用户名: 密码: 验证码:
大型通江湖泊洞庭湖的鱼类时空格局及江湖洄游规律初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流-泛滥平原生态系统形成于长期的周期性的水文动态过程,具有复杂的生境异质性,是生物多样性最为丰富区域之一。长江中下游泛滥平原是我国生物多样性极其丰富的地区。然而,近50年以来,其水文连通受到江湖筑坝建闸的严重阻碍,加上围湖造田、环境污染以及酷渔乱捕等原因,长江水系鱼类多样性面临极大威胁,鱼类资源严重衰退。因此,对泛滥区水体鱼类物群落结构时空格局和洄游性鱼类洄游规律的研究,有助于了解江湖水文自然连通的生态功能,从而为鱼类资源保护和湖泊渔业科学管理提供科学依据。然而,目前我国在这方面的研究仍为空白。有鉴于此,本研究以长江中下游大型通江湖泊-洞庭湖的鱼类为研究对象,于2004年3-12月在洞庭湖出口城陵矶、东洞庭湖、南洞庭湖三个区域进行逐月调查采集,系统开展了鱼类群落多样性研究,探讨了江湖洄游性鱼类江湖洄游规律,主要研究结果与结论如下:
     1.共鉴定鱼类69种,隶属于6目14科44属。三个区域均以鲤形目种类数最多,占总种类数的63.8-65.5%。其中鲤科鱼类为最大类群,有41种,占总数的59.4%。按生态类型,洞庭湖鱼类分为江湖洄游性、江河山溪性和湖泊定居性3个生态类群。全湖月出现的鱼类种数为35±2,不同区域和不同季节间有一定差异。总体来看,湖区与长江干流的距离越近,种类数达到峰值的时间就越早,这暗示夏秋季鱼类由江入湖从而对洞庭湖鱼类资源进行补充。
     2.以优势度大于5000为标准对洞庭湖优势种鱼类进行了测度。结果显示,洞庭湖优势种有鲤、鲫、短颌鲚等17种,且80%以上的优势种为湖泊定居性种类。各区域鱼类优势种组成差异较大。优势种分析表明,洞庭湖鱼类有向小型定居性种类发展的趋势。
     3.对洞庭湖鱼类多样性指数进行了分析计算,结果显示鱼类多样性较高,且在不同区域和季节有差异。Shannon-Weaver指数HI、Wilhm指数HB和Simpson指数D变动范围分别在1.85-2.99、1.96-2.98和0.52-0.80。Pielou均匀性指数E亦较高,EI和EB分别为0.41-0.69和0.45-0.68。与1974年调查结果相比,洞庭湖鱼类物种多样性明显下降,种类组成发生了改变,洄游性鱼类种类明显减少。生境丧失、江湖水文连通受阻是导致这种现象的主要原因。
     4.对不同水位时期的渔获物进行了分析。总体上看,不同水位时期的渔获物在组成上存在较大差异。渔获鱼类在丰水期最多,枯水期最少。从重量和数量相对丰度上看,丰水期主要经济鱼类有草鱼、黄颡鱼、铜鱼、鲤、鲫和蛇鮈;枯水期在重量丰度上以鲤为主,在数量丰度上则以短颌鲚、鱊和餐等小型鱼类为主。渔产量也表现出大体一致的规律,即在水位较高的月份产量较高。这一规律揭示泛滥区水体鱼类受周期性水位波动极大,这种水文扰动对丰富鱼类资源量有着积极作用。
     5.采用生物学法对江湖洄游性鱼类中四大家鱼和铜鱼的种群动态作出分析,对幼鱼入湖时间作出了推断,但尚难估计成鱼的出湖时间。总体来看,四大家鱼在洞庭湖出现时间为7-11月。四大家鱼主要分布于城陵矶和东洞庭湖,已不能到达离干流较远的南洞庭湖。根据草鱼和鲢鱼的种群动态,推测它们幼鱼的入湖时间分别为7和8月。铜鱼分2批进入洞庭湖。第一批为4-6月组,个体较大;第二批为7-11组,个体较第一批小。对江湖洄游鱼类入湖的关键时期研究表明,保持水文自然连通对补充湖泊鱼类资源、维持鱼类自然种群有着重要意义。
Formed by long periodically fluvial dynamics, river-floodplain ecosystem hold high habitat heterogeneity and is one of the richest biodiversity areas on the earth. The mid-lower reaches of the Yangtze River basin in China has a high biological diversity. However, in the past fifty years, the natural hydrological connectivity has impaired strongly by the construction of dams and sluices as well as reclaiming of lake to cultivated land, water pollution and overfishing. Fish resources in the Yangtze River and associated water bodies have declined seriously. Many fishes are endangered. Therefore, the studies on spatial-temporal pattern of fish assemblage and fish migration rhythms are essential to enhance our understanding of the ecological functions of hydrological connectivity gradients. Unfortunately, to date there is little work conducted on this. In the present study, a large river-connected lake, Dongting Lake, was selected as target water, a monthly investigation on fish diversity was carried out, also preliminary studies on the rhythms of fish migration were conducted in March-December, 2004.Three sampling areas were located along a transect from the Yangtze mainstream to the lake center, i.e. Chenglinji, East Dongting Lake and South Dongting Lake. The main results are given as follows:
     1. Totally 69 fish species belonging to 6 orders, 14 families and 44 genera were recorded. In terms of species number, cypriniformes was the richest in each region accounting for 63.8-65.5% of the total. Among them, Cyprinids were the largest group, accounting for 59.4% of the total. As regards the habitat and flow preference of fishes, three ecological categories were divided as river-lake migratory, potamophilus and limnicolous. Monthly changes of species number were 35±2, with great spatial and temporal variations. Generally, with regard to species numbers, the smaller the distance between sampling area and Yangtze mainstream is, the earlier the peak is reached. This indicates that the fish population of lakes can be recruited when fish migrated from river to lakes at summer and autumn.
