用户名: 密码: 验证码:
鸡白痢沙门氏菌致病性及MyD88-依赖途径信号分子表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡白痢沙门氏菌病是一种急性、系统性疾病,主要危害1周龄以内雏鸡,造成高死亡率;成年鸡无明显病变,多数呈隐形感染。鸡白痢给世界禽业造成巨大的经济损失,且感染后的长期带菌及抗生素的滥用对公共卫生也产生了巨大的潜在危害。
     近年来研究发现,先天免疫在抵抗病菌感染中发挥着重要的作用。TLR4及其信号通路在抗沙门氏菌感染中的作用越来越受到人们的重视。研究证实,人和鼠的MyD88-依赖途径在病原识别方面作用突出,但是MyD88-依赖途径的作用在鸡上的研究很少,对其信号通路基因表达的研究也处于起步阶段。
     本实验选用鸡白痢沙门氏菌感染模型,人工感染SPF雏鸡,一方面从水平传播特性和组织病理学及机体免疫反应来研究其对雏鸡危害;另一方面从先天免疫的角度,探讨了机体MyD88-依赖途径在抵抗鸡白痢沙门氏菌感染中发挥的作用。研究结果如下:
     【试验一】240只3日龄SPF鸡按0,20%,40%,60%,80%,100%的感染率分6组进行人工感染鸡白痢沙门氏菌C79-13株,饲养于隔离仓中。于感染后1d、3d、7d、14d、21d和28d进行细菌学、组织病理学和免疫学指标测定。结果显示:(1)鸡白痢沙门氏菌不同感染率组传播速度不同。20%感染率组72h就能感染整个鸡群,感染率越高其传播速度越快,对鸡群的危害越大,造成的死亡率越高(5.4%-35%),且鸡白痢沙门氏菌可造成雏鸡生长抑制;
     (2)组织学病变主要以肝炎、心包炎和肺炎为主,集中在感染后3d-7d之间;(3)细菌学检测组织载菌量(bacterial burden),盲肠高于脾脏;(4)感染组血清IgG和TNF-α在3DPI时显著升高。
     【试验二】80只3日龄SPF鸡按随机分为两组,处理组经口注射鸡白痢沙门氏菌C79-13株悬液108cfu 0.5ml,对照组注射同剂量生理盐水。每个处理组分别在感染后1d、3d、7d和14d随机取8只鸡,用于脾脏和盲肠样品RNA提取。采用SYBR GreenⅠ染料实时荧光定量PCR(QPCR),比较处理组和对照组脾脏和盲肠组织MyD88-依赖途径信号分子TLR4、MyD88、TRAF6和NF-κB基因mRNA相对表达量的变化。结果显示:(1)脾脏组织TLR4、MyD88、TRAF6和NF-κB基因mRNA相对表达量在3DPI显著升高(P<0.05);(2)盲肠组织TLR4、MyD88和TRAF6 mRNA相对表达量在1DPI和3DPI有上调的趋势,但没有统计学意义(P>0.05);1DPI时,NF-κB基因mRNA相对表达量明显上调(P<0.05)。结果表明,鸡白痢沙门氏菌感染后,MyD88-依赖途径被激活,MyD88-依赖途径在鸡白痢沙门氏菌感染中发挥重要作用;TLR4、MyD88、TRAF6和NF-κB基因mRNA表达在脾脏和盲肠存在差异。
Salmonella Pullorum infection is an acute and systemic disease, which results in a high mortality in young chickens but rare clinic symptoms in adult birds. As a fowl-specific pathogen, S. Pullorum continues to cause economic losses worldwide. The ever-increasing problems of antibiotic abuse and chronic carrier of this bacteria in affected chickens also do a potentially huge harm to public health.
     The innate immune system plays a critical role in host defense against infectious disease. Despite the extensive knowledge of MyD88-dependent pathway in humans and mice, little information is available for the molecules of this pathway in chickens.
     Trial 1 Two hundred and forty chickens were randomly divided into 6 groups of 40 each and were infected artificially with S. Pullorum on a basis of infectious rate at 0, 20%, 40%, 60% and 100% respectively. The serological, bacteriological and histopathological parameters of host were determined at day 1, 3, 7, 14, 21, and 28 post infection.
