用户名: 密码: 验证码:
黄土高原地区植被演替和土地管理对土壤养分、微生物活性和群落结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土地退化是土地持续性利用的主要威胁,土地退化降低植被的实际和潜在的覆盖度。土壤利用和植被覆盖对生态环境有重要的影响,改善土壤物理化学和微生物大小、活性和微生物群落结构有利于土地的持续性利用和退化土地的恢复。本文从恢复黄土高原退化地土壤肥力的角度出发,将农田和干扰较轻,从未开垦的原生植被作为对照,研究植被自然恢复过程中土壤物理化学和微生物大小、活性和微生物群落结构的变化以及植物物种变化和地上生物量变化与土壤养分和微生物大小、活性和微生物群落结构之间的关系;研究人工种植油松后随着植被次生演替土壤物理化学和微生物量的变化动态;同时分析了施用化肥对土壤养分和微生物大小的影响。主要研究结果如下:
     1.耕地弃耕后随着植被的自然恢复演替,地上植物多样性和均匀度逐渐增大,第10年达到最大,随后有所降低,植物物种丰富度随着植被自然演替逐渐提高,而地上生物量在植被演替初期即3年弃耕地比较高,5年弃耕地有所降低,5年后又逐步提高。
     2.耕地弃耕后,随着植被自然恢复演替,土壤表层有机碳(OC)、全氮(TN)、碳氮比、碳磷比、氮磷比、微生物碳氮(MBC,MBN),总FAME生物量、真菌生物量、真菌/细菌、放线菌和革兰氏阴性菌生物量逐渐提高,微生物代谢熵和MBC/OC和MBN/TN以及MBC/MBN都没有明显的变化趋势。相关性分析表明,土壤微生物碳氮、总FAME生物量与土壤有机碳、全氮含量之间互相之间具有显著的正相关性,说明土壤肥力和土壤微生物量之间具有紧密的联系,总FAME生物量和微生物碳氮是该研究地的土壤肥力的良好指标。三种类型土壤利用和植被覆盖相比,土壤表层的有机质和微生物碳氮含量、总FAME生物量、真菌生物量、真菌/细菌和革兰氏阴性菌生物量是农田的最低,原生植被的最大,而各弃耕地处于中间状态。结果表明耕地弃耕后植被自然恢复演替有利于土壤表层肥力的提高。
     3.随着土壤深度的增加,除农田、3年弃耕地和面向东的原生植被外,各弃耕地和原生植被的土壤有机碳、全氮、微生物碳氮、MBC/OC、MBN/TN、总FAME生物量、革兰氏阴性菌生物量都逐渐降低,而微生物代谢熵、革兰氏阳性菌和放
Soil degradation is a major threat to sustainable use of soil ecosystem, because it decreases actual and potential level of vegetation cover. Local land use and land-cover change can play a pivotal role in environmental and ecological changes and furthermore contributes to global change. Consequently, improving the physical, chemical and microbial properties of degraded soil is very important for sustainable use of soil ecosystem. The results showed:1. After abandonment of agricultural land, with vegetation succession plant species diversity and evenness increased gradually, and tended to be the highest contents under 10-yr fallow. after that they decreased, whereas plant species richness increased gradually, and above-ground biomass was higher under 3-yr fallow than that of under 5-yr fallow, after 5-yr fallow above-ground biomass increased gradually.2. With vegetation succession organic carbon (OC), total nitrogen (TN), ratio of organic C/ total P (C/P), ratio of total N/total P (N/P), microbial biomass carbon (MBC), N (MBN), total FAMEs, fungal biomass, ratio of fungal to bacterial biomass, actinomycetes biomass and Gram-negative bacterial biomass in the topsoil (0-10cm) increased gradually, whereas there were no trends in metabolic quotient, MBC/OC and MBN/TN. Soil organic C and total N in the topsoil showed a positive correlation with microbial biomass C, N, and total FAMEs, suggesting that there was close relationship between soil fertility and microbial biomass, that total FAMEs and microbial biomass were potentially good indices of soil fertility in study area. The chemical and microbial properties measured in soil were significantly higher in the virgin vegetation than those of arable land, with various fallows being intermediate. Organic C and TN in the 10-30cm at various fallows were higher compared with arable land, while the accumulation of microbial biomass C, N mainly occurred in the topsoil. Therefore, the results showed that soil fertility may be improved, while total P may become the limiting factor relative to C and N with vegetation succession after abandoned arable land.3. With soil depths, the OC, TN, MBC, MBN, MBC/OC, MBN/TN, total FAME, and Gram-negative bacterial biomass readily decreased, metabolic quotient, actinomycetes biomass and Gram-positive bacterial biomass gradually increased except for arable land, 3-yr fallow and virgin vegetation facing east which were higher in the 10-30cm than other depths, suggesting that microbes inhabiting the deeper soil horizons were more carbon limited than surface-dwelling microbes.4. Plant species diversity and richness index showed a positive relationship with C/N, fungal biomass, ratio of fungal/bacterial biomass. Above-ground biomass showed a positive relationship with organic C, total N, C/N, total FAMEs and fungal biomass in soil, a negative relationship with metabolic quotient, no significant
    relationship with microbial biomass C, N. Therefore, the results showed that that plant above-ground biomass affected the active microbial biomass, but not microbial C, N, that C/N in soil increased readily with plant species diversity, that microbial communities changed and fungi became gradually the dominated species of microbial community with succession.5. The effects of fertilization combined with crop rotation on the chemical properties and microbial biomass was investigated in the central Loess Plateau, China. In order to create a more uniform experimental environment and avoid the influence of different crop residues on effects of fertilization, wheat/potato (W/P) rotation was selected in fertilization treatment. The results showed that fertilization could increase organic carbon, total nitrogen, MBC and MBN content compared to the control. It was concluded that appropriate land management such as fertilization combined with crop rotation would be helpful to improve or maintain soil fertility.6. Microbial biomass, organic carbon, total nitrogen, and microbial quotient (MBC/Corg) in soil were determined during the secondary forest succession in north Ziwulin region in the middle of Loess Plateau. The results showed that with secondary forest succession organic carbon (Corg), total nitrogen (TN), microbial biomass carbon (MBC) and N (MBN) in soil increased quickly, and tended to be the highest contents under SF17 (17-year secondary forest), after that they decreased and gradually remained at a quite constant level, suggesting that accumulations of organic C, total N, MBC and MBN in soil occurred mainly at the early succession stages (before SF17). Soil microbial biomass was markedly correlated with the organic carbon and total nitrogen content of soil (p<0.01), Furthermore, microbial quotient showed significant correlation not only with MBC and organic C, but also with succession duration during the secondary forest succession. Therefore, the results suggested that changes in microbial biomass in soil were related not only to the quantity, but also to the quality of soil organic matter during secondary forest succession, and that changes in above-ground plant species during succession were critical to improve degradation soil physical, chemical and microbial properties in north Ziwulin of Loess Plateau.
引文
Aikio S, Vare H, Strommer R. 2000. Soil microbial activity and biomass in the primary succession of a dry heath forest. Soil Biol Biochem 32, 1091-1100.
    Ajwa HA, Tabatabai MA. 1994. Decomposition of different organic material in soils. Biol Fertil Soils 18, 175-182.
    Allen MF, Allen EB, Zink TA, Harney S, Yoshida LC, Siguenza C, Edwards F, Hinkson C, Rillig M, Bainbridge D, Doljanin C, Macailer R. 1999.Soil microorganisms. In: Walker, L(Ed.) Ecosystems of Disturbed Ground. Elsevier Science, Amsterdam, pp. 521-544.
    Anderson JPE, Domsch KH. 1980. Quantities of plant nutrients in the microbial biomass of selected soils. Soil Science 130, 211-216.
    Anderson JM. 1988. Spatiotemporal effects of invertebrates on soil processe. Biol Fertil Soils 6, 216-227.
    Anderson JE, Domsch KH. 1975. Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils. Canadian Journal of Microbiology 21, 314-421.
    Anderson TH, Domsch KH. 1985. Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biology and Fertility of Soils 1, 81-89.
    Anderson JH, Domsch KH. 1986. Carbon link between microbial biomass and soil organic matter. In: Megusar, F., Gantar, M. (eds), Proceedings of the Fourth International Symp, Microb Ecol Soc Microbial Lujbljana, pp. 467-471.
    Anderson, TH, Domsch, KH. 1989. Ratio of microbial biomass carbon to total organic carbon in arable soils [J]. Soil Biol Biochem 21,471-479.