     2. We measured the value of dominance, and dominant species were determined as species with the value of dominance over 5000. The results showed that there were 17 species, including Cyprinus carpio, Carassius auratus, Coilia brachygnathus, et al. Over 80% dominant species were limnicolous. The composition of dominant species changed greatly spatially and temporally. Analysis indicates that small-sized fishes and limnicolous groups trend to dominate the fish assemblage.
     3. The diversity indices were calculated. The results showed that fish diversity of the lake was high. The diversity indices were HI 1.85-2.99, HB1.96-2.98 and D 0.52-0.80, while evenness indices were EI 0.41-0.69 and EB 0.45-0.68. Compared with investigation carried out in 1974, the species diversity of Dongting Lake declined greatly, supraspecific categories are all less than before. The composition of species changed significantly, the migratory fishes decreased dramatically. These phenomenon revealed that habitat loss and hydrological connectivity impeded are main factors caused it.
     4. Main catch of sampling areas in terms of different water flow period. Generally, the composition of catch was different in relation to water level fluctuation. The highest catch occurred in high-water flow period, while the lowest in low-water flow period. With regard to relative richness, there are some difference in the main catch, i.e. Ctenopharyngodon idellus,Pseudobagrus fulvidraco,Coreius heterodon,Cyprinus carpio, Carassius auratus and Saurogobio dabryi were present in high water level period, while Cyprinus carpio in low water level period. As regards fish yield, it also has the similar pattern, i.e. the higher the water level was, the larger yield occurred. The results show that the fishes in the floodplains are affected strongly by the seasonal fluctuation of water level, which have positive effects for fish population reinforcement.
     5. The fish biology method is applied to study population dynamics of migratory fishes including four major Chinese carps and brass gudgeon (Coreius heterodon). The key time period of young fish migrating from river into the lake is inferred. Four major Chinese carps occur during July-November in Dongting Lake. They mainly appear in Chenglingji and east Dongting Lake, and rarely be found in south Dongting Lake where is far from the mainstream of the river. Analyses show that the key times of grass carp (Ctenopharyngodon idellus) and silver carp (Hypophthalmichthys molitrix) migrating into the lake are July and august respectively. As to brass gudgeon, two groups were found while migrating into the lake. Group I occurs in Apr-Jun, which has larger individuals; group II occurs in July-November, which has smaller ones. The study of fish migration suggests that the interactions between the Yangtze River and its linking water bodies result directly habitat complexity and complement, therefore, natural hydrological connectivity favors the exchanges of fish resources and plays an important role in maintaining its natural population size.
