用户名: 密码: 验证码:
TiB_(2P)/Al复合材料的显微组织及室温拉伸性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用压力浸渗法制备了体积分数为27%、33%和40%的TiB_(2P)/6061Al复合材料和TiB_(2P) /2024Al复合材料,对复合材料进行热挤压加工。利用扫描电镜(SEM)、透射电镜(TEM)、拉伸试验等多种分析测试手段对复合材料的微观组织、力学性能进行了系统的研究,探讨了增强体含量、热处理工艺对热挤压前后复合材料力学性能的影响。
     研究表明:TiB_2颗粒在基体中的分布随着颗粒体积分数的增加而趋于均匀。挤压后复合材料组织致密,颗粒分布均匀。TEM观察表明,TiB_2颗粒与基体合金界面结合状况良好,有轻微的界面反应,TiB_2颗粒附近基体中存在由热错配产生的位错;热挤压可明显细化基体晶粒,挤压后的晶粒尺寸为1~3μm,TiB_(2P)/6061Al复合材料的时效析出相为β′相;TiB_(2P)/2024Al复合材料的时效析出相为S′相,且后者的时效后析出相细小弥散。
     压力浸渗法制备的TiB_(2P)/6061Al和TiB_(2P)/2024Al复合材料的抗拉强度、屈服强度和弹性模量均随TiB_2颗粒体积分数的增加而获得提高,TiB_(2P)/2024Al复合材料的抗拉强度在380MPa至550MPa之间,体积分数40%的TiB_(2P)/2024Al的抗拉强度可达550MPa,经热挤压之后,复合材料的力学性能获得进一步的提高,TiB_(2P)/2024Al复合材料的抗拉强度在410MPa至580MPa之间,体积分数40%的TiB_(2P)/2024Al挤压热处理之后的抗拉强度可达580MPa以上。而复合材料的延伸率随着颗粒体积分数的增加逐步下降,挤压后复合材料的延伸率还是随着颗粒体积分数的增加而下降,但较挤压之前有很大提高,尤其是体积分数40%的TiB_(2P)/6061Al的延伸率较挤压前提高了100%。
     三种体积分数TiB_(2P)/6061Al复合材料和TiB_(2P) /2024Al复合材料断口分析表明,复合材料的断裂方式为微观上基体铝合金的韧性断裂特征,且随着体积分数的增加,复合材料体积分数的提高,由宏观上的塑性断裂转变为脆性断裂的特征。
TiB_2 particles reinforced 6061 aluminum matrix composites and TiB_2 particles reinforced 2024 aluminum matrix composites which volume fraction are 27%,33% and 40%, which were fabricated by pressure infiltration technique, then were extruded on the hot extrusion process. The effects of reinforcement, heat treatment and hot extrusion on microstructure characteristics, tensile properties, were studied by using of SEM, TEM, tensile testing machine.
     Results indicate that the particles tend to uniformity with the volume fraction increased of the particles. The composites are dense and reinforcement particles distribute uniformly after hot extrusion. The TiB_2-Al interface combined well, and there are slight reactants on the interface and some dislocations in the matrix alloy beside TiB_2 particles caused by mismatch stress; sub grains are found after hot extrusion, and grain size are refined to 1~3μm, the precipitation of TiB_2/6061Al areβ′;the precipitation of TiB_2/6061Al are S’,and the fine S’there are dispersive in the matrix alloy.
     The tensile strengths、yield strengths and elasticity modulus of TiB_(2P)/6061Al and TiB_(2P)/2024Al are increased with the volume fraction increased of the particles .The tensile strengths of TiB_(2P)/2024Al which volume fraction is 40% is 550MPa, the mechanics properties of the composites which extruded are more strength than which unextruded , the tensile strengths of TiB_(2P)/2024Al which volume fraction is 40% after hot extrusion in T6 state are 583MPa. The elongation ratios of the composites are descend with the volume fraction increased of the particles , the elongation ratios of the composites which extruded are descend with the volume fraction increased of the particles, but the elongation ratios which extruded are increased compare with unextruded composites respectively, the elongation ratios of TiB_(2P)/6061Al which volume fraction is 40% is increased 100%.
     Fractographic analysis of the three volume fraction of TiB_(2P)/6061Al and TiB_(2P)/2024Al composites indicates that the fracture of composites is toughness fracture of the matrix alloy in microstructure, but the fracture of composites is brittle fracture with the volume fraction increased.
引文
1《高技术新材料要览》编委会.高技术新材料要览.中国科学技术出版社,1993:109~160
    2吴人洁.金属基复合材料的现状与展望[J].金属学报,1997, 33(1):78-82.
