用户名: 密码: 验证码:
三峡库区消落带土壤理化性质及种子库研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡库区消落带水位周期性涨落,产生了干湿交替的生态环境,其土壤理化性质及种子库物种势必会发生较大变化。本文针对三峡库区消落带水淹初期的特殊情况,连续两年对土壤理化性质和种子库的动态研究,探讨其对水位变化的响应趋势,为未来三峡库区消落带的植被恢复和重建提供理论依据。
     在地理条件相似的条件下,选取消落带内现存的次生灌丛和弃耕地固定样地4块,采用海拔梯度代替水淹时间,以海拔145 m、155 m、165 m、175 m和185 m为分界线,将消落带划分为145-155 m,155-165 m、165-175 m三段高程,将存有原生植被的175-185 m作为对照样带,对地上植被、土壤表层水分物理性质、土壤化学元素、土壤种子库季节性变化、年际变化等进行系统研究,探讨水淹初期消落带土壤理化性质与种子库如何变化,以及种子库优势物种与环境因子的关系,结果表明:
     1.不同月份表层土壤含水率,除了最大持水量、毛管持水量、最小持水量、非毛管孔隙度、土壤通气度9月份最高外,土壤质量含水量、土壤体积含水量、毛管空隙度、总孔隙度5月份最高,7月份最低;土壤容重在5月份和7月份相差不大,而9月份则最小。随着海拔梯度的升高,各月份土壤表层土壤含水率未表现出一致的变化趋势,但以水淹时间最长的145-155m区段土壤物理性质最差。
     2.连续水淹两年后,土壤化学元素含量降低的分别是土壤pH值1.18%、全氮20.16%、全磷30.80%、全钾6.87%、速效磷103.75%、速效钾16.90%、全铜12.12%、全锰16.17%、全锌50.16%,而含量升高的分别是有机质7.22%、水解性氮3.03%、全铁6.88%、全钙31.89%、全镁84.80%、全钠98.44%;随着海拔梯度的升高,水淹和人为因素干扰导致各种元素变化方式差异较大;随着土壤层次的加深,除速效磷、全铜、全铁、全锰、全锌、全钙、全镁、全钠未表现出规律性变化趋势外,其他元素在2008年表现为逐渐降低,2009年则表现为逐渐增加。
     3.水淹初期两种植被类型的土壤种子库储量存在极显著差异,次生灌丛种子密度为6991±954.33粒/m2、弃耕地种子密度为22582±6217.36粒/m2。已淹区段种子密度最低,未淹区段最高。随着土壤层次的加深,种子库密度逐渐下降。土壤种子库萌发出现的物种分属45科97属118种,以一年生和多年生草本植物为主,菊科、禾本科、玄参科和十字花科为优势科;个体数量占土壤种子库总储量<0.01%的有34种,占所有物种的28.82%。两种植被类型内土壤种子库出现的物种数较接近,物种多样性指数、均匀度都较高,但优势物种组成差异很大,生态优势度较低。未淹区段的生物多样性最高,而已淹区段的生态优势度最高,已淹区段和未淹区段相似性指数最大。
     4.已淹区段地表植被分属47科71属100种,未淹区段地表植被分属84科163属223种,优势科主要包括菊科、豆科、禾本科、蔷薇科、莎草科。与对照样带比较,已淹区段地表植被物种多样性指数和丰富度指数都降低,未淹区段明显增加;已淹区段、未淹区段土壤种子库具有物种79种和108种,分别比对照样带增加了9种和38种;与对照样带土壤种子库总密度相比,已淹区段降低了32.32%,未淹区段增加了103.12%。土壤种子库植物以草本占绝大多数比例,且1年生草本所占比例大于多年生草本所占比例。土壤种子库的生物多样性指数、丰富度指数和均匀度指数与地表植被变化相一致。已淹区段、未淹区段、对照样带地表植被和土壤种子库共同出现的物种数分别为9,40和15种,土壤种子库和地表植被间的相似性系数分别为0.328,0.241,0.186。
     5.随着月份的延伸,次生灌丛土壤种子库密度逐渐增加,弃耕地逐渐降低。随着海拔梯度的升高,5、7、9月份土壤种子库密度都表现为逐渐增加。5月份土壤种子库共出现了79种物种,隶属于36科66属;7月份土壤种子库共出现了80种物种,隶属于35科69属;9月土壤种子库共出现了73种物种,隶属于32科64属,各月共同出现的主要优势科为菊科、禾本科、玄参科、十字花科。土壤种子库物种生物多样性指数逐渐降低,但相差范围不是很大。各月份消落带土壤种子库的物种生活型非常接近,主要以一年生植物、多年生植物种子为主,而相对缺少乔木种子。
     6.随着水淹年限的延伸,次生灌丛和弃耕地土壤种子库密度呈现降低的趋势,且弃耕地降低的比例较次生灌丛高。2009年土壤种子库共出现了85种,隶属于35科70属,较前一年共减少了10科27属33种。次生灌丛地上植被减少的植物种类为105种37科78属,弃耕地减少56种17科44属,优势乔灌隶属于大戟科、豆科、蔷薇科等,优势草本属于禾本科、菊科、莎草科、玄参科等。地上植被与土壤种子库物种类型的相似性显著提高。
     7.应用典范对应分析(CCA)研究土壤表层水分物理性质、化学性质与各月份土壤种子库优势物种分布的关系,海拔梯度、土壤容重、通气度对种子库内物种储存分布具有较一定的影响;pH值、全磷、速效磷、全钠、全钙、全铁、全锰等化学元素在解释不同月份种子库优势物种的分布影响较强。
The periodical fluctuation of water-level-fluctuating zone in Three Gorges Reservoir caused the variation of the wet and dry state of the soil ecological environment, which would inevitably lead to the difference of soil physical and chemical properties and seed bank species. In this paper, we studied soil physical and chemical properties and seed bank species changes in two consecutive years to explore the response tendency of seed bank species to the water level changes. It can provide theoretical basis for vegetation rehabilitation and reconstruction of water-level-fluctuating zone in Three Gorges Reservoir Area.