引文
[1]曹文宣,余志堂,许蕴玕,邓中粦,蔡明艳, 1987.三峡工程对长江鱼类资源影响的初步评价及其资源增殖途径的研究,见:中国科学院三峡工程生态与环境科研项目领导小组编.长江三峡工程对生态与环城影响及其对策研究论文集.北京:科学出版社, 2-20.
    [2]曹文宣,张国华, 1991.马骏,喻达辉,洪湖鱼类资源小型化现象的初步探讨.见:中国科学院水生生物研究所洪湖课题组编著:洪湖水体生物生产力综合开发及湖泊生态环境优化研究.北京:海洋出版社, 148-152.
    [3]长江水系渔业资源协作组, 1990.长江水系渔业资源.北京:海洋出版社, 281.
    [4]常剑波,曹文宣, 1999.通江湖泊的渔业意义及其资源管理对策.长江流域资源与环境, 8 (2): 153-157.
    [5]陈大庆,段辛斌,刘绍平,施炜纲,王博, 2002.长江渔业资源变动和管理对策.水生生物学报, 26: 685-690.
    [6]陈宜瑜等主编, 1998.中国动物志硬骨鱼纲鲤形目(中卷).北京:科学出版社.
    [7]乐佩奇等主编, 2000.中国动物志硬骨鱼纲鲤形目(下卷).北京:科学出版社.
    [8]陈宜瑜,常剑波, 1995.长江中下游泛滥平原环境结构改变与湿地丧失.见:陈宜瑜主编,中国湿地研究.长春:吉林科学技术出版社, 153-160.
    [9]陈宜瑜,曹文宣, 1991.洪湖水体生产力开发及环境优化对策.见:中国科学院水生生物研究所洪湖课题组编著.洪湖水体生物生产力综合开发及湖泊生态环境优化研究.北京:海洋出版设, 1-10.
    [10]褚新洛,郑葆珊,戴定远等主编, 1999.中国动物志硬骨鱼纲鲇形目.北京:科学出版社, 35-152.
    [11]崔奕波,李钟杰, 2005.长江流域湖泊的渔业资源与环境保护.北京:科学出版社, 181-192.
    [12]杜耘,薛怀平,吴胜军,魏显虎, 2003.近代洞庭湖沉积与孕灾环境研究.武汉大学学报(理学版), 49 (6): 740-744.
    [13]窦鸿身,姜家虎, 2000.洞庭湖.合肥:中国科学技术出版社, 3-278.
    [14]方榕乐, 1991.武汉东湖鱼类区系及其特点.见:长江流域资源、生态、环境与经济开发研究论文集.北京:科学出版社, 72-76.
    [15]方榕乐,张堂林,刘伙泉, 1995.保安湖鱼类区系结构特点及其渔业利用.见:梁彦龄,刘伙泉主编,草型湖泊资源、环境与渔业生态学管理(一).北京:科学出版社, 205-210.
    [16]费鸿年,何宝全,陈国铭, 1981.南海北部大陆架底栖鱼群聚的多样度研究以及优势种区域和季节变化.水产学报, 5 (1): 1-20.
    [17]傅建平, 2002.洞庭湖渔业资源现状基本特征与保护对策.内陆水产, (7): 44-45.
    [18]何舜平,陈宜瑜, 1996.中国淡水鱼类濒危现状及致危原因分析.见:中国环境与发展国际合作委员会编,保护中国的生物多样性.北京:中国环境科学出版社, 201-207.
    [19]胡军华,胡慧建,何木盈,彭平波,杨道德, 2006.西洞庭湖鱼类物种多样性及其时空变化.长江流域资源与环境, 15 (4): 434-441.
    [20]湖北省水生生物研究所鱼类研究室, 1976.长江鱼类.北京:科学出版社, 221-236.
    [21]湖南省经济鱼类资源调查报告, 1974.湖南省鱼类资源调查办公室汇编(内部资料).
    [22]湖南省水产科学研究所, 1980.湖南鱼类志.长沙:湖南科学技术出版社, 1-231.
