd4 and a peptide that ablates HPV chromosomal association. Mol Cell 24, 877-889.
    Bisgrove, D.A., Mahmoudi, T., Henklein, P., and Verdin, E. (2007). Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. Proc Natl Acad Sci U S A 104,13690-13695.
    Bos, J.L. (1997). Ras-like GTPases. Biochim Biophys Acta 1333, M19-31.
    Bourne, H.R., Sanders, D.A., and McCormick, F. (1990). The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348,125-132.
    Cesarman, E., Moore, P.S., Rao, P.H., Inghirami, G, Knowles, D.M., and Chang, Y. (1995). In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 86,2708-2714.
    Chang, Y., Cesarman, E., Pessin, M.S., Lee, F., Culpepper, J., Knowles, D.M., and Moore, P.S. (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266,1865-1869.
    Chiu, Y.L., Cao, H., Jacque, J.M., Stevenson, M., and Rana, T.M. (2004). Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). J Virol 78,2517-2529.
    Cornilescu, G, Delaglio, F., and Bax, A. (1999). Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13,289-302.
    Denis, GV., Vaziri, C, Guo, N., and Falter, D.V. (2000). RING3 kinase transactivates promoters of cell cycle regulatory genes through E2F. Cell Growth Differ 11,417-424.
    Dey, A., Chitsaz, F., Abbasi, A., Misteli, T., and Ozato, K. (2003). The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci U S A 100, 8758-8763.
    Dey, A., Ellenberg, J., Farina, A., Coleman, A.E., Maruyama, T., Sciortino, S., Lippincott-Schwartz, J., and Ozato, K. (2000). A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G(2)-to-M transition. Mol Cell Biol 20,6537-6549.
    Dhalluin, C, Carlson, J.E., Zeng, L., He, C, Aggarwal, A.K., and Zhou, M.M. (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399,491-496.
    Dunbrack, R.L., Jr., and Karplus, M. (1993). Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J Mol Biol 230,543-574.
    Fairbrother, W.J., Liu, J, Pisacane, P.I., Sliwkowski, M.X., and Palmer, A.G., 3rd (1998). Backbone dynamics of the EGF-like domain of heregulin-alpha. J Mol Biol 279,1149-1161.
    Farina, A., Hattori, M., Qin, J., Nakatani, Y, Minato, N., and Ozato, K. (2004). Bromodomain protein Brd4 binds to GTPase-activating SPA-1, modulating its activity and subcellular localization. Mol Cell Biol 24,9059-9069.
    Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G, Shoelson, S.E., Pawson, T., Forman-Kay, J.D., and Kay, L.E. (1994). Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984-6003.
    Farrow, N.A., Zhang, O., Forman-Kay, J.D., and Kay, L.E. (1995a). Comparison of the backbone dynamics of a folded and an unfolded SH3 domain existing in equilibrium in aqueous buffer. Biochemistry 34, 868-878.
    Farrow, N.A., Zhang, O., Szabo, A., Torchia, D.A., and Kay, L.E. (1995b). Spectral density function mapping using 15N relaxation data exclusively. J Biomol NMR 6,153-162.
    Flanagan, P.M., Kelleher, R.J., 3rd, Sayre, M.H., Tschochner, H., and Kornberg, R.D. (1991). A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350,436-438.
    Hattori, M., Tsukamoto, N., Nur-e-Kamal, M.S., Rubinfeld, B., Iwai, K., Kubota, H., Maruta, H., and Minato, N. (1995). Molecular cloning of a novel mitogen-inducible nuclear protein with a Ran GTPase-activating domain that affects cell cycle progression. Mol Cell Biol 15, 552-560.
    Hong, S., Park, S.J., Kong, H.J., Shuman, J.D., and Cheong, J. (2001). Functional interaction of bZIP proteins and the large subunit of replication factor C in liver and adipose cells. J Biol Chem 276,28098-28105.
    Houzelstein, D., Bullock, S.L., Lynch, D.E., Grigorieva, E.F., Wilson, V.A., and Beddington, R.S. (2002). Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol Cell Biol 22,3794-3802.
    Hu, H.Y., Horton, J.K., Gryk, M.R., Prasad, R., Naron, J.M, Sun, D.A., Hecht, S.M., Wilson, S.H., and Mullen, GP. (2004). Identification of small molecule synthetic inhibitors of DNA polymerase beta by NMR chemical shift mapping. J Biol Chem 279,39736-39744.