    Anderson TH, Domsch KH. 1990. Application of eco-physiological quotients(qCO_2 and qD) on microbial biomass from soils of different cropping histories.Soil Biology and Biochemistry 22, 251-255.
    Anderson TH, Domsch KH. 1993. The matobolic quotient for CO_2 (qCO_2) as a specific activity parameter to assess the microbial biomass of forest soils. Soil Biol Biochem 25,393-395.
    Arunachalam A, Pandey H. 2003. Ecosystem Restoration of Jhum Fallows in Northeast India: Microbial C and N Along Altitudinal and Successional Gradients. Restoration Ecology 11(2), 168-173.
    Aweto AO. 1981. Secondary succession and soil fertility restoration in south western Nigeria. Ⅱ. Soil fertility restoration. J. Ecology 69, 609-614.
    Acton DF, Gregorich LJ. 1995. The health of our soils: toward sustainable agriculture in Canada. Agriculture Agri-food Canada, CDR Unit, Ottawa.
    Ananyeva ND, Demkina TS, Jones WJ, Cabrera ML, Steen WC. 1999. Microbial biomass in soils of Russia under long-term management practices. Biol Fertil Soils 29, 291-299.
    Arnebrandt K. Bth E, Sgderstrg MB. 1990. Changes in micro-fungal community structure after fertili-stationof Scots pine forest soil with ammonium nitrate or urea [J].Biology and Fertility of Soils, (22), 309-312.
    Aref S, Wander MM. 1998. Long-term trends of corn yield and soil organic matter in different crops sequences and soil fertility treatments on the Morrow Plots. Adv Agro 62, 153-161.
    Angers DA, Ndayegamiye A, Cote D. 1993. Tillage induced difference in organic matter of particle size fractions and microbial biomass. Soil Sci Soc Am J 57, 512-516.
    Angers DA, Caron J. 1998. Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42, 55-72.
    Atlas RM. 1984. Use of microbial diversity measurements to assess environmental stress. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington D C, pp. 540-545.
    Bauhus J, Khanna PK. 1994. Carbon and nitrogen turnover in two acid forest soils of southeast Australia as affected by phosphorus addition and drying and rewetting. Biology and Fertility of Soils. 17,212-218.
    Bauhus J, Pare D, CoTe L. 1998. Effects of tree species stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biology and Biochemstry 30, 1077-1089.
    Bardgett RD, Shine A. 1999. Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grassland. Soil Biol Biochem 31, 317-321.
    Bardgett RD, McAlister E. 1999. The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biology and Fertility of Soils 29,282-290.
    Bardgett RD, Hobbs PJ, Frostegard A. 1996. Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils 22, 261-264.
    Basu S, Pati DP, Behera N. 1992. Microfungal biomass in some microbial biomass. Biol Fertil Soils 16,1-3.
    Bauder J, 1999. When is organic matter built up or used up. http://www.montana.edu/wwwpb/ag/baudrl78.html
    Bazzaz FA. 1975. Plant species diversity in old-field successional ecosystems in Southern Illinois. Ecology 56,485-488.
    Bazzaz FA. 1983. Characteristics of population in relation to disturbance in natural and man-modified ecosystems.In Disturbance and Ecosystems: Components of Response.Eds HA Mooney and M Godron. pp. 259-275. Ecological Studies 44, Springer-Verlag, New york, NY, USA.
    Bajracharya RM, Lal R, Kimble JM. 1998. Soil organic carbon distribution in aggregates and primary
     particle fractions as influenced by erosion phases and landscape position. In: Lai R, Kimble J,Follett R. and Stewart BA. (eds), Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, Florida, pp. 353-367.
    Bailey VL, Smith JL, Bolton H. 2002. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biology & Biochemistry 34, 997-1007.
    Belay A, Claassens AS, Wehner FC. 2002. Effect of direct nitrogen and potassium and residual phosphous fertilizers on soil chemical properties, microbial components and maize yield under long-term crop rotation. Biol Fertil Soils 35,420-427.
    Beare MH, Hendrix PF, Coleman DC. 1994. Water-stable aggregates and organic matter fractions in conventional and notillage soils. Soil Science Society of America Journal 58, 777-786.
    Beare MH, Pohland BR, Wright DH, Coleman DC. 1993. Residue placement and fungicide effects on fungal communities in conventional and no-tillage soils. Soil Sci Soc Am J 57, 392-399.
    Behera N, Sahani U. 2003. Soil microbial biomass and activity in response to Eucalyptus plantation and natural regeneration on tropical soil. Forest Ecology and Management 174, 1-11.
    Biederbeck VO, Campbell CA, Smith AE. 1987. Effect of long-term 2, 4-D field applications on soil biochemical processes. Journal of Environment Quality 16, 257-262.
    Biederbeck VO, Campbell CA, Zenter RP. 1984. Effect of crop rotation and fertiolization on some biological properties of a loam in Southwestern Saskatchewan. Can J soil Sci 64, 355-367.
    Blume E, Bischoff M, Reichert J, Moorman T, Konopka A, Turco R. 2002. Surface and asubsurface microbial biomass, community structure and metabolic activity as a function of soils depth and season. Applied Soil Ecology 592, 1-11.
    Bolton HJr, Elliott LF, Papendick RI, Bezdicek DF. 1985. Soil microbial biomass and selected soil enzyme activities: effect of fertilization and cropping practices. Soil Biol Biochem 17, 297-302.
    Bonet A. 2004. Secondary succession of semi-arid Mediterranean old-fields in south-eastern Spain: insights for conservation and restoration of degraded lands. Journal of Arid Environments 56,213-233.
    Brookes DC. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Soil Biol Biochem 19,269-279.
    Broughton LC, Gross KL.2000. Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia 125, 420-427.
    Buyer JS, Kaufman DD. 1996. Microbial diversity in the rhizosphere of corn grown under conventional and low-input systems. Applied Soil Ecology 5, 21-27.
    Burke IC, Lauenroth WK, Coffin DP. 1995. Soil organic matter recovery in semiarid grasslands: Implications for the conservation reserve program. Ecological Applications 5, 793-801.
    Bossio DA, Scow KM, Gunapala N, Graham KJ. 1998. Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipids fatty acid profiles.
     Microb Ecol 36, 1-12.
    Brown AHF. 1992. Functioning of mixed-species stands at Gisburn. NW Eangland. In: Cannell MGR, Malcolm DC, Robertson PA. (ed.) The ecology of mixed species stands of trees. Blackwell, Oxford, pp. 125-150.
    Carney K M, Matson P A.2005. Plant Communities, Soil Microorganisms, and Soil Carbon Cycling: Does Altering the World Belowground Matter to Ecosystem Functioning? Ecosystems 8,928-940.
    Calder6n FJ, Jackson LE, Scow KM, Rolston DE. 2000. Microbial responses to simulated tillage in cultivated and uncultivated soils. Soil Biology & Biochemistry 32, 1547-1559.
    Calderon FJ, Jackson LE, Scow KM, Rolston DE. 2001. Short-term dynamics of nitrogen, microbial activity, and phospholipid fatty acids after tillage. Soil Science Society of America Journal 65,118-126.
    Castillo X, Joergensen RG 2001. Impact of ecological and conventional arable management systems on chemical and biological soil quality indices in Nicaragua. Soil Biol Biochem 33, 1591-1597.
    Chabrerie O, Laval K, Puget P, Desaire S, Alard D. 2003. Relationship between plant and soil microbial communtiesa along a successional gradient in a chalk grassland in north-western France. Applied soil Ecology 24, 43-56.
    Curl E, Truelove B. 1986. The Rhizosphere, Springer, Berlin, p 288.
    Campbell CA, Biederberk VO, Zentner RP, Lafond GP. 1991. Effect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin black Chernozem. Can J Soil Science 71, 363-376.
    Campbell BM, Frost P, King JA, Mawanza M, Mhlanga L. 1994. The influence of trees on soil fertility on two contrasting semi arid types at Matopos, Zimbabwe. Agrofor Syst 28,159-172.
    Campbell CA, McConkey BG, Zentner RP, Selles F, Curtin D. 1996. Long-term effects of tillage and rotations on soil organic C and total N in a clay soil in southwestern Saskatchewan.Can J Soil Sci 76,395-401.
    Campbell CA, Selles F, Lafond GP, Biederbeck VO, Zentner RP. 2001. Adopting zero tillage management: Impact on soil C and N under long-term crop rotations in a thin Black Chernozem. Can J Soil Sci 81, 139-148.