     According to the similar geographical conditions, we chose 4 sample lands in secondary bush and abandoned farmland which are the existing vegetation types in water-level-fluctuating zone as our research objects. We divided the sample lands into 145-155m, 155-165m, 165-175m three sections, and kept 175-185m as the control area to keep native vegetation according to the criteria of replacing elevation gratitude by the flooded time, and making 145m, 155m, 165m, 175m, 185m as the boundary. We studied the standing vegetation, surface soil moisture physical properties, soil chemical properties, seasonal changes of soil seed bank and inter-annual changes in systematic way to investigate the changes of the soil physical and chemical properties, seed bank species in the initial stage of river-flooding, and the relationship between dominant specie of soil seed bank and environmental factors from dry to flooded states. The results showed that:
     1. In addition to maximum water holding capacity, capillary water holding capacity, minimum water holding capacity, non-capillary porosity, degree of soil aeration , surface soil moisture content in different months, were highest in September. Soil quality water content, soil volumetric water content, capillary porosity and total porosity were highest in May and lowest in July. Soil bulk density in May and in July has no obvious difference, but was lowest in September. With the elevation gradient increases, the soil moisture content did not display the same variation trend, but soil moisture physical properties in the 145-155m section was the lowest due to its longest flooded time.
     2. Comparison of soil chemical properties in flooded lands for two years, the nutrient element including soil pH, total nitrogen, total phosphorus, total potassium, available phosphorous, available potassium, total Cu, total Mn, total Zn content decreased. The value was 1.18%, 20.16%, 30.80%, 6.87%, 103.75%, 16.90%, 12.12%, 16.17%, 50.16%, separately. In contrast, organic matter, hydrolysis of nitrogen, total Fe, total Ca, total Mg, total Na increased, the value were separately 7.22%, 3.03%, 6.88%, 31.89%, 84.80%, 98.44%; With the increase of elevation gradient, various elements was very different caused by water flooded and human disturbance; With the increase of soil layers, except total phosphorus, total Cu, total Fe, total Mn, total Zn, total Ca, total Mg, total Na did not display the regularity of changes in trend, other elements decreased gradually in 2008, while increased in 2009.
     3. We divided water-level-fluctuating zone into flooded section, non-flooded section and control section, and studied the characteristics of soil seed banks in two main vegetation types by germination method in 2008. The results showed that average seed density in secondary bush was 6991±954.33 seed per m2 while in abandoned farmland 22582±6217.36 seed per m2 and there was significant difference between them. Seed density in non-flooded area was more than the control area which is close to water-level-fluctuating zone, and seed density in flooded area was the minimum. Soil seed density decreased with soil depth. A total of 118 species which belonged to 45 family and 97 genera were detected in the soil of the two vegetation types. Most of them were annual and perennial herbage species belonging to the main family Asteraceae, Poaceae, Scrophulariaceae, and Cruciferae. Moreover, the number of the species less than 0.01%, was 34. This accounted for 28.8% in all species. Species number in the soil seed of the two vegetation types was similar. The species diversity index and evenness index were relative high. However, the significant difference between dominant species of the two vegetation types and ecological dominance was relatively low. In addition, species diversity in the non-flooded section and ecological dominance in the flooded section were the highest, and the similarity index between the flooded and non-flooded section was the highest.
     4. The standing vegetation in flooded section and non-flooded section was composed of 100 species in 71 genera of 47 families, and 223 species 163 genera of 84 families. The main family consists of Asteraceae, Leguminosae, Poaceae, Rosaceae, Cyperaceae. In the standing vegetation in flooded section, species diversity indices and richness indices compared to control section decreased significant. And it increased significantly in non-flooded section. Evenness indices were all decreased in these areas. The species number of the soil seed bank in flooded section and non-flooded section were 79 and 108, with 9 and 38 species more than control section; Compared to the seed bank density of control section, seed bank density decreased by 32.32% in flooded section and increased by 103.12%, and herbaceous species seeds accounted for majority proportion in these two sites. The proportion of annual herbaceous species seeds was higher than of that perennial herbaceous. The trends of indices biodiversity, richness, evenness of the soil seed bank were consistent with the standing vegetation. However, the extent of the change was not obvious. In flooded section, non-flooded section and control section, the co-occurrence species in standing vegetation and the soil seed bank were 9, 40, and 15. The similarity coefficients of species composition between the soil seed bank and the standing vegetation is 0.328, 0.241 and 0.186.