    Huang, H., Zhang, J., Shen, W, Wang, X., Wu, J., and Shi, Y. (2007). Solution structure of the second bromodomain of Brd2 and its specific interaction with acetylated histone tails. BMC Struct Biol 7, 57.
    Hudson, B.P., Martinez-Yamout, M.A., Dyson, H.J., and Wright, P.E. (2000). Solution structure and aceryl-lysine binding activity of the GCN5 bromodomain. J Mol Biol 304,355-370.
    IIves, I., Maemets, K., Silla, T., Janikson, K., and Ustav, M. (2006). Brd4 is involved in multiple processes of the bovine papillomavirus type 1 life cycle. J Virol 80,3660-3665.
    Jacobson, R.H., Ladurner, A.G, King, D.S., and Tjian, R. (2000). Structure and function of a human TAFII250 double bromodomain module. Science 288,1422-1425.
    Jang, M.K., Mochizuki, K., Zhou, M., Jeong, H.S., Brady, J.N., and Ozato, K. (2005). The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 19, 523-534.
    Jiang, Y.W., Veschambre, P., Erdjument-Bromage, H., Tempst, P., Conaway, J.W., Conaway, R.C., and Kornberg, R.D. (1998). Mammalian mediator of transcriptional regulation and its possible role as an end-point of signal transduction pathways. Proc Natl Acad Sci U S A 95, 8538-8543.
    Kanno, T., Kanno, Y., Siegel, R.M., Jang, M.K., Lenardo, M.J., and Ozato, K. (2004). Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol Cell 13, 33-43.
    Kasahara, M. (1999). Genome dynamics of the major histocompatibility complex: insights from genome paralogy. Immunogenetics 50,134-145.
    Kim, Y.J., Bjorklund, S., Li, Y, Sayre, M.H., and Kornberg, R.D. (1994). A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599-608.
    Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., and Thornton, J.M. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8,477-486.
    Lewinski, M.K., Bisgrove, D., Shinn, P., Chen, H., Hoffmann, C, Hannenhalli, S., Verdin, E., Berry, C.C., Ecker, J.R., and Bushman, F.D. (2005). Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J Virol 79,6610-6619.
    Li, H., Ilin, S., Wang, W., Duncan, E.M., Wysocka, J., Allis, C.D., and Patel, D.J. (2006). Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442,91-95.
    Lian, L.Y., Barsukov, I.L., Sutcliffe, M.J., Sze, K.H., and Roberts, G.C. (1994). Protein-ligand interactions: exchange processes and determination of ligand conformation and protein-ligand contacts. Methods Enzymol 239,657-700.
    Liu, D., Prasad, R., Wilson, S.H., DeRose, E.F., and Mullen, G.P. (1996). Three-dimensional solution structure of the N-terminal domain of DNA polymerase beta and mapping of the ssDNA interaction interface. Biochemistry 55, 6188-6200.
    Maruyama, T., Farina, A., Dey, A., Cheong, J., Bermudez, V.P., Tamura, T., Sciortino, S., Shuman, J., Hurwitz, J., and Ozato, K. (2002). A Mammalian bromodomain protein, brd4, interacts with replication factor C and inhibits progression to S phase. Mol Cell Biol 22,6509-6520.
    McBride, A.A., McPhillips, M.G, and Oliveira, J.G. (2004). Brd4: tethering, segregation and beyond. Trends Microbiol 12,527-529.
    Moore, P.S., and Chang, Y. (1995). Detection of herpesvirus-like DNA sequences in Kaposi's sarcoma in patients with and without HIV infection. N Engl J Med 332,1181-1185.
    Moqtaderi, Z., Bai, Y., Poon, D., Weil, P.A, and Struhl, K. (1996). TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383,188-191.
    Mujtaba, S., He, Y, Zeng, L, Farooq, A., Carlson, J.E., Ott, M., Verdin, E., and Zhou, M.M. (2002). Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol Cell 9, 575-586.
    Mujtaba, S., He, Y, Zeng, L., Yan, S., Plotnikova, O., Sachchidanand, Sanchez, R., Zeleznik-Le, N.J., Ronai, Z., and Zhou, M.M. (2004). Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 13,251-263.