     The results showed that the propagation speed of S. pullorum in affected chickens was increased in proportion to the infectious rate and so do the mortality (5.4%-35%). The bacteria could spread through the entire flock from 20% to 100% within 72 h and had a suppressive impact on the growth and development of young chickens. The characteristic lesion in tissue is mainly hepatitis, pericarditis and pneumonia, which mostly occurred between 3 and 7 day post infection. The bacterial burden of cecum was higher than the spleen. The serum concentrations of IgG and TNF-αwere significantly increased at 3 day post infection (P<0.05).
     Trial 2 Chickens were randomly divided into 2 groups of 40 each on d 3. One group was orally inoculated with 0.5mL of the bacterial suspension containing 108 CFU S. Pullorum and the control group was given 0.5ml saline. Eight chickens from each group were randomly chosen and sacrificed at 1, 3, 7 and 14 days post-infection. The spleen and caecum were removed and a portion of these two organs was immediately placed in RNAlaterTM for the determination of relative expression level of TLR4 signal pathway molecule genes (TLR4, MyD88, TRAF6 and NF-κB).
     The results showed that the infected chickens had significant up-regulation of TLR4, MyD88, TRAF6 and NF-κB mRNA expression in the spleen on day 3 and NF-κB on day 1 post infection compared with control ones (P<0.05). In the caecum, the mRNA expression levels of the pathway molecules gene were numerically up-regulated in infected group but not significant compared to uninfected controls on day 1 and 3 post infection(P>0.05). In conclusion, the MyD88-dependent pathway of TLR4 plays a role in S. Pullorum infection of chickens. The expression differences for TLR4、MyD88、TRAF6 and NF-κB genes existed between the spleen and caecum in affected chickens.
引文
[1]Snoyenbos, G. H. 1991. Pullorum disease, p.73–87. In B. W. Calnek (ed.), Diseases of poultry, 9th ed. Iowa State University Press, Ames.
    [2]Wigley, P., Berchieri Jr., A., Page, K.L., Smith, A.L., Barrow, P.A., 2001. Salmonella enterica serovar Pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens. Infect. Immun. 69, 7873–7879.
    [3]孙裕光.鸡白痢沙门氏杆菌的分离鉴定及灭活菌苗的研制[D].华中农业大硕士论文,2004.
    [4]湛南辉,黄根明,等.江西省两鸡场鸡白痢沙门氏菌分离株微生物学特性[J].江西畜牧兽医杂志,1995,4:15-17.
    [5]Gao, F., L. E. Stewart, S. W. Josrph, et al. Effectiveness of ultraviolet irradiation in reducing the numbers of Salmonella on eggs and egg beft conveyor materials[J].Appl Eng Agric 13:355-399.
    [6]Desmidt, M., R. Ducatelle, J. Mast, et al. Role of the humoral immune system in Salmonella Enteritidis phage type four infection in chickens[J].Vet Immunol Immunopathol, 1998, 63:355-367.
    [7]Cox, N. A. and J. E. Williams. A simplified biochemical system to screen salmonella isolates from poultry for serotyping[J].Poult Sci,1976, 55:1968-1971.
    [8]Cudjoe, K, S. and R. Krona. Detection of salmonella from raw food samples using Dynabeads7 anti-salmonella and a conventional reference methed[J].Int J Food Microbiol, 1997, 37:55-62.
    [9]Davies, R. H. and C.Way. Distribution of salmonella contamination in ten animal feedmills[J].Vet Microbiol, 1997, 51:159-169.
    [10]Dibb-Fuller, M. P. and M. J. Woodward. Contribution of fimbriae and flagella of Salmonella Enteritidis to colonization and invasion of chicks[J].Avian Pathol, 2000, 29:295-304.
    [11]Banatvala, N., A. Cramp, R. A. Feldman, et al. Samonellosis in North Thames(East),UK: Associated risk factors[J].Epidemiol Infect, 1999,122:201-207.
    [12]Berchieri, A, and P. A. Barrow. The antibacterial effects for Salmonella Enteritidis phage type 4 of different chemical disinfectants and cleaning agents tested under different conditions[J]. Avian Pathol, 1996, 25:663-667.