    Carter MR. 1986. Microbial biomass and mineralizable N in Solonetzic soils: Influence of gyp sum and time amendments. Soil Biol Biochem 18,531-537.
    Christensen M. 1989. A view of fungal ecology. Mycologia 81, 1-19.
    Christensen BT. 1996. Matching measurable soil organic matter fractions with conceptual pools in simulation models of carbon turnover: revision of model structure. In: Powlson DS, Smith P, Smith JU (eds). Evaluation of soil organic matter models using existing long-term datasets. Global environmental change. Nato ASI series vol 38 Springer, Berlin Heideberg New York pp.
     143-160.
    Conant RT, Paustian K, Elliott ET. 2001. Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications 11 (2), 343- 355.
    Cookson WR, Abaye DA, Marschner P, Murphy DV, Stockdale EA, Goulding K.WT. 2005.The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure Soil Biology & Biochemistry 37, 1726-1737.
    Crecchio C, Curci M, Mininni R, Ricciuti P, Ruggiero P. 2001. Short-term effects of municipal solid waste compost amendments on soil carbon and nitrogen content. Some enzyme activites and genetic diversity. Biology and Fertility of Soils 34, 311-318.
    Cushman SA, Wallin DO. 2002. Separating the effects of environmental, spatial and disturbance factors on forest community structure in the Russian Far East. Forest Ecology and Management. 168 (1-3), 201-215.
    Diaz-Ravina M, Carballas T, Acea MT. 1988. Microbial biomass and its metabolic activity in four acid soils. Soil Biol Biochem 20, 817-823.
    Diaz-Ravina M, Acea MJ, Carballas T. 1993. Microbial biomass and its contribution to nutrient concentration in forest soils. Soil Biol. Biochem 25 (1), 25-31
    Drijber RA, Doran JW, Parkhurst AM, Lyon DJ. 2000. Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biol Biochem 32, 1419-1430.
    Drury CF, Stone JA, Findley WI. 1991. Microbial biomass and soil structure associated with grass and legumes. Soil Sci Soc Am J 55, 805-811.
    Deng SP, Tabatabai MA. 2000. Effect of cropping systems on notrigen mineralization in soils. Biol Fertil Soils 31, 211-218.
    Deng SP, Moor JM, Tabatabai MA. 2000. Characterization of active nitrogen pools in soils under different cropping systems. Biol Fertil Soils 32, 302-309.
    Dalai RC, Mayer RJ. 1986. Long term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Qeensland, total organic carbon and its rate of loss from the soil profile [J]. Aust J Soil Res 24,281- 292.
    Dilly O, Munch JC. 1998. Ratios between estimates of microbial biomasds content and microbial activity in soils. Biol Fertil Soils 27, 374-379.
    Daily GC. 1997. Nature's Economy: Societal Dependence on Natural Ecosystems, Island Press, Washington, DC, USA.
    Dick RP. 1992. A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric Ecosyst Environ 40, 25-36.
    Dick WA, Tabatabai MA. 1993. Significance and potential uses of soil enzymes. In: Blain, FJ(Ed.) Soil Microbial Ecology Application in Agricultural and Environmental Management.Marcel Dekker.New York, pp. 95-127.
    Dumontet S, Casucci AMC, Perucci P. 2001. Effectiveness of microbial indexes in discriminating interactive effects of tillage and crop rotations in aVertic Ustorthens. Biol Fertil Soils 34,411-416
    Dominy CS, Haynes RJ. 2002. Influence of agricultural land management on organic matter content, microbial activity and aggregate stability in the profiles of two Oxisols. Biol Fertil Soils 36,298-305.
    Donnison LM, Griffith GW, Hedger J, Hobbs PJ, Bardgett RD. 2000. Management influences on soil microbial communities and their function in botanically diverse haymeadows of northern England and Wales. Soil Biol Biochem 32, 253-263.
    Doran JW, Elliott ET, Paustian K. 1998. Soil microbial activity, nitrogen cycling, and long-term changes in organic carbon pools as related to fallow tillage management. Soil and Tillage Research 49, 3-18.
    Dregne AP, Chou NT.1992.Global desertification dimensions and costs. In Degradation and Restoration of Arid Lands. Ed. HE Dregne. Pp. 249-282.Texas Tech University. Lubbock, TX,USA.
    Entry JA, Mitchell CC, Backman CB. 1996. Influence of management practices on soil organic matter, microbial biomass and cotton yield in Alabama's "Old Rotation". Biology and Fertility of Soils23, 353-358.
    Fan T, Stewart, BA, Wang Y, Luo J, Zhou G. 2005. Long-term fertilization effects on grain yield, water-use efficiency and soil fertility in the dryland of Loess Plateau in China Agriculture, Ecosystems and Environment 106,313-329.
    Fan, J, Hao MD, Shao MA. 2004. Soil desiccation and nitrogen consumption of artificial measow in the Loess Plateau. Journal of Natural Resources 19(2), 201-206 (in Chinese).
    Frize H, Pietikainen, J, Penanen T. 2000. Distribution of microbial biomass and phospholipids fatty acids in Podzl profiles under coniferous forest. Europe Journal of Soil Science 51, 565-573.
    Fierer N, Schimel JP, Holden PA. 2003. Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35,167-176.
    Friedel JK. Munch JC, Fisher WR. 1996. Soil microbial properties and the assessment of available soil organic matter in a haplic luvisol after several years of different cultivation and crop rotation. Soil Boil Biochem 28,479-488.
    Friedel JK, Gabel D, Stahr K. 2001. Nitrogen pools and turnover in arable soils under different duration of organic farming: II: Source- and-sink function of the soil microbial biomass or competition with growing plants? J Plant Nutri Soil Sci 164, 421-429.
    Frey SD, Elliott ET, Paustian K, Peterson GA. 2000. Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem. Soil Biol Biochem 32, 689-698.
    Franzluebbers AJ, Hons FM, Zuberer DA. 1994. Long-term changes in soil carbon and nitrogen pools
     in wheat management systems. Soil Sci Soc Am J 58, 1639-1645.
    Fu B, Gulinck H, Masum MZ. 1994. Loess erosion in relation to land use changes in the Ganspoel catchment, central Belgium. Land Degradation and Rehabilitation 5(4), 261-270.
    Gastine A, Scherer-Lorenzen M, Leadley PW. 2003. No consistent effects of plant diversity on root biomass, soil biota and soil abiotic conditions in temperate grassland communities. Applied Soil Ecology 24, 101-111.
    Gestel V, Ladd J N, Amato M. 1991. Carbon and Nitrogen m ineralization from two soils of contrasting texture and microaggregate stability: influence of sequential fumigation, drying and storage. Soil Biol Biochem 23, 313-322.
    Garcia C, Roldan A, Hernandez T. 1987. Changes in microbial activity after abandonment of cultivation in a semiarid Mediterranean environment. Journal of Environmental Quality 26,285-291.
    Garcia C, Hernanderz T, Roldan A, Martin A. 2002. Effect of plant cover decline on chemical and microbiological parameters under Mediterranean climate. Soil Biol Biochem 34, 635-642.
    Glendining MJ, Powlson DS, Poulton PR, et al. 1996. The effects of long-term application of inorganic nitrogen fertiliter on soil nitrogen in the Broad balk Wheat Experiment. J Agri Sci (Camb), 127, 347-363. Sen SW, Hart PBS, Pruden G, et al.1989. The nitrogen cycle in the Broad balk Wheat Experiment: 15N-Labelled residues in the soil and in the soil microbial biomass.Soil Biol Biochem 21, 529-533.
    Grayston SJ, Griffith GS, Mawdsley JL, Campbell CD, Bardgett RD. 2001. Accounting for variability in soil microbial communities of temperate upland grassland ceosystems. Soil Biol Biochem 33,533-551.
    Gregorich EG, Carter MR, Angers DA, Monreal CM, Ellert BH. 1994. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Canadian Journal of Soil Science 74,367-385.
    Gregorich EG, Carter MR, Doran JW, et al. 1997. Biological attributers of soil quality. In: Gregorich EG, Carter MR (eds.). Soil Quality for crom Production and Ecosystem Health. Development in Soil Science 25. The Netherlands: Elservier, pp81-l 13.
    Gregorich EG, Drury CF, Baldock JA. 2001. Changes in soil carbon under long term maize in monoculture and legume based rotation. Can J Soil Sci 81, 21-31.
    Groffman PM, Eagan P, Sullivan WM, Lemunyon JL.1996. Grass species and soil type effects on microbial biomass and activity. Plant and Soil 183, 61-67.