    Mujtaba, S., Zeng, L, and Zhou, M.M. (2007). Structure and acetyl-lysine recognition of the bromodomain. Oncogene 26,5521-5527.
    Nakamura, Y, Umehara, T., Nakano, K., Jang, M.K., Shirouzu, M., Morita, S., Uda-Tochio, H., Hamana, H., Terada, T, Adachi, N., et al. (2007). Crystal structure of the human BRD2 bromodomain: insights into dimerization and recognition of acetylated histone H4. J Biol Chem 282,4193-4201
    Ottinger, M., Christalla, T., Nathan, K., Brinkmann, M.M., Viejo-Borbolla, A., and Schulz, T.F. (2006). Kaposi's sarcoma-associated herpesvirus LANA-1 interacts with the short variant of BRIM and releases cells from a BRD4- and BRD2/RING3-induced G1 cell cycle arrest. J Virol 80, 10772-10786.
    Owen, D.J., Ornaghi, P., Yang, J.C., Lowe, N., Evans, P.R., Ballario, P., Neuhaus, D., Filetici, P., and Travers, A.A. (2000). The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 19,6141-6149.
    Paillisson, A., Levasseur, A., Gouret, P., Callebaut, I., Bontoux, M., Pontarotti, P., and Monget, P. (2007). Bromodomain testis-specific protein is expressed in mouse oocyte and evolves faster than its ubiquitously expressed paralogs BRD2, -3, and -4. Genomics 89,215-223.
    Peng, J., Zhu, Y, Milton, J.T., and Price, D.H. (1998). Identification of multiple cyclin subunits of human P-TEFb. Genes Dev 12, 755-762.
    Pivot-Pajot, C., Caron, C., Govin, J., Vion, A., Rousseaux, S., and Khochbin, S. (2003). Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol 23, 5354-5365.
    Pugh, B.F., and Tjian, R. (1990). Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61,1187-1197.
    Shang, E., Salazar, G, Crowley, T.E., Wang, X., Lopez, R.A., and Wolgemuth, D.J. (2004). Identification of unique, differentiation stage-specific patterns of expression of the bromodomain-containing genes Brd2, Brd3, Brd4, and Brdt in the mouse testis. Gene Expr Patterns 4,513-519.
    Shen, W., Xu, C., Huang, W., Zhang, J., Carlson, J.E., Tu, X., Wu, J., and Shi, Y. (2007). Solution structure of human Brgl bromodomain and its specific binding to acetylated histone tails. Biochemistry 46,2100-2110.
    Shindyalov, I.N., and Bourne, P.E. (1998). Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11, 739-747.
    Singh, M., Popowicz, G.M., Krajewski, M., and Holak, T.A. (2007). Structural ramification for aceiyl-lysine recognition by the bromodomain of human BRG1 protein, a central ATPase of the SWI/SNF remodeling complex. Chembiochem 8,1308-1316.
    Soulier, J., Grollet, L, Oksenhendler, E., Cacoub, P., Cazals-Hatem, D., Babinet, P., d'Agay, M.F., Clauvel, J.P., Raphael, M., Degos, L., et al. (1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86,1276-1280.
    Strahl, B.D., and Allis, CD. (2000). The language of covalent histone modifications. Nature 403, 41-45.
    Stringer, K.F., Ingles, C.J., and Greenblatt, J. (1990). Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature 345,783-786.
    Takai, Y., Sasaki, T., and Matozaki, T. (2001). Small GTP-binding proteins. Physiol Rev 81, 153-208.
    Taube, R., Lin, X., Irwin, D., Fujinaga, K., and Peterlin, B.M. (2002). Interaction between P-TEFb and the C-terminal domain of RNA polymerase II activates transcriptional elongation from sites upstream or downstream of target genes. Mol Cell Biol 22,321-331.
    Tsukamoto, N., Hattori, M., Yang, H., Bos, J.L., and Minato, N. (1999). Rap1 GTPase-activating protein SPA-1 negatively regulates cell adhesion. J Biol Chem 274,18463-18469.