    [13]高占国.近年来鸡白痢病的发生特点及防治[J].河南畜牧兽医,2006,27(10):25-26.
    [14]温志医,贺秋育,刘涛,等.雏鸡白痢的诊断与防治[J].动物医学进展,2005,26(8):118.
    [15]Davies, R. H. and C.Way. Persistence of Salmonella Enteritidis in poultry units and poultry food[J].Br Poult Sci, 1996, 37:589-596.
    [16]Berrang, M. E., J. M. Mauldin, R. J. Buhn, et al. Microbiology of sanitized broiler hatching eggs through the egg production period[J].J Appl Poult Res, 1997, 6:298-305.
    [17]Barrow, P. A. Further observations on the serological response to experimental Samonellatyphimurium in chickens measured by ELISA[J]. Epidemiol Infect, 1992, 108:231-241.
    [18]Barrow, P. A., M. Desmidt, R. Ducatelle, et al. World Health Organisation-supervised interlaboratory comparison of ELISAs for the serological detection of Salmonella enterica serotype Enteritidis in chickens[J]. Epidemiol Infect, 1996, 117:69-77.
    [19]Fris, C. and J. van den Bos. A retrospective case-control study of risk factors associated with Salmonella enterica subsp, enterica serovar Enteritidis infections on Dutch broiler breeder farms[J]. Avian Pathol, 1995, 24:255-272.
    [20]赵平,权锦钰,张国俊.鸡白痢阳性鸡对种鸡生产性能影响调查及防治[J].宁夏农学院学报,2003,4:107-108.
    [21]屈凤琴,杨淑琴,关淑娟等.对鸡白痢阳性鸡对种鸡生产性能影响的调查[J].中国畜禽传染病,1998, 1:43-45.
    [22]沙莎,孙裕光,王琴.我国鸡白痢沙门氏菌病诊断与防治研究概况[J].西南民族学院学报,2003,2:191-195.
    [23]张浩,冉多良,余雄.伊犁地区父母代种鸡场发生沙门氏菌病后的净化研究[J].新疆农业科学,2006 ,43 (6) :484 -489.
    [24]White, D.G., S.Zhao, R.Sudler, S.Ayers, S.Friedman, S.Chen, P.F.McDermott, S.McDermott, and J.Meng. The isolation of antibiotic-resistant Salmonella from retail ground meats. New Engl. J. Med.2001(345):1147–1154.
    [25]Shivaprasad, H.L., 2000. Fowl typhoid and pullorum disease. Rev. Sci. Tech. 19, 405–424.
    [26]Cobb, S.P., McVicar, C.M., Davies, R.H., Ainsworth, H., 2005. Fowl typhoid in caged layer birds. Vet. Rec.157, 268.
    [27]Parmar, D., Davies, R., 2007. Fowl typhoid in a small backyard laying ?ock.Vet. Rec. 160, 348.
    [28]Smith, A. L., Beal, R., 2008. The avian enteric immune systemin health and disease. In: Davison, F., Kaspers, B., Schat, K. A. (Eds.), Avian Immunol-ogy. Academic Press, London, pp. 243–271.
    [29]Withanage, G. S.,Wigley, P., Kaiser, P.,Mastroeni, P., Brooks, H., Powers, C., Beal, R., Barrow, P., Maskell, D., McConnell, I., 2005. Cytokine and chemokine responses associated with clearance of a primary Salmo-nella enterica serovar Typhimurium infection in the chicken and in protective immunity to rechallenge. Infect. Immun. 73, 5173–5182.
    [30]Gewirtz, A. T., Rao, A. S., Simon Jr., P.O., Merlin, D., Carnes, D., Madara, J. L., Neish, A. S., 2000. Salmonella typhimurium induces epithelial IL-8 expression via Ca(2+)-mediated activation of the NF-kappaB path-way. J. Clin. Invest. 105, 79–92.
    [31]Gewirtz, A.T., Simon Jr., P.O., Schmitt, C.K., Taylor, L.J., Hagedorn, C.H., O’Brien, A.D.,Neish, A.S., Madara, J.L., 2001. Salmonella typhimurium translocates ?agellin across intestinal epithelia, inducing a proin-?ammatory response. J. Clin. Invest. 107, 99–109.
