用户名: 密码: 验证码:
Archimedean Copulas函数在干旱分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于Copulas函数理论,选取渭河流域90个气象站的月降水资料,应用Archimedean Copulas函数构建了干旱特征变量的联合分布,分析了该流域的干旱发生规律,对于渭河水资源合理配置,水利工程规划、设计和管理以及抗旱减灾具有重要的研究意义和指导作用。本文主要取得如下结论:
     (1)通过边缘分布模型的优选和Kolmogorov-Smirnov(K-S)检验,渭河流域干旱特征变量的边缘分布类型分别为:干旱历时以服从指数分布,干旱烈度服从Gamma分布,烈度峰值服从广义Pareto分布为主。
     (2)通过相关性度量分析,渭河流域各站的干旱烈度和烈度峰值以及干旱历时和干旱烈度之间存在着较高的相关性;干旱历时和烈度峰值之间的相关性较低。
     (3)分别采用极大似然法和适线法对20种二维Archimedean Copulas函数和4种三维Archimedean Copulas函数进行了参数估计,并以RMSE、AIC和Bias为拟合优度评价指标,结果表明:适线法的参数估计效果优于极大似然法。
     (4)优选了出对渭河流域适用的Archimedean Copula函数。对于干旱历时和干旱烈度的联合分布,Gumbel Copula函数在铜川、渭南、西安、咸阳等地区的的拟合效果最优,Frank Copula函数在宝鸡地区的拟合效果最优,对于整个渭河流域90个气象站而言,Gumbel Copula函数的适用性最好,拟合效果最优。对于干旱历时和烈度峰值的联合分布,Nelsen No 20 Copula函数在整个渭河流域的拟合效果最好,拟合效果次之的依次是Nelsen 13 Copula和Frank Copula函数。对于干旱烈度和烈度峰值的联合分布,Nelsen No 20 Copula函数对宝鸡和咸阳地区的拟合程度最优,但是,对于整个渭河流域而言,Clayton Copula函数的拟合效果最优。对于干旱历时、干旱烈度和烈度峰值之间的三维联合分布,Clayton Copula函数的拟合效果最优。
     (5)通过优选出的Archimedean Copula函数分别建立了相应的干旱变量的联合分布模型,计算了二维情况和三维情况下的联合概率、联合重现期、同现重现期以及条件重现期,并绘制了相应的图形,从图上可查出不同组合条件下的概率和重现期,可以为系统分析渭河流域的干旱特征提供依据。
     (6)对于二维分布情况,相同条件下的同现重现期大于联合重现期;对于三维分布情况,各干旱变量相同取值下的同现重现期大于联合重现期,给定某一干旱变量大于等于某确定值时的其它两个干旱变量的条件联合重现期大于给定这一干旱变量小于等于相同的确定值时的其它两个干旱变量的条件联合重现期。
     (7)以多年月平均降水量为截取水平,绘制了渭河流域干旱变量条件概率,显示了典型组合条件下概率的空间分布规律。条件概率P(S≥100/D≥3),P(M≥50/D≥3)的总体空间分布特征为由东南向西北递增;条件概率P(S≥100/M≥50)的空间分布特征为以渭河支流泾河上游的合水、庆阳、西峰、镇原,以及甘肃的华亭、庄浪、张家川和宁县的泾源等地区为中心,条件发生概率向四周呈递增趋势,其中西北地区的增长趋势比东南地区的增长趋势明显。
Based on Copula theory, monthly precipitation data of 90 Gauging stations in Wei River Basin were selected. Archimedean Copulas were applied to construct the joint distribution of drought variables and analyzed the characteristics of drought occurrences in the basin, which has great significance and guidance to water resources rational allocation; the planning, design and management of water conservancy project, as well as to drought and disaster reductions. Main results in this study are as followed:
     (1) Through the optimal selection of marginal distributions and Kolmogorov-Smirnov(K-S) test, the type of marginal distribution of drought variables in Wei River basin are followed: most of the drought durations are subjected to exponential distribution; most of the drought severities are subjected to Gamma distribution, while most of the severity peaks are subjected to generalized Pareto Distribution.
     (2) Though correlation measurement, the correlation between drought duration and drought severity and that between drought severity and severity peak in Wei River Basin are high, while the correlation between drought duration and severity peak is low.
     (3) Maximum likelihood method and fitting curve method were applied to the parametesr estimation to 20 kinds of two dimensional Archimedean Copulas and 4 kinds of three dimensional Archimedean Copulas respectively. Take RMSE, AIC and Bias as goodness-of-fit assessment index to make comparison, the results show that fitting curve method is better than maximum likelihood method.