     5. The soil seed bank density of two vegetation types in hydro-fluctuation belt displayed different changes trend along with extension of the month, The secondary bush increased gradually, the value were separately 7534.2 seed per m2, 13710 seed per m2, 16746 seed per m2. The abandoned farmland decreased, the value were separately 19423 seed per m2, 14977 seed per m2, 11869 seed per m2. With the increase of elevation gradient, the density of soil seed bank in May, July, September have shown gradual upward trend. In May, July, September, the soil seed bank of water-level-fluctuating zone of Three Gorges Reservoir was composed of 79 species in 66 genera of 36 families, and 80 species 69 genera of 35 families, 73 species 64 genera of 32 families. The main family of co-occurrence of each month were Compositae, Gramineae, Scrophulariaceae, Brassicaceae. Soil seed bank of species biodiversity index showed decreased trend as an extension of the month, however, the range of difference was not very great. Hydro-fluctuation belt of the soil seed bank of species life-form in different month is very similar. They are mainly annuals, perennials seed based, while being relatively lack of the seed of arbor.
     6. As the extension for years of flooded, soil seed bank density of secondary bush and abandoned farmland of hydro-fluctuation belt showed a falling trend. The decreased proportion of the soil seed bank reserves of abandoned farmland was higher than that of secondary bush. Compare to last year, a total of 85 species which belonged to 35 family and 70 genera in 2009 reduced by 33 species 27 genera of 10 families. Compared with the change of two standing vegetation, reduction of vegetation type of secondary bush on the ground belonged to 105 species 78 genera of 37 families. While the abandoned farmland of 56 species belongs to 44 genera of 17 families. The main dominant family of arbor and shrub in the standing vegetation belongs to Euphorbiaceae, Leguminosae, Rosaceaein, and the main dominant herbage belongs to Gramineae, Asteraceae, Cyperaceae, Scrophulariaceae and so on. With the increase of flooded years, the similarity coefficients of species composition between the soil seed bank and the standing vegetation increased markedly.
     7. We analyzed the relationship between physical properties, chemical properties of surface soil and the distribution of dominant species of soil seed bank in different months by CCA method. The distribution of seed bank species had closely relationship with elevation gradient, soil bulk density, degree of soil aeration. In addition, soil pH value, total phosphorus, available phosphorus, total sodium, total calcium, total iron and total manganese could interpret perfectly the distribution of dominant species of soil seed bank in different months.
引文
Ali M. 2004. Aquatic and shoreline vegetation of Lake Nubia, Sudan. Acta Bot. Croat, 63(2): 101-111.
    Arroyo M T, Chacon P, Cavieres L A. 2006. Relationship between seed bank expression, adult longevity and aridity in species of Chaetanthera (Asteraceae)in central Chile. Annuals of Botany, 98(3):591-600.
    Ashley A W, Wayne D E. 2003. A practical scientific approach to riparian vegetation rehabilitation in Australia. Journal of Environmental Management, 68(4):329-341.
    Aziz S, Khan M A. 1996. Seed bank dynamics of a semi-arid coastal shrub community in Pakistan. Journal of Arid Environments, 34(1):81-87.
    Azza N, Denny P, Koppel J V, Kansiime F. 2006. Floating mats: their occurrence and influence on shoreline distribution of emergent vegetation. Freshwater Biology, 51(7):1286-1297.
    Bakker J P. 1989. Nature Management by Grazing and Cutting. Dordrecht :Kluwer.
    Battaglia L L, Collins B S. 2006. Linking hydroperiod and vegetation response in Carolina bay wetlands. Plant ecology, 184(1):173-185.
    Coops H, Beklioglu M, Crisman TL. 2003. The Bekker R M, Verweij G L, Bakker J P, Fresco L F M. 2000. Soil seed bank dynamics in hayfield succession. Journal of Ecology, 88(4),594-607.
    Bernhardt K G., Koch M, Kropf M, Ulbel E, Webhofer J. 2008. Comparison of two methods characterizing the seed bank of amphibious plants in submerged sediments. Aquatic Botany, 88(2):171-177.
    Brown S, Lenart M, Mo J, Kong G H. 1995. Structure and organic matter dynamics of human-impacted pine forest in a MAB reserve of subtropical China. Biotropia, 27(3):276-289.
    Budelsky R A, Galatowitsch S M. 2004. Establishment of Carex stricta.Lam.seedlings in experimental wetlands with implications for restoration. Plant ecology, 175(1):91-105.