    [32]Wallis, T. S., Galyov, E.E., 2000. Molecular basis of Salmonella-induced enteritis. Mol. Microbiol. 36, 997–1005.
    [33]Zeng, H., Carlson, A. Q., Guo, Y., Yu, Y., Collier-Hyams, L. S., Madara, J. L., Gewirtz, A.T., Neish, A. S., 2003. Flagellin is the major proin?amma-tory determinant of enteropathogenic Salmonella. J. Immunol. 171,3668–3674.
    [34]Henderson, S. C., Bounous, D. I., Lee, M. D., 1999. Early events in the pathogenesis of avian salmonellosis. Infect. Immun. 67, 3580–3586.
    [35]Barrow, P. A., Huggins, M. B., Lovell, M. A., 1994. Host specificity of Salmonella infection in chickens andmice is expressed in vivo primarily at the level of the reticuloendothelial system. Infect. Immun.62, 4602–4610.
    [36]Wigley, P., Hulme, S., Rothwell, L., Bumstead, N., Kaiser, P., Barrow, P., 2006. Macrophages isolated from chickens genetically resistant or susceptible to systemic salmonellosis show magnitudinal and temporal differential expression of cytokines and chemokines following Salmonella enterica challenge. Infect. Immun. 74, 1425–1430.
    [37]Wigley, P., Hulme, S. D., Bumstead, N., Barrow, P. A., 2002a. In vivo and in vitro studies of genetic resistance to systemic salmonellosis in the chicken encoded by the SAL1 locus. Microbes Infect. 4, 1111–1120.
    [38]Mariani, P., Barrow, P. A., Cheng, H. H., Groenen, M. M., Negrini, R., Bum-stead, N., 2001. Localization to chicken chromosome 5 of a novel locus determining salmonellosis resistance. Immunogenetics 53, 786–791.
    [39]Babu, U., Dalloul, R. A., Okamura, M., Lillehoj, H. S., Xie, H., Raybourne, R. B., Gaines, D., Heckert,R. A., 2004. Salmonella enteritidis clearance and immune responses in chickens following Salmonella vaccination and challenge. Vet. Immunol. Immunopathol. 101, 251–257.
    [40]Babu, U., Scott, M., Myers, M. J., Okamura, M., Gaines, D., Yancy, H. F., Lillehoj, H., Heckert, R. A., Raybourne, R. B., 2003. Effects of live attenuated and killed Salmonella vaccine on T-lymphocyte mediated immunity in laying hens. Vet. Immunol. Immunopathol. 91, 39–44.
    [41]Beal, R. K., Powers, C.,Wigley, P., Barrow, P. A., Smith, A. L., 2004a. Temporal dynamics of the cellular, humoral and cytokine responses in chickens during primary and secondary infection with Salmonella enterica serovar Typhimurium. Avian Pathol. 33, 25–33.
    [42]Wigley, P., Hulme, S. D., Powers, C., Beal, R. K., Berchieri Jr., A., Smith, A., Barrow, P., 2005b.Infection of the reproductive tract and eggs with Salmonella enterica serovarpullorumin the chicken is associated with suppression of cellular immunity at sexual maturity. Infect. Immun.73, 2986–2990.
    [43]Qimron, U., Madar, N., Mittrucker, H. W., Zilka, A., Yosef, I., Bloushtain, N., Kaufmann, S. H., Rosenshine, I., Apte, R. N., Porgador, A., 2004. Identification of Salmonella typhimurium- genes responsible for interference with peptide presentation on MHC class I molecules: Deltayej Salmonella mutants induce superior CD8+ T-cell responses. Cell Microbiol. 6, 1057–1070.
    [44]Uchiya, K., Groisman, E. A., Nikai, T., 2004. Involvement of Salmonella pathogenicity island 2 in the up-regulation of interleukin-10 expression in macrophages: role of protein kinase A signal pathway. Infect. Immun. 72, 1964–1973.