    [23]黄根田,谢平,刘伙泉, 1995.东湖鱼类区系的改变和渔获物的分析.见:刘建康主编,东湖生态学研究(二) ,北京:科学出版社, 328-342.
    [24]黄根田,谢平, 1996.武汉东湖鱼类群落结构的变化及其原因的分析.水生生物学报, 20 (增): 38-46.
    [25]黄真理,吴炳方,敖良桂, 2006.三峡工程生态与环境监测系统研究.北京:科学出版社, 232-233.
    [26]贾敬德, 1999.长江渔业生态环境变化的影响因素.中国水产科学, 6: 112-114.
    [27]金球林,何兴春, 1994.长江三峡水利枢纽湘江水电梯级工程对洞庭湖渔业资源的影响与对策.内陆水产, (6): 2-3.
    [28]李立银,倪朝辉,李云峰,吴恢碧, 2006.涨渡湖渔业资源及鱼类多样性状况研究.淡水渔业, 36 (2): 18-23.
    [29]李思发, 2001.长江重要鱼类生物多样性和保护研究.上海:上海科学技术出版社.
    [30]梁彦龄,刘伙泉主编, 1995.草型湖泊资源、环境与渔业生态学管理(一).北京:科学出版社, 205-210.
    [31]梁秩燊,周春生,黄鹤年, 1985.长江中游通江湖泊——五湖的鱼类组成及其季节变化.海洋与湖沼, 12 (5): 468-478.
    [32]廖伏初,何望,黄向荣,金球林,何兴春, 2002.洞庭湖渔业资源现状及其变化.水生生物学报, 11: 623-62.
    [33]廖伏初,何兴春,何望,王海文,徐德平, 2006.洞庭湖渔业资源与生态环境现状及保护对策.岳阳职业技术学院学报, 21(6): 32-37.
    [34]凌去非,李思发, 1998.长江天鹅州故道鱼类群落种类多样性,中国水产科学, 5: l-5.
    [35]刘建康, 1995.长江中下游流域的湖泊及其渔业利用问题.见:刘建康主编,东湖生态学研究.北京:科学出版社, 1-25.
    [36]刘绍平,陈大庆,段辛斌,邱顺林,黄木桂, 2004.长江中上游四大家鱼资源监测与渔业管理.长江流域资源与环境, 13 (2): 183-186.
    [37]柳富荣, 2002.洞庭湖渔业资源现状及增殖保护对策.现代渔业信息, l7: 25-28.
    [38]彭定志,徐高洪,胡彩虹,张洪刚,张红, 2004.基于MODIS的洞庭湖面积变化对洪水位的影响.人民长江, 34 (4): 14-16.
    [39]宋天祥,张国华,常剑波,苗治国,邓中粦, 1999.洪湖鱼类多样性研究.应用生态学报, 10 (1): 86-90.
    [40]唐家汉,钱名全, 1979.洞庭湖的鱼类区系.淡水渔业, (10-11) 24-32.
    [41]王洪道,窦鸿身,颜京松,舒金华,张玉书, 1989.中国湖泊资源.北京:科学出版社.
    [42]王利民,胡慧建,王丁, 2005.江湖阻隔对涨渡湖区鱼类资源的生态影响.长江流域资源与环境, 14 (3): 287-292.
    [43]王苏民,窦鸿身主编, 1998.中国湖泊志.北京:科学出版社.
    [44]吴莉芳,刘春力,张东鸣,刘革, 2000.中国湖泊和水库渔业资源发展利用存在的问题及其出路.吉林农业大学学报, 22: 100-104.
    [45]谢平,陈宜瑜, 1996a.加强淡水生态系统中生物多样性的研究与保护.中国科学院院刊, 4: 276-281.
    [46]谢平,陈宜瑜, 1996b.我国内陆水体中的“魔鬼四重奏”-生物多样性的丧失与人类活动.水生生物学报, 20(增): 6-23.
    [47]谢平,崔奕波, 1996.长江中下游湖泊生物多样性与渔业发展.水生生物学报, 20 (增): l-5.
    [48]许蕴玕,邓中粦,余志堂,魏祥健, 1981.长江的铜鱼生物学及三峡水利枢纽对铜鱼资源的影响.水生生物集刊, 7 (3): 271-294.