    Capon S J, Brock M A. 2006. Flooding, soil seed bank dynamics and vegetation resilience of a hydrologically variable desert floodplain. Freshwater Biology, 51(2):206-223.
    role of water-level fluctuation in shallow lake ecosystems–workshop conclusions. Hydrobiologia,506-509(1):23-27.
    Dalling J W, Muller-Landau H C, Wright S J, Hubbell S P. 2002. Role of dispersal in the recruitment limitation of neotropical pioneer species. Journal of Ecology, 90(4):714-727.
    Deanna H O, Paul D A, Christopher A F. 2007. Biodiversity management approaches for stream–riparian areas: Perspectives for Pacific Northwest headwater forests, microclimates, and amphibians. Forest Ecology and Management, 246:81-107.
    Editorical. 2005. Purification processes, ecological functions, planning and design of riparian buffer zones in agricultural watersheds. Ecological Engineering, 24:421-432.
    Elmore A J, Mustard J F, Manning S J. 2003. Regional patterns of plant community response to changes in water: Owens valley, California . Ecological applications, 13(2):443-460.
    Eva I, Michael C, Wolfgang M, Stefan S. 2009. Estimating the ecological status and change of riparian zones in Andalusia assessed by multi-temporal AVHHR datasets. Ecological Indicators, 9(3):422-431.
    Futoshi Nakamura, Hiroyuki Yamsda. 2005. Effects of pasture development on the ecological functions of riparian forests in Hokksido in northern Japan. Ecological Engineering, 24(5):539-550.
    Geraldes A M, Boavida M J. 2005. Seasonal water level fluctuations: Implications for reservoir limnology and management. Lakes & Reservoirs: Research and Management, 10(1):59-69.
    Goodwid C N, Hawkins C P, Kershiner J L. 1997. Riparian restoration in the western United States overview and perspective. Restoration Ecology, 5(4):4-14.
    Gregory S V, Swanson F J, Mckee W A, 1991. An Ecosystem Perspective of Riparian zones. Bioscience, 41(8):540-551.
    Grelsson G, Nilsson C. 1991. Vegetation and seed-bank relationships on a lakeshore. Freshwater Biology, 26(2):199-207.
    Hale B W, Adams M S. 2007. Ecosystem management and the conservation of river-floodplain systems. Landscape Urban Planning, 80(1-2), 23-33.
    Harper J L. 1977. Population Biology of Plant. London Academic Press, 256-263.
    Hill N M, Keeldy P A, Wishen L C. 1998. A hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs . Environment management, 22(5): 723-736.
    Holmes P M, Esler K J, Richardson D M, Witkowski E T F. 2008. Guidelines for improved management of riparian zones invaded by alien plants in south Africa. South African Journal of Botany, 74(3):538-552.
    Inamdar S P, Sheridan J M, Williams R G, Bosch D D, Lowrance R R, Altier L S, Thomas D L. l999. Riparian ecosystem management model (REMM):I testing of the hydrologic component for a coastal plain riparian system. Transactions of the ASAE, 42(6):l679-l689.
    James C S, Capon S J, White M G, Rayburg S C, Thoms M C. 2007. Spatial variability of the soil seed bank in a heterogeneous ephemeral wetland system in semi-arid Australia. Plant Ecology, 190(2):205-217.
    Johnson E A. 1975. Buried seed populations in the subarctic forest east of Great Slave Lake, northwest territories. Canadian Journal ofBotany, 53(24):2933-2941.
    Kardol Paul, Wal A, Bezemer T M, Boer W, Duyts H, Holtkamp R, Putten W. 2008. Restoration of species-rich grasslands on ex-arable land: seed addition outweighs fertility reduction. Biological Conservation, 141(9):2208-2217.
    Karrenberg S, Edwards P J, Kollmann J. 2002. The life history of Salicaceae living in the active zone of floodplains. Freshwater Biology, 47(4):733-748.
    Katja G, Axel G. 2008. The impact of flooding and drought on seeds Cnidium dubium, Gratiola officinalis, and Juncus atratus, three endangered perennial river corridor plants of Central European lowlands. Aquatic Botany, 89(3):283-291.
    Kellogg C H, Bridgham S D, Leicht S A. 2003. Effects of water level, shade and time on germination and growth of freshwater marsh plants along a simulated succession gradient. Journal of Ecology, 91(2):274-282.
    Kenwick R A, Shammin M R, Sullivan W C. 2009. Preference for riparian buffers. Landscape and Urban planning, 91(2):88-96.
    Leck M A. 2003. Seed bank and vegetation development in a created tidal freshwater wetland on the Delaware River, Trenton, New Jersey, USA. Wetlands, 23(2):310-343.
    Lees A C, Peres C A. 2008. Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conservation Biology, 22 (2):439-449.
    Leyer I. 2005. Predicting plant species’responses to river regulation: the role of water level fluctuations. Journal of Applied Ecology, 42(2):239-250.