    Goyal S, Mishra MM, Hooda IS, Singh R. 1992. Organic matter- microbial biomass relationships in field experiments under tropical conditions: effects of inorganic fertilization and organic amendments. Soil Biol Biolchem 24,1081-1084.
    Goyal S, Chander K, Mundra MC, Kapoor KK. 1999. Influence of inorganic fertilizers and organic
     amendments on soil organic matter and soil soil microbial properties under tropical conditions. Biol Fertil soils 29, 196-200.
    Grayston SJ, Griffith GS, Mawdsley JL, Camplell CD, Bardgett RD. 2001. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol Biochem 33,533-551.
    Guggenberger G, Zech W. 1999. Soil organic matter composition under primary forest pasture and secondary forest succession Region Huetar Norte Costa Rica. For Ecol Manage 124, 93-104.
    Haack SK, Garchow H, Odelson DA, Forney LJ, Klug MJ. 1994. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol 60, 2483-2493.
    Hack SK, Garchow H, Odelson DA, et al 1994. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl. Environ. Microbiol. 2483-2493.
    Haynes RJ. 1999. Size and activity of the soil microbial biomass under grass and arable management. Biol Fertil Soils 30, 210-216.
    Hassink J, Lebbink G, Van Veen JA. 1991. Microbial biomass and activity of a reclaimed-polder soil under a conventional or a reduced-input farming system. Soil Biol Biochem 23, 507-513.
    Hauck R. 1981. Nitrogen fertilizer effects on nitrogen cycle processes. In: FE, Clark and T, Rosswall (eds.), Terrestrial nitrogen cycles, pp. 551-562. Ecol Bull 62, Swedish Natural Sci Res Council Stockholm.
    Havlin JL, Kissel DE, M addux LD, Claassen MM, Long JH. 1990. Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci Soc Am J 54,448-452.
    Hendrix PF, Coleman DC, Crossley DAJR. 1992. Using knowledge of nutrient cycling processes to design sustainable agriculture. J Sust Agric 2, 63-81.
    Hillel D. 1991. Research in soil physics: A review. Soil Sci 151,30-34.
    Hill GT, Mitkowski NA, Aldrich WL, Emele LR, Jurkoni DD, Ficke A, Maldonado-Ramirez S, Lynch S, Nelson EB. 2000. Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology 15, 25 - 36.
    Hackl E, Bachmann G, Zechmeister-Bolternstern S. 2004. Microbial nitrogen turnover in soils under different types of natural forest. Forest Ecology and Management 188, 101-112.
    Hedlund K, Regina IS, Van der Putten WH, Leps Zak DR, Holmes WE, White DC, Peacock AD, Tilman D. 2003. Plant diversity, soil microbial communities, and ecosystem function: age there any links? Ecology 84(8), 2042-2050.
    Hooper DU, Vitousek PM. 1997. The effects of plant composition and diversity on ecosystem processes. Science 277, 1302-1305.
    Hooper DU, Vitousek PM. 1998. Effects of plant composition and diversity on nutrient cycling.Ecol Monogr68, 121-149.
    Hooper DU, Bignell DE, Brown VK, Brussaard L, Dangerfield JM, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, Van der Putten WH, De Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V. 2000. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. Bioscience 50,1049-61.
    Hofman J, Dusek L, Klanova J, Bezchlebova J, Holoubek I. 2004. Monitoring microbial biomass and respiration in different soils from the Czech Republic—a summary of results. Environ. International 30, 19-30.
    Houghton RA, Hackler JL. 1999. Emission of carbon from forestry and land-use changes in tropical Asia. Glob Chan Biol 5, 481-492.
    Harrison UJ, Shaw HD. 2001. Effects of soil Ph and nitrogen fertility on the population dynamics of Thielaviopsis basicola. Plant and Soil 228, 147-155.
    Huston MA.1997.Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110, 449-460.
    Hu SJ, van Buggen AHC, Grunwald NJ. 1999. Dynamics of bacterial populations in relation to carbon availability in a residue-amended soil. Appl Soil Ecol 13, 21-30.
    Imberson J, 1999. Pattern and development of land-use change in the Kenyan highlands since the 1950s. Agric Ecosyst Environ 76, 67-73.
    Inouye RS, Huntly NJ, Tilman D, Tester JR, Stillwell M, Zinnel KC. 1987. Old-field succession on a Mingsota sand plain. Ecology 68(1), 12-26.
    Insam H. 1990. Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil Biol Biochem 22, 525-532.
    Insam H, Haselwandter K.1989. Metabolic coefficient of the soil microflora in relation to plant succession. Oecologia 79, 174-178.
    Insam H, Domsch KH.1988. Relationship between soil organic C and microbial biomass on chronosequences of reclamation sites.Microbial Ecology 15, 177-188.
    Insam H, Mitchell CC, Dormaar JF. 1991. Relationshipi of soil microbial biomass and activity with fertilization practice and crop yield of 3 ultisols. Soil Biol Biochem 23, 459-464.
    Insam H, Parkinson D, Domsch KH. 1989. The influence of microclimate on soil microbial biomass level. Soil Biol Biochem 21,211-221.
    Insam H, Haselwandter K. 1989. Metabolic coefficient of the soil microflora in relation to plant succession. Oecologia 79, 174-178.
    Ibckwe AM, Kennedy AC. 1999. Fatty acid methyl ester (FAME) profiles as a tool to investigate community structure of two agricultural soils Plant Soil 206,151-161.
    Jackson LE, Calderon FJ, Steenwerth KL, Scow KM, Rolston DE. 2003. Responses of soil microbial processes and community structure to tillage events and implications for soil quality. Geoderma 114,305-317.
    Janzen HH, Kucey RMN. 1988. C, N and S mineralization of crop residues as influences by crop species and nutrient regime. Plant Soil 106, 35-41.
    Jenkinson DS. 1976. The effects of biocidal treatments on metabolism in soil. IV. The decomposition of fumigated organisms in soil. Soil Biol Biochem 8, 203-208.
    Jenkinson DS. 1987. An extration method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19,703-707.
    Jenkinson DS. 1988. Determination of microbial biomass carbon and nitrogen in soil. In: Wilson JR (Ed.), Advances in Nitrogen Cycling in Agricultural Ecosystem. CAB International, Wallingford, pp. 368-385.
    Jenkinson D, Ladd LN. 1981. Microbial biomass in soil: measurement and turnover. In: Paul, E.A., Ladd J.N. (eds), Soil Biochemistry, vol. 5, Marcel Dekker New York, pp. 415-471.
    Joergensen RG, Scheu S. 1999. Depth gradients of microbial and chemical properties in moder soils under beech and spruce. Pedobiologia 43, 134-144.
    Jenkinson DS, Parry LC. 1989. The nitrogen cycle in the broadbalk wheat experiment: A model for the turnover of nitrogen through the soil microbial biomass. Soil Biology and Biochemstry 21,535-541.
    Jenkinson DS. 1991. The Rothamsted classical experiments: are they still of use: Agron J 83, 2-10. Jenkinson DS, Powlson DS. 1976. The effect of biocidal treatment on metabolism in soil. V. A method for measuring soil biomass. Soil Biol Biochem 8,209-219.
    Jia GM, Cao J, Wang CY, Wang G. 2005. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China. For Ecol Manage 217,117-125.
    Jastrow JD. 1996. Soil aggregate formation and the accrual of particulate and mineral associated organic matter. Soil Biol Biochem 28, 656-676.
    Juo ASR, Lal R. 1977. The effect of fallow and continuous cultivation on the chemical and physical properties of an alfisol in the tropics. Plant Soil 47, 567-584.
    Kahiluoto H, Ketoja E, Vestberg M, Saarela I. 2001. Promotion of AM utilization through reduced P fertilization 2 Field studies. Plant and Soil 231,65-79.
    Kanazawa S, Asakawa S, Takai Y. 1988. Effect of fertilizer and manure application on miucrtobial numbers, biomass and enzyme activities in volcanic ash soils Soil Sci Plant Nutr 34,429-439.
    Krauss KW, Allen JA. 2003. Factors influencing the regeneration of the mangrove Bruguiera gymnorrhiza (L.) Lamk. On a tropical Pacific island. For Ecol Manage 176,49-60.
    Klose S, Moore JW, Tabatabai MA. 1999. Arylsulfatase activity of microbial biomass in soils as affected by cropping systems. Biol Fertil Soils 29, 46-54.