    [49]杨德国,危起伟,王凯,陈细华,朱永久, 2005.人工标志放流中华鲟幼鱼的降河洄游.水生生物学报, 29 (1): 26-30.
    [50]易伯鲁,梁秩燊, 1964.长江家鱼产卵场的自然条件和促使产卵的主要外界因素.水生生物学报, 5 (1): 1-15.
    [51]易伯鲁,余志堂,梁秩燊等. 1988.葛洲坝水利枢纽与长江四大家鱼.湖北科学技术出版社.
    [52]殷名称, 1995.鱼类生态学.北京:中国农业出版社.
    [53]余志堂,邓中粦,周春生,许蕴玕,赵燕, 1985.长江葛洲坝水利枢纽兴建后鱼类资源变化的预测.鱼类论文集(第四辑),科学出版社, 193-208.
    [54]郁尧山,张庆生,陈为民,许源剑, 1986.浙江北部岛礁周围海域鱼类优势种及其种间关系的初步研究.水产学报, 10 (2): 137-149.
    [55]郁尧山,张庆生,陈为民,许源剑, 1986.浙江北部岛礁周围海域鱼类群聚特征值的初步研究.水产学报, 10 (3): 305-313.
    [56]张家波,樊启学,王卫民, 1998.老江河鱼类种类多样性和优势种的初步研究.淡水渔业, 6: 14-17.
    [57]张堂林,方榕乐,崔奕波, 1996.渔业发展阶段不同的五个水体鱼类多样性的比较.水生生物学报, 20(增): 191-198.
    [58]张堂林,李钟杰,舒少武, 2003.鱼类标志技术的研究进展.中国水产科学, 10 (3): 246-253.
    [59]中国科学院南京地理与湖泊研究所, 1989.中国湖泊概论.北京:科学出版社.
    [60]周春生,向阳,孙建贻,谭德清,姚承昌,段中华, 1987.三峡工程对长江中游湖泊鱼类资源影响的预测及其对策研究.见:中国科学院三峡工程生态与环境科研项目领导小组编.长江三峡工程对生态与环城影响及其对策研究论文集.北京:科学出版社, 21-29.
    [61]朱清顺, 1992.江苏湖泊鱼类资源现状及其湖泊渔业.水产养殖, 6: 23-26.
    [62]朱松泉, 1995.中国淡水鱼类检索.南京:江苏科学技术出版社.
    [63] Aarts, B.G.W., Van den Brink, F.W.B., Nienhuis, P.H., 2004. Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: the transversal floodplain gradient. River Research and Applications, 20: 3-23.
    [64] Agostinho, A. A., Gomes, L. C. & Zalewski, M., 2001. The importance of floodplains for the dynamics of fish communities of the upper river Parana. Ecohydrol. Hydrobiol, 1(1-2): 209-217.
    [65] Agostinho, A. A., Gomes, L. C., Veríssimo, S. & Okada, E. K., 2004. Flood regime, dam regulation and fish in the Upper ParanáRiver: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries, 14 (1): 11-19.
    [66] Amoros, C. & Roux, A. L., 1988. Interaction between water bodies within the floodplain of large river: function and development of connectivity.– in: Schreiber, K. F. (ed.): Cnonectivity in landscape ecology. Münstersche Geograph. Arb. 29: 125-130.
    [67] Amoros, C., Bornette, G., 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology, 47: 761-776.
    [68] Andréasson-Gren, I.-M. & Groth, K.-H., 1995. Economic evaluation of Danube floodplains. Unpublished report, WWF International, Gland, Switzerland.
    [69] Barmuta L. A. & Lake P. S., 1982. On the value of the river continuum concept. New Zealand Journal of Marine and Freshwater Research, 16: 227-231.
    [70] Bayley, P. B., 1973. Studies on the migratory characin, prochilodus platensis Holmberg, 1889 (Pisces, Characoidei) in the River Pilcomayo, South America. J. Fish. Boil., 5: 25-40.
    [71] Bayley, P. B. and M. Petrere Jr., 1989. Amazon fisheries: assessment methods, current status, and management options. Can. Spec. Publ. Fish. Aquat. Sci., 106: 385-398.