    [45]Chappell, L., P. Kaiser, P. Barrowb, P. Wigley, et al. 2008. The immunobiology of avian systemic salmonellosis. Vet Immun. Immunopathol. Available online.
    [46]Akira S. Toll receptor families: structure and function.Immunology.2004.16:1-2.
    [47]Nicholas D.,Temperley, Sofia Berlin, R.Ian. Paton1, et al. Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genomics. 2008.9:62.
    [48]Katherine A., Fitzgerald and J,Chen, Zhijian. Sorting out Toll Signals. cell. 2006.5:834-835.
    [49]Kawai Taro., Akir, Shizuo. TLR signaling. Immunology. 2007.19:24–32.
    [50]Chen, Z.J. Kinasing and Clipping Down the NF-κB Trail. Nat. Cell Biol. 2005,7,758-765.
    [51]肖宇宏,白云.Toll样受体:天然免疫和获得性免疫的桥梁[J].局解手术学杂志.2005.14 (1):54-55.
    [52]Edfeldt K., J.Swedenborg, G.K.Hansson. Expression of toll-like receptors in human atheros- clerotic lesions:apossible pathway for plaque activation.Circulation.2002.105(10):1158-1161.
    [53]王国兵,李成荣,祖莹,等. Toll样受体信号途径活化在川崎病免疫发病机制中的作用[J].中华儿科.2006,44(5):333-337.
    [54]王国兵,李成荣,杨军,等.TLR途径负性调节因子A20、IRF-4和TRAF4在川崎病免疫发病中的变化[J].中华微生物和免疫学,2007,27(5):468-472.
    [55]赵保胜,刘洪斌,马悦颖,等.桂枝汤含药血清对Toll样受体3、4型及其下游信号转导通路的影响[J].中药药理与临床.2007,23(3):1-3.
    [56]赵保胜,刘洪斌,马悦颖,等.黄连解毒汤含药血清对Toll样受体3、4型及其下游信号转导通路的影响[J].中国实验方剂学杂志.2007,13(5):91-97.
    [57]Arbour NC.,E.Lorenz,B.C.Schutte. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans.Nat Genet. 2000. 25(2):187-191.
    [58]Agnese D.M.,J.E.Calvano,S.J.Hahm, et al. Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gramnegative infections. JInfect Dis.2002.186:1522-1525.
    [59]Lorenz E.,J.P.Mira,K.L.Frees, et al. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med.2002.162:1028-1032.
    [60]Lorenz E.,M.Hallman,R.Marttila, et al. Association between the Asp299Gly polymorphisms in the Toll-like receptor 4 and premature births in the Finnish population. Pediatr Res.2002.52:373-376.
    [61]Ameziane N., T.Beillat, P.Verpillat. Association of the Toll-like receptor 4 gene Asp299Gly polymorphism with acute coronary events. Arterioscler Thromb Vasc Boil. 2003,23(12):e 61-64.
    [62]Edfeldt K., A.M. Bennet, P. Eriksson, et al. Association of hypo-responsive toll-like receptor 4 variants with risk of myocardial infection.Eur Heart.2004.25:1447-1453.
    [63]Rezazadeh M., M. Hajilooi, A.Rafiei, et al. TLR4 polymorphism in Iranian patients with brucellosis. J Infect.2006.53(3):206-210.
    [64]Mockenhaupt F.P., J.P. Cramer, L. Hamann, et al. Toll-like receptor (TLR) polymorphisms in African children:Common TLR-4 variants predispose to severe malaria. Proc Natl Acad Sci USA. 2006.103:177-182.
    [65]冯凯. 18个重要炎症相关基因SNP分析及TLR4基因5’区SNP功能研究[D].2004.第三军医大学博士论文.
    [66]Leveque, G.,V. Forgetta, S. Morroll, et al. Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infectionin chickens. Infect.Immun. 2003.71, 1116-1124.
    [67]Wang Jixin. Bioinformatic analysis of chicken chemokines,chemokine receptors,and Toll-like receptor 21.2006. Texas A&M University Master of Science.
    [68]Vicente, J., S.Higgins, L.Bielke, et al. Effect of probiotic culture candidates on Salmonella prevalence in commercial Turkey houses. Poult Sci, 2007,16:471-475.