    Kahmen A, Perner J, Audorff V, Weisser W, Buchmann N. 2005. Effects of plant diversity, community composition and environmental parameters on productivity in montane European
     grasslands. Oecologia 142, 606-615.
    Knopes JMH, Tilman D. 2000. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology 81(1), 88-98.
    Killham K. 1994. Soil Ecology. Cambridge University Press, Cambridge.
    Ladd JN, Amato M, Li-Kai Z, Schultz JE. 1994. Differential effects of rotation, plant residue and nitrogen fertilizer on microbial biomass and organic matter in a Australian alfisol. Soil Biol Biochem 26, 821-831.
    Lai R. 1990. Soil erosion and land degradation: The global risks. Adv Soil Sci 11, 169-172.
    Larkin RP. 2003. Characterization of soil microbial communities under differet potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biol Biochem 35, 1451-1466.
    Lavahun MFE, Jeogensen RG, Meyer B. 1996. Activity and biomass of soil microorganisms at different depths. Biology and Fertility of Soils 23, 38-42.
    Lehman CL, Timan D, 2000. Biodiversity, stability and productivity in competition communities. The American Naturalist. 156,534-532.
    Lal R, Kimble JM, Follet RF, et al. 1999. Cropland to sequester carbon in soil [J]. Soil Water Conservation 55, 374-381.
    Lal R, Kimble J, Follett RF. 1997. Pedospheric processes and the carbon cycle [A]. Lal R , et al. Soil Processes and the Carbon Cycle [C]. Boca Raton: CRC Press, 1-8.
    Landgraf, D. 2001. Dynamics of microbial biomass in Cambisols under a three year succession fallow in North Eastern Saxony. J Plant Nutr Soil Sci 164, 665-671.
    Landgraf D, Bohm C, Makeschin F. 2003. Dynamic of different C and N fractions in a Cambisol under five year succession fallow in Saxony (Germany). J Plant Nutr Soil Sci 166, 319-325.
    Landgraf D, Klose S. 2002. Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems. Plant Nutr Soil Sci 165, 9-16.
    Lavelle P, Van der Putten WH, De Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V. 2000. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. Bioscience 50(10), 49-61.
    Liu, DS. 1964. Loess in the Middle Yellow River, Beijing: Science Press. 128,146-149.
    Liu X, Lindemann WC, Whitford WG, Steiner RL. 2000. Microbial diversity and activity of disturbed soil in the northern Chihuahuan Desert. Biol Fertil Soils 32, 243-249.
    Logan, TJ. 1989. Chemical degradation of soil. Adv Soil Sci 11,187-222.
    Louks OL. 1970. Evolution of diversity, efficiency, and community atability. American Zoologist 10,17-25
    Louise M D, Gwyn S G, John H, et al. 2000. Management influences no soil microbial communities
     and their function in botanically diverse hay meadows of northern England and Wales. Soil Biol Biochem 32, 253-263.
    Lupwayi NZ, Rice WA, Claydon GW. 1998. Soil microbial diversity and community structure under wheat as influenced by tillage and rotation. Soil Biol Biochem 30, 1733-1741.
    Maly S, Korthals GW, Van Dijk C, Van der Putten WH, De Boer W. 2000. Effect of vegetation manipulation of abandoned arable land on soil microbial properties. Biol Fertil Soils 31, 121-127.
    Marschner P, Kandeler E, Marschner B. 2003. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35, 453-461.
    Manjaiah KM, Voroney RP, Sen U. 2000. Soil organic carbon stocks, storage profile and microbial biomass under different crop management systems in a tropical agricultural ecosystem. Biol Fertil Soils 31, 273-278.
    Mahmood T, Azam F, Hussain F, Malik KA. 1997. Carbon availability and microbial biomass in soil under an irrigated wheat-maize cropping system receiving different fertilizer treatments. Biol Fertil Soils 25, 63-68.
    Mazzarino MJ, Szott L, Jimenez M. 1993. Dynamics of soil total carbon, nitrogen, microbial biomass and water soluble carbon in tropical agroecosystems. Soil Biol Biochem 25, 205-214.
    McGill WB, Camnon KR, Robertson JA, Cook FD. 1986. Dynamic of soil microbial biomass and water soluble organic C in Breton L after 50 years of cropping to two rotations. J Soil Sci 66,1-19.
    McKinley VL, Peacock AD, White DC. 2005. Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils. Soil Biol Biochem **, 1-13.
    Media P, Strommer R, Fritze H. 2002. Soil microbial actrivty and community structure along a primary succession transect on the land-uplift coast in western Finland. Soil Biology and Biochemstry 34, 1647-1654.
    Meyer WB, Tuner II BL. 1991. Changes in Land Use and Land Cover: A Global Perspectives. Cambridge: Cambridge University Press.
    Miethling R, Wieland G, Backhaus H, Tebbe CC. 2000. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. MicrobEcol 41,43-56.
    Mihaila V, Hera C. 1994. Long-term agricultural experiments in Eastern Europe. II. Some recent results from the long-term experiement at Fundulea, Romania. In: RA Leigh, AE Johnston (eds.), Long-term experiments in agricultural and ecological sciences, pp, 220-227. CAB Intl, Wallingford.
    Mikola P. 1985. The effect of tree species on the biological properties of forest soil. Naturvardsverket, repport, 8, 28pp.
    Mirchink TG. 1988. Soil mycology. Moscow State University Moscow.
    Milne RM, Haynes RJ. 2004. Soil organic matter, microbial properties, and aggregate stability under annual and perennial pastures. Biology and Fertility Soils 39, 172-178.
    Moore JC. 1994. Impact of agricultural practices in soil food-web structure: theory and application. Agriculture Ecosystems and Environment 51, 239-247.
    Moore JM, Klose S, Tabatabai MA.2000. Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biol Fertil Soils 31,200-210.
    Nair KPP.1996. The buffering power of plant nutrients and effects on availability. Adv Agron 57, 237-287.
    Nannipieri P, Greco S, Ceccanti B. 1990. Ecological significance of the biological activity in soil. In: Bollag, J.M., Stotzky, G, (eds) Soil Biochemistry, vol 6, Marcel Dekker, New York pp 293-355.
    Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM. 1995. Empirical evidence that declining species diversity may alter the performance of terrestrial ecosystems. Phil Trans R Soc Lond 347, 249-262.
    Niklaus PA, Alphei J, Ebersberger D, Kampichler D, Kandeler E, Tscherko D. 2003. Six years of in situ CO_2 enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland. Global Change Biol 9, 585-600.
    O'Brien ND, Attiwill PM, Weston CJ. 2003. Stability of soil organic matter in Eucalyptus regnans forests and Pinus radiate plantations in south eastern Australia. Forest Ecology and Management 185,249-261.
    Ocio JA, Brookes PC. 1990. An evaluation of methods for measuring microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops. Soil Biol Biochem 22, 685-694.
    Oldeman LR, 1994. The global extent of soil degradation. In Soil Resilience and Sustainable Land Use.Edes DJ Greenland and I Szaboles. Pp. 99-118. CAB International Publishers, Wallingford, Oxford.UK.
    Ohtonen R. 1994. Accumulation of organic matter along a pollution gradient: application of Odum's theory of ecosystem energetics. Microbial Ecology 27,43-55.
    Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J. 1999. Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119, 239-246.
    Odell RT, Melsted SW, Walker WM. 1973. Changes in organic carbon and nitrogen of morrow plot soilunder fervent treatments [J]. Soil Science 137(3), 160-170.
    Odum EP. 1960. Organic production and turnover in old field succession. Ecology 4, 34-49.
    Odum EP. 1969. The strategy of ecosystem development. Science 164, 262-270.
    Odum EP.1985. Trends expected in stressed ecosystems. Bioscience 35, 419-422.
    Omay AB, Rice CW, Maddux LD, Gordon WB. 1997. Changes in soil microbial and chemical properties under long-term crop rotation and fertilization. Soil Sci Soc Am J 61, 1672-1678.
    Parr JF, Papendick, RI. 1997. Soil quality: relationship and strategies for sustainable dryland farming systems.ANNALS OF Arid Zone 36, 181-191.
    Parkinson D, Coleman DC. 1991. Microbial communities, activity and biomass. Agric Ecosyst Eviron34, 3-33.
    Parkin TB. 1993. Spatial variability of microbial processes in soil- A view [J]. J Environ Qual 22, 409-417.