    Van Gunstern, W.F., Billeter, S. R., Eising, A. A., Hunenberger, P. H., Kruger, P., Mark, A. E., Scott, W. R. & Tironi, I. G. (1996). Biomolecular simulation: The GROMOS96 manual and user guide, Vdf Hochschulverlag, Zurich.
    Walker, S.S., Reese, J.C., Apone, L.M., and Green, M.R. (1996). Transcription activation in cells lacking TAFIIS. Nature 383,185-188.
    Wishart, D.S., and Sykes, B.D. (1994). The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4, 171-180.
    Wu, S.Y., and Chiang, CM. (2007). The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem 282,13141-13145.
    Wu, S.Y., Lee, A.Y., Hou, S.Y., Kemper, J.K., Erdjument-Bromage, H., Tempst, P., and Chiang, C.M. (2006). Brd4 links chromatin targeting to HPV transcriptional silencing. Genes Dev 20, 2383-2396.
    Wu, S.Y., Zhou, T., and Chiang, C. M. (2003). Human mediator enhances activator-facilitated recruitment of RNA polymerase II and promoter recognition by TATA-binding protein (TBP) independently of TBP-associated factors. Mol Cell Biol 23, 6229-6242.
    Yang, X.J. (2004). Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 26,1076-1087.
    Yang, Z., Yik, J.H., Chen, R., He, N., Jang, M.K., Ozato, K., and Zhou, Q. (2005). Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 19, 535-545.
    You, J., Croyle, J.L., Nishimura, A., Ozato, K., and Howley, P.M. (2004). Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell 117, 349-360.
    You, J., Srinivasan, V, Denis, G.V., Harrington, W.J., Jr., Ballestas, M.E., Kaye, K.M., and Howley, P.M. (2006). Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen interacts with bromodomain protein Brd4 on host mitotic chromosomes. J Virol 80,8909-8919.
    Yukio Hiyama, C.H.N., James V. Silverton, Alfonso Bavoso, and Dennis A. Torchia (1988). Determination of 15N chemical shift tensor via 15N-2H dipolar coupling in Bocglycyl-glycyl [15N]glycine benzyl ester. Journal of the American Chemical Society 110,2378-2383.
    Zhou, Q., Lieberman, P.M., Boyer, T.G, and Berk, A.J. (1992). Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev 6, 1964-1974.
    Adam, E.J., and Adam, S.A. (1994). Identification of cytosolic factors required for nuclear location sequence-mediated binding to the nuclear envelope. J Cell Biol 125,547-555.
    Alberts, A.S., Bouquin, N., Johnston, L.H., and Treisman, R. (1998). Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein beta subunits and the yeast response regulator protein Skn7. J Biol Chem 273, 8616-8622.
    Baker, R.R, Harreman, M.T., Eccleston, J.F., Corbett, A.H., and Stewart, M. (2001). Interaction between Ran and Mogl is required for efficient nuclear protein import. J Biol Chem 276, 41255-41262.
    Breeuwer, M., and Goldfarb, D.S. (1990). Facilitated nuclear transport of histone H1 and other small nucleophilic proteins. Cell 60, 999-1008.
    Brown, J.L., Bussey, H., and Stewart, R.C. (1994). Yeast Skn7p functions in a eukaryotic two-component regulatory pathway. EMBO J 13, 5186-5194.
    Chi, N.C., Adam, E.J., Visser, G.D., and Adam, S.A. (1996). RanBPl stabilizes the interaction of Ran with p97 nuclear protein import. J Cell Biol 135,559-569.
    Clore, G.M., Gronenborn, A.M., and Bax, A. (1998a). A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J Magn Reson 133,216-221.
    Clore, GM., Gronenborn, A.M., and Tjandra, N. (1998b). Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. J Magn Reson 131,159-162.
    Doye, V, and Hurt, E. (1997). From nucleoporins to nuclear pore complexes. Curr Opin Cell Biol 9,401-411.
    Feldherr, C.M., Kallenbach, E., and Schultz, N. (1984). Movement of a karyophilic protein through the nuclear pores of oocytes. J Cell Biol 99,2216-2222.
    Fornerod, M., van Deursen, J., van Baal, S., Reynolds, A., Davis, D., Murti, K.G., Fransen, J., and Grosveld, G. (1997). The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 16, 807-816.
    Gorlich, D. (1998). Transport into and out of the cell nucleus. EMBO J 17, 2721-2727.