    3 J.W.Kaczmar,K.Pietrzak,et al.The Production and Application of Metal Matrix Composites Materials. Journal of Materials Processing Technology.2000,106:56~68
    4凌兴珠,徐振民.颗粒增强铝基复合材料的组织和性能.中国有色金属学报.1998,8(2):286~290
    5向新,秦岩. TiB_2及其复合材料的研究进展.陶瓷学报.1999,2(20):112~117
    6 B. Roebuck and A.E. Forno.J. Modern developments in Powder Metallargy. 1998.20:451
    7 Kuruvilla A K,Prasad K S, Bhanuprasad V V et al. Scripta Metallurgicalet Meterlalia.1990.24:873.
    8李久荣主编,陶瓷-金属复合材料,冶金工业出版社,2002:
    9王军,严彪.金属基复合材料的发展和未来.上海有色金属.1999,20(4):188~192
    10欧阳柳章,罗承平,隋贤栋,骆灼旋.外加颗粒增强铝基复合材料的现状和展望.中国铸造装备与技术。2000,(1):3~7
    11 M.K. Surappa,P.Sivakumar. Fracture Toughness Evaluation of Al2O3/2024Al Composites Science and Tchnology.1993,(46):287~295
    12 D.J.Lloyd. Particle Reinforced Aluminum and Magnesium Matrix Composites . Int. Mater. Rev. 1994,39(1):1~23
    13 Eliosson,R. Somclstrom. Application of Aluminum Matrix Composites. Key Engineering Materials.1995,(104-107)Part1:3~36
    14黄泽文.金属基复合材料的大规模生产和商品化发展.材料导报.增刊:18~25
    15 N. Ham , G.Pollard , R. Stevens. Interfacial Structure and Fracture of Aluminum Alloy A356-SiC Partical Metal Matrix Composites. Mater SiC Tech.1992,8(2):184~187
    16桂满昌,王殿武.颗粒增强金属基复合材料的制备及应用.材料导报.1996,3:65~71
    17吴波,刘一薇.复合材料在惯性器件的应用研究.导弹与航天运载技术.2000,3:17~20
    18马森林,杨峰,吴高辉,李义春.高尺寸稳定性铝基复合材料研究新进展.中国惯性技术学报.1998,6(3):64~68
    19 Lioyd D J. Particle reinforced aluminium and magnesium matrix composites[J]. Inter. Mater. Rev, 1994,39(1): 1
    20 Shiono T, Noda K. Fabrication of Ceramic Composites Consisting of Powders with Different Specific Gravity by the Slip-casting Technique[J]. J. Mater Sci, 1997, 32:2665.
    21 Watanabe Yoshimi. Nakamura Tatsuru. Microstructure and wear resistance of hybrid Al-(Al3Ti+Al3Ni) FGMs fabricated by a centrifugal method[J]. Intermetallics, 2001, (9):33.
    22朵军,颗粒增强铝基复合材料的研究现状.青海科技.2006.4:58~60
    23 Lee Konbaeeal. Interfacial reaction in SiCp/Al composite fabricated by pressureless infiltration[J] . Scripta,Maerialia,1997 ,36 (8) :847.
    24 Fan Tongxiang, Zhang Di ,Yang Guang ,etc. Chemical reaction of SiCp/ Al composites during multiple remelting[J] .Composites :Pate A :291 - 299.
    25 Fan Tongxiang, Zhang Di ,Yang Guang. Temperature dependence of melt structure in SiCp/Al composites above the hquidus[J]. Materials Chemistry and Physics, 2005, 93 :208 - 216.
    26宋和国,吴申庆.自生铝基复合材料的制备、性能及生成机理[J]材料导报,1998 ,12(4):61- 641
    27 J.R.Brockenbrough, S.Suresh, H.A.Wienecke. Deformation of MMCs with continuous fibers: geometrical effects of fiber distribution and shape[J]. Acta Metall.Mater,1991,39:735-752
    28 YWKwon, J.M.Berber. Micromechanics model for damage and failure analysis of laminated fibrous composites. Engineering Fracture Mechanics, 1995, 29(8):628-632
    29 Lilholt H, Jaul Jensen D. Proceedings of the second international conference on testing, evaluation and quality control of composites. JJ.TEQC-87, Seven Oaks, UK:Butterworths,1987,P 156-160
    30 Withers P J, Stobbs W M, Pedersen B. The application of the Eshelby method ofinternal stress determination to short fibre metal matrix composites[J]. Acta Metall, 1989, 37:3061-3084
    31 Bowles D E, Tompkins S S. Prediction of coefficients of thermal expansion for unidirectional composites [J]. J. Composites,1989,23:370-388
    32 Povirl G L, Needleman A, Nutt N R. Analysis of residual stress formation in whisker-reinforced Al-SiC composites[J].Mater Sci Eng,1990, A125: 129-132
    33 Mary Vogelsang, Aresenault R J, Fisher R M. An in-situ HVEM study of dislocation generation at Al/SiC interfaces in metal matrix composites[J]. Metall Trans, 1986, 17A: 379-383.
    34 Dunand D C, Moriensen A. On plastic relaxation of thermal stresses in reinforced metals [J]. Acta Metall Mater,1991,39:127-139
    35 Christman T Surech S. Micro structural development in an aluminum alloy-SiC whisker composite.[J].Acta Meta11,1988,36:1691-1704
    36 Llorca J, Martin A, Ruiz J, et al. Particulate fracture during deformation of a spray formed metal-matrix composite [J] . Metal Trans A, 1993, 24: 1575.