    Lieffers V J. 1984. Emergent plant communities of Oxbow Lakes in Northeastern Alberta: Salinity, Water-level fluctuation, and Succession. Canadian of Botany, 62(2):310-316.
    Liu G H, Zhou J, Li W, Yu C. 2005. The seed bank in a subtropical freshwater marsh:Implications for wetland restoration. Aquatic Botany, 81(1):1-11.
    Liu W Z, Zhang Q F, Liu G H. 2009. Seed banks of a river-reservoir wetland system and their implications for vegetation development. Aquatic Botany, 90(1):7-12.
    Lowrance R R, Airier L S, Williams R G. 2000. The riparian ecosystem management model: simulator for ecological processes in riparian zones. Journal of Soil and Water Conservation, 55(1):27-34.
    Magee T K, Kentula M E. 2005. Response of Wetland plant species to hydrologic condition. Wetlands ecology and management, 13(2):163-181.
    Marone L, Rossi B E. 1998. Timing and spatial patterning of seed dispersal and redistribution in a South American warm desert. Plant Ecology, 137(2):143-150.
    Martins A M, Engel V L. 2007. Soil seed bank in tropical forest fragments with different disturbance histories in southeastern brazil. Ecological Engineering, 31(3):165-174.
    Miao S L, Chris B Z. 2009. Seasonal variation in seed bank composition and its interaction with nutrient enrichment in the Everglades wetlands. Aquatic Botany, 90(2):157-164.
    Minshall G W, Rugenski A. 2007. Riparian Processes and Interactions. Methods in Stream Ecology, 2:721-742.
    Nathan R, Muller-Landau H C. 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology &Evolution, 15(7):278-285.
    Niinemets ULO. 2001. Global-scale climatic controls of leaf dry mass per area density, and thickness in trees and shrubs. Ecology, 82(2):453-469.
    Nilsson C, Berggrea K. 2000. Alterations of riparian ecosystem caused by river regulation. Bioscience, 50(9):782-793.
    Nilsson C, Ekblad A, Gardfjell M, Carlberg B. 1991. Long-term effects of river regulation on river margin vegetation. Journal of applied ecology, 28(3):963-987.
    Peich PB, Walters MB, Ellsworth DS. 1997. From tropics to tundra:Global convergence in plant functioning. Proceeding of the National Academy of Sciences USA, 94:13730-13734.
    Peterson J E, Baldwin A H. 2004. Seedling emergence from seed banks of tidal freshwaterwetlands: Response to inundation and sedimentation. Aquatic Botany, 78(3):243-254.
    Pezeshki S R, Li S W, Shields F D, Martin L T. 2007. Factors governing survival of black willow (Salix nigra) cuttings in a streambank restoration project. Ecological Engineering, 29(1):56-65.
    Riddin T, Adams J B. 2009. The seed banks of two temporarily open/closed estuaries in South Africa. Aquatic Botany, 90(4):328-332.
    Riis T, Hawes I. 2003. Effect of wave exposure on vegetation abundance, richness and depth distribution of shallow water plants in a New Zealand lake. Freshwater biology, 48(1):75-88.
    Schaff S D, Pezeshki S R, Shields F D. 2003. The effects of soil conditions on survival and growth of black willow cuttings. Environmental Management, 31(6):748-763.
    Seabloom E W, Moloney K A, Valk A G. 2001. Constraints on the establishment of plants along a fluctuating water-depth gradient. Ecology, 82(8):2216-2232.
    Simpson R L, Leck M A, Parker V T. 1989. Ecology of Soil Seed Bank. San Diego: Academic Press:149-209.
    Sliva J, Pfadanhauer J. 1999. Restoration of cut-over raised bogs in southern Germany: A comparison of methods. Applied vegetation science, 2(1):137-148.
    Smith N J C, Zahid D M, Ashwath N, Midmore D J. 2008. Seed ecology and successional ststus of 27 tropical rainforest cabinet timber species from Queensland. Forest Ecology and Management, 256(5):1031-1038.
    Thompson K, Grime J P. 1979. Seasonal variation in the seed banks of herbaceous species in the contrasting habitats. Journal of Ecology, 67(3):893-921.
    Touzard B, Amiaud B, Langlois E, Lemauviel S, Clement B. 2002. The relationships between soil seed bank, aboveground vegetation and disturbances in an eutrophic alluvial wetland of Western France. Flora-Morphology, Distribution, Functional Ecology of Plants, 197(3):175-185.
    Truscott A M, Palmer S C, Soulsby C,Westaway S, Humle P E. 2008. Consequences of invasion by the alien plant Mimulus guttatus on the species composition and soil properties of riparian plant communities in Scotland. Perspectives in Plant Evolution, Evolution and Systematics, 10(4):231-240.
    Tseira M, Irit A C. 2008. The effectiveness of protection of riparian landscapes in Israel. Land UsePolicy, 26(4):911-918.