    Gorlich, D., Dabrowski, M., Bischoff, F.R., Kutay, U., Bork, P., Hartmann, E., Prehn, S., and Izaurralde, E. (1997). Anovel class of RanGTP binding proteins. J Cell Biol 138,65-80.
    Gorlich, D., Henklein, P., Laskey, R.A., and Hartmann, E. (1996a). A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J 15, 1810-1817.
    Gorlich, D., Pante, N., Kutay, U, Aebi, U., and Bischoff, F.R. (1996b). Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J 15, 5584-5594.
    Gorlich, D., Vogel, F., Mills, A.D., Hartmann, E., and Laskey, R.A. (1995). Distinct functions for the two importin subunits in nuclear protein import. Nature 377, 246-248.
    Hansen, M.R., Mueller, L, and Pardi, A. (1998). Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat Struct Biol 5,1065-1074.
    Izaurralde, E., Kutay, U., von Kobbe, C, Mattaj, I.W., and Gorlich, D. (1997). The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 16, 6535-6547.
    Klebe, C., Bischoff, F.R., Ponstingl, H., and Wittinghofer, A. (1995). Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34, 639-647.
    Kutay, U., Bischoff, F.R., Kostka, S., Kraft, R., and Gorlich, D. (1997). Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell 90,1061-1071.
    Lee, A., Tarn, R., Belhumeur, P., DiPaolo, T., and Clark, M.W. (1993). Prp20, the Saccharomyces cerevisiae homolog of the regulator of chromosome condensation, RCC1, interacts with double-stranded DNA through a multi-component complex containing GTP-binding proteins. J Cell Sci 106 (Pt 1), 287-298.
    Li, S., Ault, A., Malone, C.L., Raitt, D., Dean, S., Johnston, L.H., Deschenes, R.J., and Fassler, J.S. (1998). The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO J 17,6952-6962.
    Li, S., Dean, S., Li, Z., Horecka, J., Deschenes, R.J., and Fassler, J.S. (2002). The eukaryotic two-component histidine kinase Slnlp regulates OCH1 via the transcription factor, Skn7p. Mol Biol Cell 13,412-424.
    Loomis, W.F., Shaulsky, G, and Wang, N. (1997). Histidine kinases in signal transduction pathways of eukaryotes. J Cell Sci 110 (Pt 10), 1141-1145.
    Lu, J.M., Deschenes, R.J., and Fassler, J.S. (2003). Saccharomyces cerevisiae histidine phosphotransferase Ypd1p shuttles between the nucleus and cytoplasm for SLN1-dependent phosphorylation of Ssklp and Skn7p. Eukaryot Cell 2,1304-1314.
    Lu, J.M., Deschenes, R.J., and Fassler, J.S. (2004). Role for the Ran binding protein, Mog1p, in Saccharomyces cerevisiae SLN1-SKN7 signal transduction. Eukaryot Cell 3,1544-1556.
    Maeda, T., Takekawa, M., and Saito, H. (1995). Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269,554-558.
    Maeda, T., Wurgler-Murphy, S.M., and Saito, H. (1994). A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369,242-245.
    Mattaj, I.W., and Englmeier, L. (1998). Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67,265-306.
    Mattison, C.P., and Ota, I.M. (2000). Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hogl MAP kinase in yeast. Genes Dev 14,1229-1235.
    Melchior, F., Paschal, B., Evans, J., and Gerace, L. (1993). Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor. J Cell Biol 123,1649-1659.
    Moore, M.S., and Blobel, G. (1993). The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365,661-663.
    Moroianu, J., Hijikata, M., Blobel, G, and Radu, A. (1995). Mammalian karyopherin alpha 1 beta and alpha 2 beta heterodimers: alpha 1 or alpha 2 subunit binds nuclear localization signal and beta subunit interacts with peptide repeat-containing nucleoporins. Proc Natl Acad Sci U S A 92, 6532-6536.
    Nigg, E.A. (1997). Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386, 779-787.
    Oki, M., and Nishimoto, T. (1998). A protein required for nuclear-protein import, Moglp, directly interacts with GTP-Gsp1p, the Saccharomyces cerevisiae ran homologue. Proc Natl Acad Sci U S A 95,15388-15393.
    Ottiger, M., Delaglio, F., and Bax, A. (1998). Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson 131,373-378.