     (4) The most appropriate Archimedean Copulas for Wei River Basin were optimaly selected: for the joint distribution of drought duration and drought severity, Gumbel Copula shows the best result to TongChuan, WeiNan, Xi’an, XianYang and etc.,while Frank Copula shows the best result to BaoJi area, however, for the whole Wei River basin, Gumbel Copula gives the best applicability and shows the best result; for the joint distribution of drought duration and drought severity, Nelsen No 20 Copula shows the best result of goodness-of-fit to the whole basin, next to Nelsen No 20 Copula which show better results are Nelsen No 13 Copula and Frank Copula; for the joint distribution of drought severity and severity peak, Nelsen No 20 Copula shows best result to BaoJi and XianYang regions, but to the whole basin, Clayton copula shows the best result; for the three dimensional joint distribution of drought duration, drought severity and severity peak, Clayton Copula also shows the best result.
     (5) The joint distribution model for drought variables were established by the optimal selected Archimedean Copulas, joint probability, joint return period, co-occurrence return period and conditional return period were calculated, corresponding figures were drawn out as well. From those figures, different probabilities and return periods can be given, which can provide basis for systemic analyzing of drought characteristics in Wei River Basin.
     (6) For two dimensional distribution, co-occurrence return period is much greater than the joint return period under the same condition. For three dimensional distribution, the co-occurrence return period is much greater than the joint return period when the drought variables take the same value; the joint return period of two drought variables under the condition that other drought variable is greater than a certain value is longer than that under the condition of the other drought variable being smaller than the same certain value.
     (7) Taking the monthly average rainfall in years as truncation level, draw the conditional probabilities of drought variables in Wei River Basin, which shows the spatial distribution characteristics of the probability under typical combinational conditions. The general spatial distribution characteristic of conditional probability P(S≥100/D≥3),P(M≥50/D≥3) is that it is increasing from southeast to northwest; for the conditional probability P(S≥100/M≥50), it takes HeShui, QingYang, XiFeng and ZhenYuan which lies in the upper stream of Jing River (which is a branch of Wei River) and HuaTing, ZhuangLang, ZhangJiaChuan in GanSu and JingYuan in NingXia as center, and it increases to the around, there into, the increasing tend in northwest area is much more significant than that in southeast area.
引文
Ba′rdossy A, Li J .2008. Geostatistical interpolation using copulas.Water Resources Research 44:W07412. Doi: 10.1029/2007WR006115.
    Ba′rdossy A. 2006. Copula-based geostatistical models for groundwater quality parameters. Water Resources Research 42:W11416. Doi: 10.1029/2005WR004754.
    Bacchi,B, Becciu,G and Kottegoda,N T.1994. Bivariate exponential model applied to intensities and durations of extreme rainfall. Journal of Hydrology, 155, 225–236.
    Christian Genest, Anne-Catherine Favre. 2007 Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering:July/August:347-368..
    Daniel Berg. 2006. Copula Goodness-of-fit Tests: A Comparative Study. http://www.danielberg.no/publications/CopulaGOF.pdf
    De Michele C and Salvadori G .2003. A generalized Pareto intensityduration model of storm rainfall
    exploiting 2-copulas. Journal of Geophys Resources 108(D2):4067. doi:10.1029/2002JD002534.
    Dupuis DJ (2007) Using copulas in hydrology: benefits, cautions, and issues. Journal of Hydrologic Engineering 12(4):381–393.
    Favre AC, El Adlouni S, Perreault L, Thie′monge N, Bobe′e B. 2004. Multivariate hydrological frequency analysis using copulas. Water Resources Research 40(1):W01101. Doi:10.1029/2003WR002456. Gebremichael M, Krajewski WF. 2007. Application of copulas to modeling temporal sampling errors in satellite-derived rainfall estimates. Journal of Hydrologic Engineering .12(4):404–408.
    Genest C, Favre AC, Be′liveau J, Jacques C. 2007b. Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resources Research 43:W09401. Doi:10.1029/2006WR005275.
    Genest C, Favre AC. 2007. Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering .12(4):347–367.
    Genest C, Re′millard B, Beaudoin D. 2007a. Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ. Doi:10.1016/j.insmatheco.2007.10.005.
    Goel,N.K, Seth,S.M., and Chandra,S.1998. Multivariate modeling of flood flows. Journal of Hydraulic Engineering, ASCE 124(2), 146–155.
    J.T.Shiau, Song Feng, and Saralees Nadarajah. 2007. Assessment of hydrological droughts for the yellow river,China,Using copula. Hydrological Processes, (21):2157-2163.