    Paustian K, Collins HP, Paul EA. 1997. Management controls on soil carbon. In: Paul EA, Paustian K,Elliot ET, Cole CV, (eds) Soil organic matter in temperate agroecosystems. CRC Press, Boca Raton, FL, 15-49.
    Pankhurst CE, Kirkby CA, Hawke BG, Harch BD. 2002. Impact of a change in tillage and crop residue management practice on soil chemical and microbiological properties in a cerea-producing red duplex soil in NSW, Australia. Biol Fertil Soils 35, 189-196.
    Parham JA, Deng SP, Da HN Sun HY, Raun WR. 2003. Long-term cattle manure application in soil. II. Effect on soil microbial populations and community structure. Biol Fertil Soils 38, 209-215.
    Parinkina OM, Klyueva NV. 1995. Microbiological aspects of soil deterioration at agricultural practices (In Russian). Soil Sci 5, 573-581.
    Peacock AD, Mullen MD, Ringelberg DB, Tyler DD, Hedrick DB, Gale PM, White DC. 2000. Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biol Biochem33, 1011-1019.
    Peacock AD, Macnaughton SJ, Cantu JM, Dale VH, White DC. 2001. Soil microbial biomass and community composition along an anthropogenic disturbance gradient within a long-leaf pine habitat. Ecological Indicators 1, 113-121.
    Pennanen T, Liski J, Baath E, Kitunen V, Uotila J, Westman CJ, Fritzel H. 1999 Structure of the Microbial Communities in Coniferous Forest Soils in Relation to Site Fertility and Stand Development Stage. Microb Ecol 38, 168-179
    Peverill KI, Judson GJ, Cobalt. 1999. In: Peverill K I, Sparrow LA. Reuter DJ. ed. Soil Analysis. An Interpretation anual. Collingwood: Australian Soil and Plant analysis Council Inc. 319-323.
    Perucci P, Bonciarelli U, Santilocchi R, Bianchi AA. 1997. Effect of rotation, nitrogen fertilization and management of crop residues on some chemical, microbiological and biochemical properties of soil. Biol Fertil Soils 24, 311-316
    Petersen S, Klug M. 1994. Effects of sieving storage, and incubation temperature on the phospholipid fatty acid profile of a soil microbial community. Applied Environmental Microbiology 60, 2421-2430.
    Perry DA, Amaranthus MP, Borchers JG, Borchers SL, Brainerd RE. 1989. Bootstrapping in ecosystems. Bioscience 39,230-237.
    Post WM, Peng TH, Emanuel WR, King AW, Dasle VH, De Amgelis DL. 1990. The global carbon
     cycle. American Scientist 78, 310- 326.
    Post WM, Kwon KC. 2000. Soil carbon sequestration crashes and woodland structure in East Africa. Journal of Ecology 81,305-314.
    Post WM, Mann LK. 1990. Change in soil organic matter and nitrogen as a result of cultivation. In: Bouman AF. (ed.), Soils and the Greenhouse Effect. John Wiley Publishers, Chichester, UK.
    Powlson DS, Brookes P, Christensen BT. 1987. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol Biochem 19, 159-164.
    Prasad R, Goswami NN. 1992. Soil restoration and management for sustainable agriculture in South Asia. Adv Soil Sci 17,37-77.
    Priha T, Smolander A. 1999.Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula Pendula at two forest sites. Soil Biol Biochem 31,965-977.
    Priha O, Grayston SJ, Hiukka R, Pennanen T, Smolander A. 2001. Microbial community structure and characteratics of the organic matter in soils under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Biol Fertil Soils 33, 17-24.
    Priha O, Grayston SJ, Pennanen T, Smolander A. 1999. Microbial activities related to C and N cycling and microbial community structure in the rhizospheres of Pinus Sylvestris, Picea abies and Betula pendula seedlings in an organic and mineral soil. FEMS Microbiol Ecol 30, 187-199.
    Richter D, Markewitz D. 1995. How deeo is soil? BioScience 45, 600-609.
    Ritz K, Robinson D. 1988. Temporal variations in soil microbial biomass C and N under a spring barley crop. Soil Biol Biochem 20, 625-630.
    Ross DJ, Tate KR. 1993. Microbial C and N, and respiratory activity, in litter and soil of a Southernbeech(Nothofagus) forest: Distribution and properties. Soil Biology and Biochemstry 25,477-483.
    Ross DJ, Sparling GP, Burke CM, Smith CT. 1995. Microbial biomass C and N and mineralizable-N in litter and mineral soil under Pinus radiata on a coastal sand: influence of stand age and harvest management. Plant Soil 175, 167-177.
    Ross DJ, Tate KR, Feltham CW. 1996. Microbial biomass and C and N mineralization in litter and mineral soil adjacent montant ecosystems in a southern beech (Nothofagus) forest and a tussock grassland. Soil Biol Biochem 28, 12, 1613-1620.
    Rutigliano FA, Ascoli RD, De Santo AV. 2004. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biol. Biochem. 36, 1719-1729.
    Salamanca EF, Raubuch M, Joergensen RG. 2002. Relationships, between soil microbial indices in secondary tropical forest soils. Applied Soil Ecol 21, 211-219.
    Sakamoto K, Oba Y. 1994. Effects of fungal to bacterial biomass ratio on the relationship between CO_2 evolution and total soil microbial biomass. Biol Fertil Soils 17, 3 9-44.
    Saviozzi A, Levi-Minzi R, Cardelli R, Riffaldi R. 2001. A comparision of soil quality in adjiacent cultivated, forest and native grassland soils. Plant and Soil 233,251-259.
    Saetre P, Baath E, 2000. Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand. Soil Biol Biochem 32, 909-917.
    Saetre P, Brandtberg PO, Lundkvist H, Bengtsson J. 1999. Soil organisms and acarbon, nitrogen and phosphorus mineralization in Norway spuce and amixed Norway spuce-Birch stands. Biology and Fertility of Soils 28, 382-388.
    Schnurer J, Clarholm M, Rosswall T. 1985. Microbial biomass and activity in an agricultural soil with different organicmatter contents [J]. Soil Biochem 17, 611- 618.
    Scheu S, Parkinson D.1995. Successional changes in microbial biomass, respiration and nutrient status during litter decomposition in an aspen and pine forest. Biology and Fertilty of soils 19, 327-332.
    Scholes RJ, Van Breemen N. 1997. The effects of global change on tropical ecosystems. Geoderma 9,9-24.
    Schipper LA, Degens BP, Sparling GP, Duncan, LC. 2001. Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biol Biochem 33, 2093-2103.
    Skujins J, Klubek B. 1982. Soil biological properties of a mountain forest sere: corroboration of Odum's postulates. Soil Biol Biochem 14, 505-513.
    Simek M, Hopkins DW, Kalcik J, Picek T, Santruckova H, Stana J, Travnik K. 1999. Biological and chemical properties of arable soils affected by long-term organic and inorganic fertilizer applications. Biol Fertil Soils 29, 300-308.
    Singh JS, Raghubanshi AS, Singh RS, Srivastava SC. 1989. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature 338, 499-500.
    Singh RS, Srivastava SC, Raghubanshi AS, Singh JS, Singh SP. 1991. Microbial C, N and P in dry tropical savanna: effects of burning and grazing. J Applied Ecol. 28, 869-878.
    Singh KP, Tripathi SK. 1992. Restoration of degraded forest system, In: Singh, J.S. (Eds.), Restoration of Degraded Land: Concepts and Strategy. Rastogi Publication, Meerut, India, pp. 73-99.
    Singh AN, Raghubanshi AS, Singh JS. 2004. Comparative performance and restoration potential of two Albizia species planted on mine spoil in a dry tropical region, India. Ecological Engineering 22, 123-140.
    Smith JL, Paul EA. 1990. The significance of soil microbial biomass estimations. In: Bollag J-M, G Smith LJ, Papendick RI. 1993. Soil organic matter dynamics and crop residue management. In: Blaine Meeting, FJ,(Ed.), Soil Microbioal Ecology Applications in Agricultural and Environmental Management. Marcel Dekker, New York, pp.65-94.
    Sparling GP. 1997. Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In: Pankhurst CE, Double BM, Gupta VVSR. Editors. Biological indicators of soil health. Wallingford: CAB International, pp. 97-120.
    Spedding TA, Hamel C, Mehuys GR, Madramootoo CA. 2004. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems Soil Biology and Biochemistry 36, 499-512.
    Spehn EM, Joshi J, Schmid B, Alphei J, Korner C. 2000. Plant diversity effects on soil hetertrophic activity in experimental grassland ecosystems. Plant and Soil 224, 217-230.