    [72] Bayley, P. B., 1991. The flood pulse advantage and the restoration of river-floodplain systems. Reg. Riv.: Res. Manage. 6: 75-86.
    [73] Bayley P. B., 1995. Understanding large river-floodplain ecosystems. Bioscience, 45(3): 153-158.
    [74] Beeman J. W., Maule A. G., 2001. Residence times and diel passage distributions of radio-tagged juvenile spring chinook salmon and steelhead in a gatewell and fish collection channel of a Columbia River dam. North American Journal of Fisheries Management, 21 (3): 455-463.
    [75] Bénech, V & Pe?áz M., 1995. An outline on lateral fish migrations within the Central Delta of the Niger River, Mali. Hydrobiologia, 303: 149-157.
    [76] Bravard, J.P., Amoros, C. and Pautou, G., 1986. Impact of civil engineering works on the successions of communities in a fluvial system: a methodological and predictive approach applied to a section of the Upper Rh?ne river, France. Oikos, 47: 92-111.
    [77] Buijse, A.D. & Coops, H., 2002. Restoration strategies for river floodplains along large lowland rivers in Europe. Freshwater Biology, 47: 889-907.
    [78] Constanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., Neill, R.V., Paruelo, J., Raskin, R.G., Sutton P. & Van der Belt, M., 1997. Thevalue of the world’s ecosystem services and natural capital. Nature, 387: 253-260.
    [79] Copp, G. H., 1989. The habitat diversity and fish reproductive function of floodplain ecosyetems. Environm. Biol. Fishes., 26: 1-27.
    [80] Craiga, J. F., A. S. Halls, J. J. F., Barr, and C. W., Bean, 2004. The Bangladesh floodplain fisheries. Fisheries Research, 66: 271-286.
    [81] Dams and Fish Migration, Final Draft, June, 2000, in Thematic Review II.1: Dams, ecosystem functions and environmental restoration. World Commission on Dams. http://www.dams.org/kbase/thematic/tr21.htm.
    [82] Dudgeon, D., 2000. The ecology of tropical Asian rivers and streams in relation to biodiversity conservation. Annual Review of Ecology & Systematics, 31: 239-263.
    [83] Dynesius, M & Nilssion, C, 1994. Fragmentation and flow regulation of river systems in the northern third of the world. Science, 266: 753762.
    [84] Everett, G. V., 1974. An analysis of the 1970 commercial fish catch in three areas of the Kafue floodplain. Afr. J. Trop. Hydrobiol. Fish., 3 (2): 148-159.
    [85] Fernandes, C. C., 1997. Lateral migration of fishes in Amazon floodplains. Ecology of Freshwater Fish., 6, (1): 36-44.
    [86] Fryer, G., 1965. Predation and its effects on migration and speciation in African fishes: a comment, proc. zool. soc. lond., 144: 301-22.
    [87] Fu C.Z., 2003. Freshwater fish biodiversity in the Yangtze River basin of China: patterns, threats and conservation. Biodiversity and Conservation, 12: 1649-1685.
    [88] Galat, D. L., & R., Lipkin, 2000. Restoring ecological integrity of great rivers: historical hydrographs aid in defining reference conditions for the Missouri River. Hydrobiologia, 422/423: 29-48.
    [89] Gladden, J.E. & Smock, L.A., 1990. Macroinvertebrate distribution and production on the floodplains of two lowland headwater streams. Freshwater Biology, 24: 533-545.
    [90] Goulding,M. (Ed.), 1980. The fishes and the forest: explorations in Amazonia natural history. University of Caifornia Press, Berkeley.
    [91] Granado-Lorencio, C., Araujo Lima, C.R.M., Lobon-Cervia, J., 2005. Abundance-distribution relationships in fish assembly of the Amazonas floodplain lakes. Ecography, 28: 515-520.
    [92] Grift, R. E., Buijse, A. D., Van Densen, W.L.T. & Klein-Breteler, J.G. P., 2001a. Restorationof the river-floodplain floodplain interaction: benefits for the fish community in the River Rhine. Large Rivers, 12, Archiv für Hydrobiologie, 135 (Suppl.): 173-185.