    Urbanc-Bercic O, Gaberscik A. 2004. The relationship of the processes in the rhizosphere of common reed phragmites australis, (Cav.) TRIN. ex. STEDEUL to water fluctuation. International Review of Hydrobiology,89(23):500-507.
    Valk A G, Davist C B. The role of seed bank in the vegetation dynamics of prairie glacial marshes. Ecology, 1978,59(2):322-335.
    Van G G J, Coops H, Roijackers R M.M , Buijse A D, Scheffer M. 2005. Succession of aquatic vegetation driven by reduced Water-level fluctuations in floodplain lakes. Journal of Applied Ecology, 42(2):251-260.
    Vanek V. 1991. Riparian zone as source of phosphorus for a groundwater-dominated lake. Water Research, 25(4):409-418.
    Vecrin M P, Grevilliot F, Muller S. 2007. The contribution of persistent soil seed banks and flooding to the restoration of alluvial meadows. Journal for Nature Conservation, 15(1):59-69.
    Venkatachalam A, Jay R, Eiji Y. 2005. Impact of riparian buffer zones on water quality and associated management considerations. Ecological Engineering, 24(5):517-523.
    Vivek S, Marina A. 2009. Exploring the role vegetation fragmentation on aquatic conditions: Linking upload with riparian areas in Puget Sound Lowland Streams. Landscape and Urban planning, 90(1-2):66-75.
    Vosse S, Esler K J, Richardson D M, Holmes P M. 2007. Effect of alien plant invasion on riparian seed bank assembly rules. South African Journal of Botany, 73(2):320.
    Vosse S, Esler K J, Richardson D M, Holmes P M. 2008. Can riparian seed banks initiate restoration after alien plant invasion? Evidence from the Western Cape, South Africa. South African Journal of Botany, 74(3):432-444.
    Walmsley A. 2006. Greenways: multiplying and diversifying in the 21st century. Landscape Urban Planning, 76 (1–4): 252-290.
    Weiterova I. 2008. Seasonal and spatial variance of seed bank species composition in an oligotrophic wet meadow. Flora, 203(3):204-214.
    Whigham D F. 1999. Ecological issues related to Wetland Preservation, Restoration, Creation and Assessment. The science of the Total environment, 240(1):32-40
    Whippie S A. 1977. The relationship of buried, germinating seeds to vegetation in an old-growth Colorado subalpine forest. Canadian Journal of Botany, 56:1506-1509.
    William L G. 2006. Downstream hydrologic and geomorphic effects of large dams on American rive. Geomorphology, 79(3):336-360.
    Xiao D R, Zhang L Q, Zhu Z C. 2009. A study on seed characteristics and seed bank of Spartina alterniflora at salt marshes in the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science, 83(1):105-110.
    Zacharias I, Dimitriou E, Koussouris T. 2003. Estimating groundwater discharge into a lake through underwater springs by using GIS technologies. Environmental geology, 44(7):843-851.
    白宝伟,王海洋,李先源,冯义龙,智丽. 2005.三峡库区淹没区与自然消落区现存植被的比较. 西南农业大学学报(自然科学版),27(5):684-688.
    白文娟,焦菊英,张振国. 2008.黄土丘陵沟壑区退耕地土壤种子库对植被恢复的影响.北京林业大学学报, 30(4):65-71.
    鲍士旦.土壤农化分析.3版. 2000.北京:中国农业出版社.
    蔡书良,谢红勇. 2002.三峡库区湖岸带土地利用与保护.四川师范大学学报(自然科学版), 25(4):422-426.
    曹同,郭水良,高谦. 2000.应用排序分析藓类植物分类群分布与气候因素的关系.应用生态学报, 11(5):680-686.
    苌伟,吴建国,刘艳红. 2007.荒漠木本种子萌发研究进展.应用生态学报, 18(2):436-444.
    陈为峰,史衍玺,田素锋. 2008.黄河口新生湿地土壤氮磷分布特征研究.水土保持学报, 22(1):69-73.
    党伟光,高贤明,王瑾芳,李爱芳. 2008.紫茎泽兰入侵地区土壤种子库特征.生物多样性, 16(2):126-132.
    刁承泰,黄京鸿. 1999.三峡库区水位涨落带土地资源的初步研究.长江流域资源与环境, 8(1):75-79.
    范小华,谢德体,魏朝富. 2006.水、土环境变化下消落区生态环境问题研究.农业资源与环境科学, 22(10):374-379.
    傅杨武. 2007.三峡水库消落带土壤—水体系统中重金属模拟研究.环境科学与技术, 30(10):14-16.
    宫平,万建蓉. 2005.水库上游小流域消落带生态环境改善措施初探.第六届全国泥沙基本理论研究学术讨论会论文集, 862-869.
    侯志勇,谢永宏,于晓英,李峰. 2009.洞庭湖青山垸退耕地不同水位土壤种子库特征.应用生态学报, 20(6):1323-1328.
    黄朝禧,赵绪福,韩桐魁. 2005.富水水库消落区土地开发试验及其效果.长江流域资源与环境, 14(4):435-439.