    Posas, F., and Saito, H. (1998). Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO i 17,1385-1394.
    Posas, F., Wurgler-Murphy, S.M., Maeda, T., Witten, E.A., Thai, T.C., and Saito, H. (1996). Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell 86, 865-875.
    Raitt, D.C., Johnson, A.L., Erkine, A.M., Makino, K., Morgan, B., Gross, D.S., and Johnston, L.H. (2000). The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf 1 in vivo and is required for the induction of heat shock genes by oxidative stress. Mol Biol Cell 11, 2335-2347.
    Rapoport, T.A., Jungnickel, B., and Kutay, U. (1996). Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu Rev Biochem 65,271-303.
    Reiser, V, Raitt, D.C., and Saito, H. (2003). Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J Cell Biol 161,1035-1040.
    Reiser, V, Ruis, H., and Ammerer, G. (1999). Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hogl mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 10,1147-1161.
    Renault, L, Kuhlmann, J., Henkel, A., and Wittinghofer, A. (2001). Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell 105, 245-255.
    Renault, L, Nassar, N., Vetter, I., Becker, J., Klebe, C, Roth, M, and Wittinghofer, A. (1998). The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392,97-101.
    Rexach, M., and Blobel, G. (1995). Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83,683-692.
    Saitoh, S., Chabes, A., McDonald, W.H., Thelander, L., Yates, J.R., and Russell, P. (2002). Cid13 is a cytoplasmic poly(A) polymerase that regulates ribonucleotide reductase mRNA. Cell 109, 563-573.
    Schatz, G, and Dobberstein, B. (1996). Common principles of protein translocation across membranes. Science 271, 1519-1526.
    Scheffzek, K., Klebe, C, Fritz-Wolf, K., Kabsch, W, and Wittinghofer, A. (1995). Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374,378-381.
    Seewald, M.J., Korner, C, Wittinghofer, A., and Vetter, I.R. (2002). RanGAP mediates GTP hydrolysis without an arginine finger. Nature 415, 662-666.
    Seino, H., Hisamoto, N., Uzawa, S., Sekiguchi, T., and Nishimoto, T. (1992). DNA-binding domain of RCCl protein is not essential for coupling mitosis with DNA replication. J Cell Sci 102 (Ft 3), 393-400.
    Shindyalov, I.N., and Bourne, RE. (1998). Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11, 739-747.
    Stewart, M., and Baker, R.P. (2000). 1.9 A resolution crystal structure of the Saccharomyces cerevisiae Ran-binding protein Mog1p. J Mol Biol 299, 213-223.
    Stewart, M., Kent, H.M., and McCoy, A.J. (1998). Structural basis for molecular recognition between nuclear transport factor 2 (NTF2) and the GDP-bound form of the Ras-family GTPase Ran. J Mol Biol 277, 635-646.
    Swanson, R.V., Alex, L.A., and Simon, M.I. (1994). Histidine and aspartate phosphorylation: two-component systems and the limits of homology. Trends Biochem Sci 19,485-490.
    Tatebayashi, K., Tani, T., and Ikeda, H. (2001). Fission yeast Moglp homologue, which interacts
    with the small GTPase Ran,is required for mitosis-to-interphase transition and poly(A)(+)RNA metabolism.Genetics 157,1513-1522.
    Thakurta,A.G.,Whalen,W.A.,Yoon,J.H.,Bharathi,A.,Kozak,L.,Whiteford,C.,Love,D.C.,Hanover,J.A.,and Dhar,R.(2002).Crp79p,like Mex67p,is an auxiliary mRNA export factor in Schizosaccharomyces pombe.Mol Biol Cell 13,2571-2584.
    Vetter,I.R.,Nowak,C.,Nishimoto,T.,Kuhlmann,J.,and Wittinghofer,A.(1999).Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue:implications for nuclear transport.Nature 398,39-46.
    Weis,K.,Ryder,U.,and Lamond,A.I.(1996).The conserved amino-terminal domain of hSRP1alpha is essential for nuclear protein import.EMBO J 15,1818-1825.
    Zasloff,M.(1983).tRNA transport from the nucleus in a eukaryotic cell:carrier-mediated translocation process.Proc Natl Acad Sci U S A 80,6436-6440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700