    [93] Grift, R.E., Buijse, A.D., Klein Breteler, J.G.P., Van Densen, W.L.T., Machiels, M.A.M., Backx, J.J.G., 2001b. Migration of bream between the main channel and floodplain lakes along the lower River Rhine during the connection phase. Journal of Fish Biology, 59: 1033-1055.
    [94] Grift R.E., Buijse A.D., Van Densen W.L.T. & Klein-Breteler J.G.P., 2001. Restoration of the river-floodplain interaction: benefits for the fish community in the River Rhine. Archivfür Hydrobiologie, 135, (Suppl.) (Large Rivers, 12): 173-185.
    [95] Halls, A.S., Kirkwood, G.P., Payne, A.I., 2001. A dynamic pool model for floodplain river fisheries. Ecohydrology and Hydrobiology, 1 (3): 323-339.
    [96] Harden Jones, F. R., 1968. Fish migration, Edward Arnold, Landon.
    [97] Hasler, A.D., Horrall, R.M., Stasko, A.B. and Dizon, A.E., 1970. Orientation cues and tracking of migrating salmonid fishes. Proc. Nat. Acad. Sciences 66, 241-242.
    [98] Hasler, A.D., and Scholz A.T., 1983. Olfactory Imprinting and Homing Salmon. Springer-Verlag, Berlin.
    [99] Hladíkl M., & Kuběcka J., 2003. Fish migration between a temperate reservoir and its main tributary. Hydrobiologia, 504: 251-266.
    [100] Jungwirth, M., Schmutz S. & Weiss S. (eds), 1998. Fish Migration and Fish Bypasses. Fishing News Books: 438 pp.
    [101] Jungwirth M., Muhar S. & Schmutz S., 2000. Fundamentals of fish ecological integrity and their relation to the extended serial discontinuity concept. Hydrobiologia, 422/423, 85-97.
    [102] Jungwirth M., Muhar S. & Schmutz S., 2002. Re-establishing and assessing ecological integrity in riverine landscapes. Freshwater Biology, 47: 867-887.
    [103] Junk, W. J., Bayley P. B., and Sparks R. E., 1989. The flood pulse concept in riverfloodplain systems. In Proceedings of the International Large River Symposium (LARS), ed. by D. P. Dodge, pp. Canadian Special Publication of Fisheries and Aquatic Sciences, Ottawa, Canada, 110-127.
    [104] Junk, W. J. and Soares, M. G. M., 2001. Freshwater fish habitats in Amazonia: State of knowledge, management, and protection. Aqutic Ecoststem Health and Management, 4:437-451.
    [105] Junk, W. J., Wantzen, K. M., 2003. The flood pulse concept: new aspects, approaches and applications-An update// Welcomme R.L., eds. Proceedings of the Second International Symposium on theManagement of Iarge Rivers for Fisherie. RAP Publication.
    [106] Junk, W. J., 2005. Flood pulsing and the linkages between terrestrial, aquatic, and wetland systems. Verh International Verein Limnology, 29: 11-38.
    [107] Keddy, P.A., 2000. Wetland Ecology. Principles and Conservation. Cambridge, UK: Cambridge University Press.
    [108] King, A. J., Humphries, P. & Lake, P. S., 2003. Fish recruitment on floodplains: the roles of patterns of flooding and life history characteristics. Canadian Journal of Fisheries and Aquatic Sciences, 60: 773-786.
    [109] Lasnea E., Lek S., Laffaille P., 2007. Patterns in fish assemblages in the Loire floodplain: The role of hydrological connectivity and implications for conservation.
    [110] Leveque, C., 1995. Role and consequenees of fish diversity in the funetioning of Afriean freshwater ecostystems: A review. Aquat Living Resour., 8: 59-78.
    [111] Lowe-McConnell,R. H., 1975. Fish communities in tropical freshwater. Longman, Landon.
    [112] Lucas, M. C. & Baras,E., 2001. Migration of Freshwater Fishes, Blackwell Science Ltd.,Oxford.
    [113] Lytle, D. H. & Poff,N. L., 2004. Adaptation flow regimes. Trends in Ecology and Evolution, 19: 94-100.