    黄川,谢红勇,龙良碧. 2003.三峡湖岸消落带生态系统重建模式的研究.重庆教育学院学报. 18(5):63-66.
    蒋文伟,周国模,余树全,钱新标,盛文明. 2004.安吉山地主要森林类型土壤养分状况的研究.水土保持学报,18(4):73-77.
    李冬林,韩丽,阮宏华,张纪林. 2008.秦淮河河岸带土壤理化性质分析.南京林业大学学报(自然科学版,32(4):17-22.
    李洪远,佐藤治雄,朱琳,森本辛裕. 2006.土壤种子库植物种类组成与土壤采集地植被的关系. 生态环境, 15(4):791-795.
    李吉玫,徐海量,张占江,叶茂,王增如,李媛. 2008.塔里木河下游不同退化区地表植被和土壤种子库特征.生态学报, 28(8):3626-3636.
    李吉玫,徐海量,张占江,叶茂,王增如,李媛. 2008.河水漫溢对塔里木河下游荒漠河岸林地表植被与土壤种子库的影响.应用生态学报, 19(8):1651-1657.
    李全发,刘文耀,沈有信,刘伦辉. 2005.南涧干热退化山地不同恢复群落土壤种子库储量及其分布.北京林业大学学报, 27(5):26-31.
    李生,姚小华,任东华,张守攻. 2008.黔中石漠地区不同利用类型土壤种子库特征.生态学报, 28(9):4602-4609.
    李伟成,盛海燕,钟哲科,丁炳扬. 2007.杭州西溪湿地中不同土地利用类型的种子库特性.林业科学, 43(11):163-169.
    刘斌,邵东国,刘刚. 2000.水库消落区土地利用优化方法研究.武汉水利电力大学学报, 33(2):34-36.
    刘冬燕. 2005.三峡库区消落带生态恢复与重建的研究-以万州消落带示范区为例.上海:同济大学.
    刘贵华,李伟,王相磊,张学江. 2004.湖南茶陵湖里沼泽种子库与地表植被的关系.生态学报, 24(3):450-456.
    刘贵华,刘幼平,李伟. 2006.淡水湿地种子库的小尺度空间格局.生态学报, 26(8):2739-2743.
    刘贵华,肖蒇,陈漱飞,张全发. 2007.土壤种子库在长江中下游湿地恢复与生物多样性保护中的作用.自然科学进展, 17(6):741-747.
    刘旭,程瑞梅,肖文发. 2008.土壤种子库研究进展.世界林业研究, 21(1):27-33.
    刘旭. 2008.三峡库区消落带植物材料筛选研究.中国林业科学研究院硕士论文.
    刘宗群. 1993.三峡水库水文涨落带的景观生态分析及其对策.重庆环境科学, 15(2):24-28.
    陆琦,马克明,张洁瑜,卢涛,倪红伟. 2007.三江平原退化湿地和农田土壤养分的比较研究,生态与农村环境学报, 23(2):23-28.
    罗辉,王克勤. 2006.金沙江干热河谷山地植被恢复去土壤种子库和地上植被研究.生态学报, 26(8):2432-2442.
    欧芷阳,苏志尧,叶永昌,朱剑云,刘颂颂. 2009.东莞地表植被对表层土壤化学特性的指示作用.生态学报, 29(2):984-992.
    沈有信,张彦东. 2001.云南北部泥石流多发干旱河谷去不同干扰对土壤种子库的影响.植物生态学报, 25(5):623-629.
    石孝洪. 2004.三峡水库消落区土壤磷素释放与富营养化.土壤肥料, 1(13):41-44.
    史鸿飞,田昆,张劲峰,李勇鹏,刘杰忠. 2006.土壤种子库及其退化林地植被恢复中的应用.林业调查规划, 31(1):71-74.
    宋娟丽,吴发启,姚军,余雕,包耀贤. 2009.弃耕地植被恢复过程中土壤理化性质演变趋势研究.干旱地区农业研究, 27(3): 168-173.
    苏维词,杨华,罗有贤,赵纯勇. 2003.三峡库区涨落带的主要生态环境问题及其防治措施.水土保持研究, 10(4):196-198.
    苏维词,杨华,赵纯勇,李晴. 2005.三峡库区(重庆段)涨落带土地资源的开发利用模式初探. 自然资源学报, 20(3):327-334.
    苏维词. 2004.三峡库区消落带的生态环境问题及其调控.长江科学院院报, 21(2):32-35.
    孙利军,张仁陟,黄高宝. 2007.保护性耕作对黄土高原旱地地表土壤理化性状的影响.干旱地区农业研究, 25(6):207-211.
    涂建军,陈治谏,陈国阶,李德清. 2002.三峡库区消落带土地整理利用-以重庆市开县为例.山地学报, 20(6):712-777.
    喻菲,张成,张晟. 2006.三峡水库消落区土壤重金属含量及分布特征.西南农业大学学报(自然科学版),28(1):165-168.