    [69]Beaumont C., et al. Effect of Two Candidate Genes on the Salmonella Carrier State in Fowl.Poultry Science,2003, 82:721–726.
    [70]Malek,M., J.R. Hasenstein, S.J. Lamont. Analysis of chicken TLR4, CD28,MIF,MD-2,and LITAF genes in a Salmonella enteritidis resource population. Poult. Sci, 2004, 83:544–549.
    [71]Sadeyen,J.R., J. Trotereau, Jocelyne. Protais, et al. Salmonella carrier-state in hens: study of host resistance by a gene expression approach. Microbes and Infection, 2006, 8:1308-1314.
    [72]Y.M. Saif.禽病学[M].第11版.苏敬良,高福主译.北京:中国农业大学出版社,2002, 642~643.
    [73]张欣.家禽沙门氏菌感染及重组减毒沙门氏菌活疫苗研究现状.中国畜牧兽医学会禽病学分会第十一次学术研讨会论文集[C],2002,434-436.
    [74]潘光炎,刘磊,罗德英,等.无菌环境中鸡白痢病传播特性的研究[J].甘肃农业大学学报,1994,30(4):351-355.
    [75]周德庆.微生物学实验教程(第2版)[M].北京:高等教育出版社,2006,25-27.
    [76]孙敬方.动物实验方法学[M].北京:人民卫生出版社,2002:362-363.
    [77]Humphrey, T. J., A. Baskerville, and A. Henley. Influence of feeding partterns on the artificial infection of laying hens with Salmonella enteritidis phage type 4[J].Vet Rec,1993, 132:407-409.
    [78]Snoyenbos, G.H. In B. W. Calnek (ed.), Diseases of poultry, 9thed[M].1991, Iowa State University Press, Ames.p.73-87.
    [79]Gast, R.K. and C.W. Beard. Production of Salmonella enteritidis-contaminated eggs by experimentally infected hens[J]. Avian Dis,1990, 34:438-446.
    [80]Dhillon, A. S. H. L. Shivaprasad, S. Johnson, et al., Pathogenicity of Environmental origin Salmonellas in Specific Pathogen-Free Chicks[J]. Poult Sci, 2001, 80:1323–1328.
    [81]Hemert S, Hoekman AJ, Smits MA, Rebel JM. Gene expression responses to a Salmonella infection in the chicken intestine differ between lines. Vet Immunol Immunopathol. 2006,114(3-4):247-258.
    [82]Berthelot-Herault, F., Mompart, F., Zygmunt, M. S., Dubray, G., Duchet-Suchaux, M., 2003. Antibody responses in the serum and gut of chicken lines differing in caecal carriage of Salmonella enteritidis. Vet. Immunol. Immunopathol. 96, 43–52.
    [83]Bolder, N. M., Janss, L. L., Putirulan, F. F., Wagenaar, J. A., 2002. Resistance of broiler outbred lines to infection with Salmonella enteritidis. Avian Pathol. 31, 581–587.
    [84]Sadeyen, J. R., Trotereau, J., Velge, P., Marly, J., Beaumont, C., Barrow, P. A., Bumstead, N., Lalmanach, A. C., 2004. Salmonella carrier state in chicken: comparison of expression of immune response genes between susceptible and resistant animals. Microbes Infect. 6, 1278–1286.
    [85]Abasht, B., M. G. Kaiser, S. J. Lamont. 2008. Toll-like receptor gene expression in cecum and spleen of advanced intercross line chicks infected with Salmonella enterica serovar Enteritidis. Vet. Immunol. Immunopathol. 123:314–323.
    [86]Hong, Y. H., H. S. Lillehoja, S. H. Lee, et al. Molecular cloning and characterization of chicken lipopolysaccharide-induced TNF-a factor (LITAF). Develop.Compar. Immunol,2006, 30: 919~929.
    [87]Takashiba S, Van Dyke TE, Shapira L, Amar S. Lipopolysaccharide-inducible and salicylate- sensitive nuclear factor(s) on human tumor necrosis factor alpha promoter. Infect Immun 1995;63:1529-1534.