    J.T.Shiau.2006. Fitting Drought Duration and Severity with Two-Dimensional Copulas. Water Resources Management, (20): 795–815.
    Kao SC, Govindaraju RS. 2008. Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Research 44(2):W02415. Doi:10.1029/2007WR006261.
    Kim T, Valdés J B, Yoo C. 2006. Nonparametric approach for bivariate drought characterization using Palmer drought index. Journal of Hydrologic Engineering. 11(2): 134- 143.
    L Zhang and Singh VP. 2006. Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering. 11(2):150–164.
    L Zhang and Singh VP. 2007a. Bivariate rainfall frequency distributions using Archimedean copulas. Jourmanl of Hydrology 332:93–109.
    L Zhang and Singh VP. 2007b. Gumbel–Hougaard copula for trivariate rainfall frequency analysis. Journal of Hydrologic Engineering 12(4):409–419.
    L Zhang and Vijay P Singh. 2007c.Trivariate Flood Frequency Analysis Using the Gumbel-HougaardCopula. Jounal of Hydrologic Engineering. July/August:431-439.
    L Zhang. 2005. Multivariate Hydrological Frequency Analysis and Risk Mapping[Doctroal Thesis]. Louisiana State University,USA,
    Linsely, R K. 1982.Hydrology for Engineering. 3ndedn.MC.Graw-Hill, New York:374-375 McKee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales.
    Preprints. 1995. Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor1 Soc. 179-184.
    Nadarajah S. 2007. A bivariate gamma model for drought. Water Resources Research 43(8):W08501. Doi:10.1029/2006WR005641.
    Nelsen B. 1998.An introduction to Copulas. New York: Springer.
    Palmer W C. 1965.Meteorological drought US. Weather Bureau Research Paper, 45:58. Poulin A, Huard D, Favre AC, Pugin S. 2007. Importance of tail dependence in bivariate frequency an0alysis. Journal of Hydrologic Engineering 12(4):394–403.
    Richard R, Heim J r. A 2002. Review of Twentieth-Century Drought Indices Used in the United States. Bull. American Meteor Society,83,1149-1165.
    Salvadori G, De Michele C. 2004. Frequency analysis via copulas:theoretical aspects and applications to hydrological events.Water Resources Research 40(12):W12511. Doi:10.1029/2004WR003133.
    Salvadori G, De Michele C. 2007. On the use of copulas in hydrology: theory and practice. Journal of Hydrologic Engineering 12(4):369–380.
    Serinaldi F and Grimaldi S . 2007. Fully nested 3-copula: procedure and application on hydrological data. Journal of Hydrologic Engineering 12(4):420–430.
    Shiau JT. 2003. Return period of bivariate distributed hydrological events. Stochastic Environmental Research and Risk Assessment 17(1–2):42–57.
    Shiau, J.T. and Shen, H.W. 2001. Recurrence analysis of hydrologic droughts of differing severity. Journal of Water Resources Planning and Management ASCE 127(1), 30–40.
    Silverman. 1986.Density Estimation for Statistics and Data Analysis. Chapman and Hall, New York, Lall U, Bosworth K. 1994.Multivariate kernel estimation of functions of space and time [M]. In: Hipel K V, Mcleod A I.
    Singh, K. and Singh, V. P. 1991. Derivation of bivariate probability density functions with exponential marginals. Stochastic Hydrology and Hydraulics,5(1), 55–68.
    Song SongBai and Vijay P Singh.2009. Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stochastic Environmental Research and Risk Assessment. Springer. DOI 10.1007/s00477-009-0331-1.
    Song SongBai and Vijay P Singh.2010. Frequency Analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stochastic Environmental Research and Risk Assessment. Springer,DOI10.1007/s00477-010-0364-5.
    World Meteorologic Organization.1992.International Meteorological Vocabulary (2nd) [C].WMO,182: 784.
    Yevjevich, V. 1967. An Objective Approach to Definitions and Investigations of Continental Hydro- logic Droughts. Hydrologic paper 23, Colorado State University, Fort Collins.
    Yue, S, Ouarda, T.B. M.J., and Bobe′e,B. 2001. A review of bivariate gamma distributions for hydrological application. Journal of Hydrology, 246:1–18.
    Yue, S., Ouarda, T. B. M. J., Bobe′e, B., Legendre, P., and Bruneau, P. 1999. The Gumbel mixed model for flood frequency analysis. Journal of Hydrology 226, 88–100.