    Srivastava SC, Singh ST. 1991. Microbial C and P in dry tropical forest soils: effects of alternate land use and nutrient flux. Soil Biol Biochem 23, 117-124.
    Srivastava SC, Lai SC. 1994. Effects of crop growth and soil treatments on microbial C, N and P in tropical forest land. Biol Fertil Soils 17, 109-117.
    Steenwerth KL, Jackson LE, Calder6n FJ, Stromberg MR, Scow KM. 2003. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biochem Biochem 35,489-500.
    Stephen A, Meyer AH, Schmid B. 2000. Plant diversity affects culturable soil bacteria in experimental grassland communities. J Ecol 88, 988-998.
    Studdert GA, Echeverria HE. 2000. Crop rotation and nitrogen fertilization to manage soil organic carbon dynamics [J]. Soil Sci Soc Am J 64, 1495-1503.
    Stewart WDP. 1991. The importance sustainable agriculture and biodiversity among invertebrates and microorganisms. In The Biodiversity of Microorganisms and Invertebrates: Its Role in Sustainable Agriculture. Ed. DL Hawksorth. Pp. 3-6. Redwood Press, Melksham.
    Tabatabai MA, Fu MH, Basta NT. 1992. Effects of cropping systems on nitrification in soils. Commun Soil Sci Plant Anal 23, 1885-1891.
    Taylor JP, Wilson B, Mills, MS, Burns RG. 2002. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol Biochem 34, 387-401.
    Tilman D.1988. Plant Strategies and the Dyanmics and Structure of Plant Communities. Princeton, NJ: Princeton University. 57.
    Tilman D.1999.The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80 (5), 1455-1474.
    Tilman D, Lehman CL, Thomson KT. 1997. Plant diversity and ecosystem productivity: theoretical considerations. PRO Natl Acad Sc USA 94, 1857-1861.
    Tilman D, Wedin D, Knops J. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718-720.
    Turner BL, Meyer WB. 1994. Global land use and land cover change: an overview [A]. In: Williamb M, Turner B L. Changes in Land Use and Land Cover: A Global Perspective[C]. Cambridge.
    Turner BL, Skole D, Sanderson S, et al. 1995. Land use and land-cover change: Science/research plan. IGBP Report 35/HDP Report 7. Stockholm and Geneva 12-120
    Tunlid A, White C. 1992. Biochemical analysis of biomass, community structure, nutritional status
     and metabolic activity of microbial communities in soil, in: Stotzky G, Bollag JM (Eds.), Soil Biochemistry, vol. 7. Marcel Dekker, New York, pp. 229-262.
    van der Wal A, van Veen JA, Smant W, Boschker HTS, Bloem J, Kardel P, van der Putten WH, de Boer W. xx. Fungal biomass development in a chronosequence of land abandonment, xxxx,1-10.
    Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19,703-707.
    Vitousek PM.1994. Beyond global warming: ecology and global change. Ecology 75, 1861-1876.
    Vitousek PM, Mooney HA, Lubchenco J, Mellilo JM.1997 Human domination of earth's ecosystems. Science 277,494-499.
    Wang GH. 2002. Plant Traits and Soil Chemical Variables during a Secondary Vegetation Succession in Abandoned Fields on the Loess Plateau. Acta Botanica Sinica 44 (8), 990-998 (in Chinese).
    Wilson WL, Abernethy VJ, Murphy KJ, Adam A, McCrachen DI, Downie IS, Foster GN, Furness, RW, Waterhouse A, Ribera I. 2003. Prediction of plant diversity response to land-use change on Scottish agricultural land. Agric Ecosyst Environ 94, 249-263.
    Wood CW, Mitchell RJ, Zutter BR, Lin CL. 1992. Lobiolly pine plant community effects on soil carbon and nitrogen. Soil Sci 154, 410-419.
    Wali MK. 1999. Ecological succession and the rehabilitation of disturbed terrestrial. Plant soil 213,195-220.
    Walley FL, van Kessel C, Powlson DS. 1996. Landscape scale variability of N-mineralization in forest soils. Soil Biol Biochem 28, 383-391.
    Wardle DA.1993. Changes in the microbial biomass and metabolic quotient during leaf litter succession in some New Zealand forest and scrubland ecosystems. Functional Ecology 7, 346-355.
    Wardle DA, Ghani RL. 1995. A critique of the microbial metabolic quotient (qCO_2) as a bioindicator of disturbance and ecosystem development. Soil Biology and Biochemistry 27,1601-1610.
    Wardle DA, Bonner KI, Barker GM, Yeates GW, Nicholson KS, Bardgett RD, Watson RN, Ghani A. 1999. Plant removals in perennial grassland: vegetation dynamics, decomposer, soil biodiversity and ecosystem properties. Ecol Monogr 69, 535-568.
    Wardle DA, Bonner KI, Nicholson KS. 1997. Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79, 247-258.
    Wardle DA, Walker LR, Bardgett RD. 2004. Ecosystem Properties and Forest Decline in Contrasting Long-term Chronosequences. Science 305, 509-513.
    Weaver PL, Birdsey RA, Lugo AE. 1987. Soil organic matter in secondary forests of Puerto Rico. Biotropica 19,17-23.
    Wick B, Kuhne RF, Viehauer KK, Vlek PLG. 2002. Temporal variability of selected soil microbiological and biochenmical indicators under different soil quality conditions in south-western Nigeria. Biol Fertil Soils 35, 155-167.
    Willis K.J, Braun M, Sumegi P, T6th A. 1997. Does soil change cause vegetation change or vice versa? A temporal perspective form Hungary. Ecology 78, 740-750.
    White DC, Davis WW, Nickels JS, King JD, Bobbie RJ. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40, 51-62.
    Witter E, Kanal A. 1998. Characteristics of the soil microbial biomass in soils from a long-term field experiment with different level of C-input. Appl Soil Ecol 10, 37-49.
    Whitehead DC. 1995. Grassland Nitrogen. CAB International, Wallingford pp. 82-107.
    Wolters V. 1991. Biological processes in two beech forest soils treated with simulated acid rain -a laboratory experiment with Isotoma tigrina (Insecta, Collembola). Soil Biol Biochem23,381-390.
    Wu TY, Schoenau JJ, Li FM, Qian P, Malhi SS, Shi Y, Xu F. 2004. Influence of cultivation and fertilization on total organic carbon and carbon fractions in soils from the Loess Plateau of China. Soil Tillage Research 77, 59-68.
    Wu J, Brookes P. 1988. Microbial biomass and organic matter relationship. J Sci Food Agric 45,138-139.
    Xu JM. 2000. Soil organic matter. In: Huang C Y eds. Soil Science. Beijing: China Agriculture Press,32-49.
    Yan T, Yang L, Campbell CD. 2003. Microbial biomass and metabolic quotient of soils under different land use in the Three Gorges Reservoir area. Geoderma 115,129-138.
    Yao H, He Z, Wilson M J, Campbell C D. 2000. Microbial Biomass and Community Structure in a Sequence of Soils with Increasing Fertility and Changing Land Use. Microb Ecol 40, 223-237.
    Zelles L, Bai QY, Beck T, Beese F. 1992.Signature fatty acids in phospholids and lipopolysaccharids as indicators of microbial biomass and community structure in agricultural soils. Soil Biol Biochem 24, 317-323
    Zelles L, Bai QY, Ma RX, Rackwitz R, Winter K, Beese F. 1994. Microbial biomass, metabolic activity and nutritional status determined from fatty acid patterns and polyhydroxybutyrate in agriculturally-managed soils. Soil Biology & Biochemistry 26, 439-44.
    Zak DR, Grigal DR, Gleeson S, Tilman D.1990. Carbon and nitrogen cycling during old-field succession: constraints on plant and microbial biomass. Biogeochemistry 11,111-129
    Zak DR, Tilman D, Parmenter RR, Rice CW, Fisher FM, Vose J, Milchunas D, Martin CW. 1994. Plant production and soil-microorganisms in late-successional ecosystem - a continental-seal study. Ecology 75, 2333-2347.
    Zak DR, Holms WE, White DC, Peacock AD, Tilman D. 2003. Plant diversity, soil microbial
     communities, and ecosystem function: are there any links? Ecology 84, 2042-2050.
    Zhang Q, Zak JC. 1998. Effects of water and nitrogen amendment on soil microbial biomass and fine root production in a semi-arid environment in west Texas. Soil Biol Biochem 30, 39-45.