    [88]Bolcato-Bellemin, A. L., M. G. Mattei, M. Fenton, S. Amar. Molecular cloning and characterization of mouse LITAF cDNA: role in the regulation of tumor necrosis factor- alpha (TNF-alpha) gene expression. J Endotoxin Res, 2004, 10:15-23.
    [89]Medzhitov R, Janeway Jr C. The toll receptor family and microbial recognition. Trends Microbiol 2000, 8:452-456.
    [90]Livak., Schmittgen. Analysis of relative gene expression data using real-rime quantitative PCR and the 2-ΔΔCt method [J].Methods, 2001,25:402-408.
    [91]?iko?, S., Bukovská, A and Koppel, J. 2007. Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. BMC Molecular Biology, 8,1-14.
    [92]陈颖,徐宝梁,苏宁,等.实时荧光定量PCR技术检测转基因大豆方法的建立[J].食品与发酵工业,2003,29(8):65-69.
    [93]陈英剑,胡成进,赵苗青. SYBR Green实时荧光定量PCR技术平台的建立[J].实用医药杂志,2004,21(11): 997-999.
    [94]唐中林,邓宏,李奎,等.应用荧光定量PCR方法研究RPL29基因在通城猪和长白猪不同时期胚胎骨骼肌中的表达[J].畜牧兽医学报,2008,39(8):1007-1012.
    [95]Bar-Shira, E., Sklan, D., Friedman, A., 2003. Establishment of immune competence in the avian GALT during the immediate post-hatch period. Dev. Comp. Immunol. 27, 147-157.
    [96]Iqbal, M., Philbin, V.J., Smith, A.L., 2005a. Expression patterns of chicken Toll-like receptor mRNA in tissues, immune cell subsets and cell lines. Vet. Immunol. Immunopathol. 104, 117–127.
    [97]Yilmaz A, Shen S, Adelson DL, Xavier S, Zhu JJ. 2005. Identification and sequence analysis of chicken Toll-like receptors. Immunogenetics.56:743–753.
    [98]Higgs R, Cormican P, Cahalane S, Allan B, Lloyd AT, Meade K, James T, Lynn DJ, Babiuk LA, O’Farrelly C. 2006. Induction of a novel chicken Toll-like receptor following Salmonella enterica serovar Typhimurium infection. Infect Immun 74:1692–1697.
    [99]MacKinnon, K.M., He, H., Nerren, J.R. et al., Expression profile of toll-like receptors within the gastrointestinal tract of 2-day-old Salmonella enteriditis-infected broiler chickens. Vet. Microbiol. (2009).Available online.
    [100]Lynn, D. J., A. T. Lloyd, and C. O’Farrelly. 2003. In silico identification of components of the Toll-like receptor (TLR) signaling pathway in clustered chicken expressed sequence tags (ESTs). Vet. Immunol. Immunopathol.93:177–184.
    [101]Wheaton,S., M.Lambourne, AJ. Sarson, S. Sharif, et al.Molecular cloning and expression analysis of chicken MyD88 and TRIF genes. DNA Sequence, 2007,18(6): 480–486.
    [102]Qiu,Yafeng, Yang Shen, Xiangdong Li, Chan Ding and Zhiyong Ma. Molecular cloning andfunctional characterization of a novel isoform of chicken myeloid differentiation factor 88 (MyD88). Develop & Compar Immunol, 2008,32:1522-1530.
    [103]Yao,Cui-Luan., Peng Kong , Zhi-Yong Wang , et al. Molecular cloning and expression of MyD88 in large yellow croaker, Pseudosciaena crocea. Fish & Shellfish Immunology, 2009,26:249-255.
    [104]Qiu Limei, Linsheng Song, Yundong Yu, et al. Identification and expression of TRAF6 (TNF receptor-associated factor 6)gene in Zhikong Scallop Chlamys farreri. Fish & Shellfish Immunology, 2009,26:359-367.
    [105]Kessel,A., E.Toubi, E. Pavlotzky, et al.Treatment with glutamine is associated with down- regulation of Toll-like receptor-4 and myeloid differentiation factor 88 expression and decrease in intestinal mucosal injury caused by lipopolysaccharide endotoxaemia in a rat. Clinical and Experimental Immunology, 2007,151: 341–347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700