    王国平,刘景双,张君枝,赵海洋. 2003.湿地表层沉积物对重金属的吸附研究.农业环境科学学报, 22(3):325-328.
    王炯. 2003.三峡库区消落带的利用与管理问题研究.西南农业大学学报(社会科学版), 1(1):35-38.
    王里奥,黄川,詹艳慧,袁辉. 2006.三峡库区消落带淹水—落干过程土壤磷吸附—解吸及释放研究.长江流域资源与环境, 15(5):593-597.
    王相磊,周进,李伟,刘贵华,张学江. 2003.洪湖湿地退耕初期种子库的季节动态.植物生态学报, 27(3):352-359.
    王新宇,王庆成. 2008.水曲柳落叶松人工林近自然化培育对林地土壤理化性质的影响.林业科学, 44(12):21-27.
    王勇,刘义飞,刘松柏,黄宏文. 2005.三峡库区消涨带植被重建.植物学通报, 22(5):513-522.
    王勇,吴金清,黄宏文,刘松柏. 2004.三峡库区消涨带植物群落的数量分析.武汉植物学研究, 22(4):307-314.
    王增如,徐海量,尹林克,李吉玫,张占江,李媛. 2008.土壤种子库对漫溢去受损植被更新的贡献.应用生态学报, 19(12):2611-2617.
    王正文,祝廷成. 2002.松嫩草地水淹干扰后的土壤种子库特征及其与植被关系.生态学报, 22(9):1392-1398.
    魏识广,李林,黄忠良,彭闪江,史军辉. 2005.鼎湖山森林土壤种子库动态研究.生态环境, 14(6):917-920.
    谢德体,范小华,魏朝富. 2007.三峡水库消落区对库区水土环境的影响研究.西南大学学报(自然科学版), 29(1):39-47.
    谢会兰,张学勇. 1991.黄壁庄水库消落区土地资源的合理利用.资源开发与保护, 7(2):96-98.
    谢晋阳,陈灵芝. 1997.中国暖温带若干灌丛群落多样性问题的研究.植物生态学报,21(3):197-207.
    邢福,王莹,许坤,于丽丽,吕宪国. 2008.三江平原沼泽湿地群落演替系列土壤种子库特征.湿地科学, 6(3):351-358.
    熊汉锋,王运华. 2005.梁子湖湿地土壤养分的空间异质性.植物营养与肥料学报, 11(5):584-589.
    徐海量,李吉玫,王增如,叶茂. 2007.塔里木河下游土壤种子库的空间分布特征分析.水土保持学报, 21(6):183-186.
    徐鹏,赵东,赵勇,樊巍,李岚岚. 2007.黄河小浪底库区不同恢复阶段土壤退化评价.安徽农业科学,35(10):2959-2961.
    许川,舒为群,曹佳,汪洋. 2005.三峡库区消落带富营养化及其危害预测和防治.长江流域资源与环境, 14(4):440-444.
    燕雪飞. 2005.松嫩平原退化草地恢复演替系列土壤种子库动态研究.东北师范大学硕士学位论文.
    杨钢. 2004.三峡库区受淹土壤污染物释放量的试验研究.水土保持学报, 18(1):111-114.
    尹澄清. 1995.内陆水—陆地交错带的生态功能及其保护与开发前景.生态学报, 40(1):87-91.
    喻菲,张成,张晟,王定勇,黄宜平. 2006.三峡水库消落区土壤重金属含量及分布特征.西南农业大学学报,28(1):165-168.
    袁辉,王里奥,黄川,刘莉,詹艳慧. 2006.三峡库区消落带保护利用模式及生态健康评价.中国软科学, (5):120-127.
    袁辉,王里奥,詹艳慧,黄川,胡刚. 2006.三峡库区消落带健康评价指标体系.长江流域资源与环境, 15(2):249-253.
    袁莉,周自宗,王震洪. 2008.土壤种子库的研究现状与进展综述.生态科学, 27(3):186-192.
    曾立雄. 2007.三峡库区不同植被类型生物量与生产力研究.华中农业大学硕士论文.
    张虹,朱平. 2005.基于RS与GIS的三峡重庆库区消落区分类系统研究—以重庆开县为例.国土资源遥感, 3(65):66-69.
    张建春,彭补拙. 2003.河岸带研究及其退化生态系统的恢复与重建.生态学报, 23(1):56-73.
    张建春. 2001.河岸带功能及其管理.水土保持学报, 15(6):143-146.
    张楠楠,关文彬,谢静. 2007.科尔沁沙地东南缘大清沟自然保护区土壤水分的时空分布特征. 生态学报, 27(9):3860-3873.
    张世熔,元仿,李保国. 2002.黄淮海冲积平原区土壤有机质时空变异特征.生态学报,22(12):2041-2047.
    张希彪,上官周平. 2006.人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响.生态学报, 26(11):3685-3695.
    赵纯勇,杨华,苏维词. 2004.三峡重庆库区消落区生态环境基本特征与开发利用对策探讨.中国发展, 4:19-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700