    Zogg G, Zak D, Ringelberg D, Macdonald N, Pregitzer K, White D. 1997. Compositional and functional shifts in microbial communities due to soil warming. Soil Science Society of Amerca Journal 61, 475-481.
    郭跃.1995.试论农业耕作对土地侵蚀的影响[J].水土保持学报9(4),94-99.
    王佐民,郭培才,高维森.1994.黄土高原土壤抗蚀性研究[J].水土保持学报8(4),11-16.
    巩杰,陈利顶,傅伯杰,虎陈霞,卫伟.2005.黄土丘陵区小流域植被恢复的土壤养分效应研究.水土保持学报19(1),93-96.
    巩杰,陈利项,傅伯杰,李延梅,黄志霖,黄奕龙,彭鸿嘉.2004.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响.应用生态学报15(12),2292-2296.
    安韶山,刘梦云,李壁成,焦菊英.2003.宁南山区不同植被恢复措施的土壤养分效应研究.西北植物学报23(8),1429—1432.
    王国梁,刘国彬,许明祥.2002.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应.水士保持通报22(1),1-5.
    樊军,郝明德,王永功.2003.旱地长期轮作施肥对土壤肥力影响的定位研究.水土保持研究10(1),31-36.
    樊军,郝明德.2003.长期轮作施肥对土壤微生物碳氮的影响.水土保持研究10(1),85-87.
    刘建军等.2002.延安市张梁试区退耕地植被自然恢复与多样性变化[J].西北林学院学报17(3),8-11.
    熊英,王秋兵,黄毅.2005.水土保持生态自我修复中的植物多样性恢复研究.水土保持科技情报4,25-28.
    张金屯,柴宝峰,邱扬等2000。晋西吕梁山严村流域撂荒地植物群落演替中的物种多样性变化[J].生物多样性8(4),378-384
    邹厚远,程积明,周麟.1998.黄土高原草原植被的自然恢复演替及调节[J].水土保持研究5(1),126-138.
    张庆费,宋永昌,由文辉.1999.浙江天童植物群落此生演替与土壤肥力的关系[J].生态学报19(2),174-178.
    杜国祯,王刚.1991.亚高山草甸弃耕地演替群落的种多样性及种间相关分析.草业科学8(4),53-5727.
    周印东,吴金水,赵世伟,郭胜利,路鹏.2003.子午岭植被演替过程中土壤剖面有机质与持水性能变化.西北植物学报23(6),895-900.
    张俊华,常庆瑞,贾科利,陈涛,岳庆玲,李云驹.2003.黄土高原半湿润地区植被恢复对土壤肥力质量的影响研究.水土保持学报17(4),38-41.
    郭胜利,刘文兆,史竹叶,候喜禄,李凤民.2003.半干旱流域土壤养分分布及其与地形、植被 的关系.干旱地区农业研究21(4),40-43.
    马祥华,焦菊英.2005.黄土丘陵沟壑区退耕地自然恢复植被特征及其与土壤环境的关系.中国水土保持科学3(2),15-22.
    温仲明,焦峰,卜耀军,焦聚英.2005.黄土沟壑区植被自我修复与物种多样性变化-以吴旗县为例.水土保持研究12(1),1-3.
    任洪玉,温仲明,杨勤科.2003.黄土沟壑区植被恢复及其物种多样性的变化.干旱区农业研究21(2),154-158.
    李永强,许志信.2002.典型草原区撂荒地植物群落演替过程中物种多样性变化.内蒙古农业大学学报23(4),26-31.
    李裕元,邵明安.2004.子午岭植被自然恢复过程中植物多样性的变化.生态学报24(2),252-260.
    张成娥,陈小利.1997,黄土丘陵区不同撂荒年限自然恢复的退化草地土壤养分及酶活性特征,草地学报5(3),195-200.
    张成娥,王栓全.2000.作物秸秆腐解过程中土壤微生物量的研究.水土保持学报14(3),96-99.
    张成娥,陈小莉,郑粉莉.1998.子午岭林区不同环境土壤微生物生物量与肥力关系研究.生态学报18(2),218-222.
    王改兰,段建南,李旭霖.2003.长期施肥条件下土壤有机质变化特征研究.土壤通报34(6),499-591.
    郑昭佩 刘作新,魏义长,宋德香.2002.水肥管理对半干旱丘陵区土壤有机质含量的影响.水土保持学报16(4),102-104.
    魏孝荣,郝明德,张春霞.2003.黄土区长期定位培肥试验对土壤肥力的影响.水土保持研究10(1),37-40.
    党廷辉.1998.黄土早塬区轮作培肥试验研究.土壤侵蚀与水土保持学报4(3),44-47.
    林保,林继雄,李家康.1996.长期施肥的作物产量和土壤肥力变化[M].北京:中国农业科技出版社.
    刘杏兰,高宗,刘存寿,等.1996.有机无机肥配施的增产效应及对土壤肥力影响的定位研究[J].土壤通报,33(2),138-147.
    邱扬,傅伯杰,王军,陈利顶.2004.黄土高原小流域土壤养分的时空变异以及影响因子.自然科学进展14(3),294-299.
    贾松伟,贺秀斌,陈云明.2004.黄土丘陵区退耕撂荒对土壤有机碳的积累及其活性的影响.水土保持通报18(3),78-84.
    章勰,徐琪.1999.恢复生态学研究的一些基本问题探讨[J].应用生态学报10(1),109-113.
    孙儒泳,李博,诸葛阳,等.1993.普通生态学[M].北京:高等教育出版社.
    彭少麟.2000.恢复生态学与退化生态系统的恢复[J].中国科学院院刊8(3),188-192.
    王效举,龚子同.1998.红壤丘陵小区域不同利用方式下土壤变化的评价和预测.土壤学报35(1),135-139.
    杨景成,韩兴国,黄建辉,潘庆民.2003.土壤有机质对农田管理措施的动态响应.生态学报 23(4),787-796.
    薛晓辉,卢芳,张兴昌.2005.陕北黄土高原土壤有机质分布研究.西北农林科技大学学报(自然科学学报)33(6),69-74.
    江小蕾,张卫国,杨振宁,王刚.2003.不同干扰类型对高寒草甸群落结构和植物多样性的影响.西北植物学报 23(9),1479-1485.
    侯扶江,肖金玉,南志标.2002.黄土高原退耕地的生态恢复.应用生态学报 13(8),923-929.
    王国梁,刘国彬,许明祥.2001.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应[J].水土保持通报 22(1),1-5.
    王岩,张莹,沈其荣,史瑞和.1997.施用有机无肌肥后土壤微生物量固定态铵的变化及其有效性研究.植物营养与肥料学报 3(4),307-314.
    宋日.吴春胜.牟金明.姜岩.郭继勋.2002.玉米根插留田对土壤微生物碳和酶活性的动态变化特征的影响.应用生态学报 13(3)303-306.
    田育军,林杉,赵笃乐,吴文良,胡恒觉.2000.长期不同施肥土壤微生物态氮作为土壤供氮指标的研究.甘肃农业大学学报 1,24-28.
    侯永平,段昌群,何峰.2005.滇中高原不同植被恢复条件下土壤肥力和水分特征研究.水土保持通报 12(1),49-53.
    杨文治,余存祖.1992.黄土高原区域治理与评价[M].北京 科技出版社 302-314.
    韩永伟,韩建国,王堃,张蕴薇.2004.农牧交错带退耕还草堆土壤微生物CN的影响.农业环境科学学报 23(5),993-997.
    朱显谟.1989.黄土高原土壤与农业.北京农业出版社.
    徐振邦,李昕,戴洪才.1985.长白山阔叶红叶松林生物量的研究.森林生态研究 5,33-48.
    孙建华.王彦荣.2004中国主要苜蓿品种的产量形状及其多样性研究.应用生态学报 15(5),803-808.
    周国模,姜培坤.2004.研究不同植被恢复对侵蚀型红壤活性碳库的影响.水土保持学报 18(6),68-71.
    邹后远,刘国彬,王晗生.2002.子午岭林区北部近50年植被的变化发展.西北植物学报 22(1),1-8.
    李裕元,邵明安.2003.黄土高原子午岭森林群落演替与结构特征演化.西北植物学报 23(5),693-699.
    朱海平,姚槐应,张勇勇,吴愉萍.2003.不同培肥管理措施对土壤微生物生态特征的影响.土壤通报 34(2),140-142.
    于永强,字万太,张璐.2002.海伦撂荒地植物生物量的季节变化.应用生态学报 13(6),686-688.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700