    37程羽,郭生武,郭成.变形条件对SiCp/2014Al复合材料力学行为和晶粒度的影响.锻压技术.2000,9(4):368~370
    38 B.Inem. Crystallography of the Second Phase/SiC Particle Interface, Nucleation of the Second Phase atβ-SiC and its effect on Interfacial Bonding, Elastic Properties and Ductility of Magnesium Matrix composites. Journal of materials Science.1995,30:5763~5770
    39 N.Shi. Plastic Flow in SiC/Al Composites Strength and Ductility. Mater. Sci.,1994(24):321~325
    40 T.W.Chou,S.Nomura and M.Taya.A self-Consistent Approach to the Elastic Stiffness of a Short-Fiber Composites.J.Composite Mater..1980,2:1~8
    41 R.M.Chritensen,and K.H.Lo..Solutions for Effective Shear Properties of Three-phase Sphere and Cylinder models.J.Mech.Phs..1979,27:315~330
    42 D.A.G..Bruggeman.Berechnug der Elastischen Moduln Fur Die Verschiedenen Texturen der Regularen Metalle.Z.Phys..1934,92:561~568
    43 B.Budiansky.On the Elastic Moduli of some Heterogeneous Materials.J.Mech.-Phys. Solids..1965,13:223~227
    44 R.A.Mclaughlin.Study of the Differential Scheme for Composite Materials.-Int.J.Eng.Sci..1997,15:237~244
    45 R.A.Roscoe,The Viscosity of Suspensiens of Rigid Sphere.Brit.J.Appl.phys..-1952,3:267~269
    46 M.Taya.Strengthening Mechanism of Metal Matrix Composites.Mater.Trans.JI-M..1991,43(8):1~9
    47 I.Duuta, S.M.Allen, J.L. Hafley.Effect of Reinforcement on the Aging Rrsponese of Cast 6061 Al-Al2O3Particulate Composite.Metal.Trans..1991,2A:2553~2563
    48陆利明.颗粒增强铸造铝基复合材料的研究现状和发展.铸造.1993,11:16~22
    49马森林.超细亚微米铝基复合材料的拉伸行为及断裂机制.哈尔滨工业大学工学博士学位论文.1999:87~88
    50谢建新,刘静安.金属挤压理论与技术.冶金工业出版社,2001:16~23
    51许晓静,张荻,施忠良,赵昌正.挤压铸造铝基复合材料的高应变速率超塑性.中国有色金属学报.1999,2(9):231~234
    52贾玉玺.热挤压加工对SiCp/Al复合材料组织和性能的影响.塑形工程学报.2000,4(4):7~8
    53孔海宽.Al2O3/Al挤压材的微观组织和力学性能.哈尔滨工业大学硕士学位论文.2001:19~33
    54樊建中,肖伯律,左涛.热处理对SiCp/Al复合材料强度和塑性的影响.中国有色金属学报.2006,16(2):228~233
    55 Llorca J, Martin A, Ruiz J, et al. Particulate fracture during deformation of a spray formed metal2matrix composite [J] . Metal Trans A, 1993 , 24 : 1575.
    56 Flom Y and Arsenault R J . Effect of particle size on fracture toughness of SiC/ Al composite materials [J] . Acta Metall, 1989 , 37 : 2413.
    57刘钧,王德尊,姚忠凯. SiC晶须增强LD2铝基复合材料的时效.复合材料学报. 1992,9(4): 111~113.
    58范瑞君.挤压铸造TiB_2/Al复合材料的时效行为研究.哈尔滨工业大学学士学位论文.2005:26~27
    59于化顺.金属基复合材料及其制备技术.化学工业出版社,2006,117~118
    60 Reeves A J, Dunlop H and Clyne T W. The effect of interfacial reaction layer thickness on fracture of Titanium-SiC particulate composites [J]. Metall Trans A, 1992, 23: 977.
    61范瑞君.低体积分数TiB_2P(+h-BNP)/6061Al复合材料力学性能及摩擦磨损性能研究.哈尔滨工业大学硕士学位论文.2007:28~29
    62 Zhao Min, Wu Gaohui, Jiang Longtao. Aging Behavior and Precipitation Kinetics of SiCp/6061Al Composites,Journal of Materials Science. 2004, (39): 1759-1763
    63易其林.TiB_2/2024Al复合材料高温拉伸性能与微屈服行为研究.哈尔滨工业大学学士学位论文.2006:22~25
    64马宗义等.原位生长TiB_2颗粒增强铝基复合材料研究.金属学报. 1992,(9):419-422
    65 K. L. Tee, L. Lu, M. O. Lai. In Situ Processing of Al-TiB_2 Composite by the Stir-Casting Technique. Journal of Materials Technology. 1999,89-90:513-519
    66乐永康,张迎元.颗粒增强铝基复合材料的研究现状.材料开发与应用.1997,12(5):33~36
    67才庆魁,贺春林,赵明久.亚微米级SiC颗粒增强铝基复合材料的拉伸性能与强化机制.金属学报.2003,39(8):865~869

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700