    Zhang Jingshu(张景书). 1993. Definition and logical analysis on drought. Agricultural Research in AridAreas (干旱地区农业研究) , 11 (3) : 972100.
    R.L.汉森.1991.能源部·水利部水利水电西北勘测设计院编.干旱研究译文集.西北勘测设计院出版社.
    百度百科2010.西南大旱.http://baike.baidu.com/view/3375576.htm?fr=ala0_1_1.[2010-5-15]
    戴昌军,梁忠民. 2006.多维联合分布计算方法及其在水文中的应用.水利学报. 37(2):160-165.
    戴昌军.2005.多维联合分布计算理论在南水北调东线丰枯分析中的应用研究[硕士学位论文].南京:河海大学.
    段晋芳,王青杵,王改玲等. 2010.基于GIS的山西永定河流域降水空间插值方法分析.山西农业科学,38(3):44-47.
    和宛琳,徐宗学.2007.渭河流域近40年降水量变化规律及干旱预测.人民黄河,29(1):36-38.
    华东水利学院.1981.水文学的概率统计基础.水利电力出版社.
    黄裳.2009.世界有哪些干旱区. http://www.chnd.net.cn/HTML/2008/zsbl200802/200927230.html.[2010-5-22]
    黄河水利委员会黄河志总编辑室. 1998.黄河流域综述.郑州:河南人民出版社.
    李克让. 1999.中国干旱灾害研究及减灾对策.河南科学技术出版社.
    李佩成. 1988.试论干旱.中国干旱半干旱地区自然资源研究.北京:科学出版社.
    刘国光,许世刚.2004.基于Copula方法深圳A股、B股投资组合风险值实证分析.淮海工学院学报(自然科学版). 13(4):82-84.
    刘引鸽. 2005.气象气候灾害与对策[M].中国环境科学出版社.
    宋松柏,蔡焕杰,粟晓玲.2005.专门水文学.西北农林科技大学出版社.
    孙志宾,顾岚.2004.Copula理论在金融中的应用.广西师范大学学报(自然科学版)22(2):47-51.
    王劲松,郭江勇,周跃武,杨兰芳.2007.干旱指标研究的进展和展望.干旱区地理, 30(1):60-65
    王文圣,丁晶. 2003.基于核估计的多变量非参数随机模型初步研究.水利学报, (2): 9- 14.
    王岩,隋思涟,王爱青.2006.数理统计与Matlab工程数据分析.清华大学出版社.
    王英. 2006.阜新地区干旱指标计算及干旱预测[硕士学位论文].沈阳:沈阳农业大学.
    韦艳华,张世英,孟利峰. 2003.Copula理论在金融上的应用.西北农林科技大学学报(社会科学版).5(3):97-101.
    渭河网2010. http://www.weihe.gov.cn/gk.asp.html.[2010-5-15].
    吴振翔,叶五一,缪柏其.2004.基于Copula的外汇投资组合风险分析.中国管理科学.12(4):1-5.
    肖义. 2007.基于copula函数的多变量水文分析计算研究[博士学位论文].武汉:武汉大学.
    熊立华,郭生练,肖义等.2005.Copula联结函数在多变量水文频率分析中的应用.武汉大学学报(工学版), 38(6):16- 19.
    阎宝伟,郭生练,肖义,方彬. 2007.基于两变量联合分布的干旱特征分析.干旱区研究. 24(4):537-542.
    叶守泽,詹道江.2000.工程水文学.中国水利水电出版社.
    袁超.2008.渭河流域主要河流干旱特性研究[硕士学位论文].陕西杨陵:西北农林科技大学.
    袁文平,周广胜.2004.干旱指标的理论分析与研究展望.地球科学进展.19 (6): 982-991.
    张明恒. 2004.多金融资产风险价值的Copula计量方法研究.数量经济技术经济研究.(4):67-70.
    张娜,郭生练,方彬,阎宝伟. 2008.暴雨事件中两变量联合分布研究.人民长江.39(13):33-37
    张世法等. 2008.中国历史干旱. 1949-2000.河海大学出版社.
    张尧庭.2002.连接函数(Copula)技术与金融风险分析.统计研究, (4): 48-51.
    赵广和.2004.中国水利百科全书(综合分册).北京:中国水利水电出版社.
    赵旭春.2007.中国北方干旱区干旱指标的应用研究[硕士学位论文].兰州:兰州大学.
    郑红星,刘昌明.2000.南水北调东中两线不同水文区降水丰枯遭遇性分析.地理学报, 55(5):523- 532.
    朱道清.1993.中国水利大辞典.青岛:青岛出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700