    [114] Mahoney, J. M. & Rood, S.B., 1998. Streamflow requirement for cottonwood seedling recruitment-an integrative model. Wetlands, 18: 634-645.
    [115] McCleave, J. D. et al., 1984. Mechanisms of Migration in Fishes, Plenum, New York.
    [116] McDowall, K. M. 1987. The occurrence and distribution of diadromy among fishes. Am. Fish. Soc. Symp., 1: 1-13.
    [117] Meschiatti, A. J., Arcifa, M. S. & Fenerich-Verani, N., 2000. Fish communities associated with macrophytes in Brazilian floodplain lakes. Environmental Biology of Fishes, 58: 133-143.
    [118] Minshall, G. W., Peterson, R. C., Cummins, K. W., Bott, T. L., Sedell, J. R., Gushing, C. E. & Vannote, R. L, 1983. Interbiome comparison of stream ecosystem dynamics. Ecol.Monogr., 53: 1-25.
    [119] Minshall, G.W., K.W. Cummins, R.C. Petersen, C.E. Cushing, D.A. Bruns, J.R. Sedell, and R.L. Vannote., 1985. Developments in stream ecosystem theory. Can. J. Fish. Aquat. Sci. 42: 1045-1055.
    [120] Miranda, L. E., 2005. Fish assemblages in oxbow lakes relative to connectivity with the Mississippi River. Transactions of the American Fisheries Society 134, 1480-1489.
    [121] Mitsch, W.J. & Gosselink, J.G., 2000. Wetlands. New York, USA: Wiley.
    [122] Molls, F., 1999. New insights into the migration and habitat use by bream and white bream in the floodplains of the River Rhine. Journal of Fish Biology 55: 1187-1200.
    [123] Northcote, T. G., 1978. Migratory strategies and production in freshwater fishes, in Ecology of Freshwater Fish Production (ed. S. D. Gerking), Blackwell, Oxford, pp. 326-359.
    [124] Pegg, M.A. & Pierce, C.L., 2002. Fish community structure in the Missouri and Lower Yellowstone Rivers in relation to flow characteristics. Hydrobiologia, 479: 155-167.
    [125] Persat, H., J. M. Olivier & D. Pont, 1994. Theoretical habitat templets, species traits, and species richness: fish in the Upper Rh?ne River and its floodplain. Freshwater Biology, 31: 439-454.
    [126] Poff, L. N., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E. & Stromberg, J. C., 1997. The natural flow regime. Bioscience, 47: 769-784.
    [127] Pollux, B.J.A., A. Korosi, W.C.E.P. Verberk, P.M.J. Pollux & G. van der Velde, 2006. Reproduction, growth, and migration of fishes in a regulated lowland tributary: potential recruitment to the river Meuse. Hydrobiologia, 565: 105-120.
    [128] Pringle C.M., 2001. Hydrologic connectivity and the management of biological reserves: a global perspective. Ecol Appl, 11 (4): 981-998.
    [129] Rood, S. B., G. M., Samuelson, J. H., Braatne, C. R., Gourley, F. MR. Hughes & J. M. Mahoney, 2005. Managing river flows to restore floodplain forests. Front Ecological Environment, 3 (4): 193-201.
    [130] Saint-Paul, U., Zuanon, J., Correa, M. A. V., Garcia, M., Fabrē, N. N., Berger, U., Junk, W. J., 2000. Fish communities in central Amazonian white- and blackwater floodplains. Environmental Biology of Fishes, 57: 235-250.
    [131] Schiemer F. & Spindler T., 1989. Endangered fish species of the Danube River in Austria.Regulated Rivers: Research and Management, 4: 397-407.
    [132] Schiemer, F., T. Spindler, H. Wintersberger, A. Schneider & A. Chovanec, 1991. Fish fry associations: important indicators for the ecological status of large rivers. Verh. int. Ver. Limnol., 24: 2497-2500.
    [133] Schiemer F. & Waidbacher H., 1992. Strategies for conservation of a Danubian fish fauna. In: River Conservation and Management (Eds P.J. Boon, P. Calow & G.E. Petts), John Wiley & Sons Ltd., Chichester.363-382.
    [134] Schiemer, F. & Zalewski, M., 1992. The importance of riparian ecotones for diversity and productivity of riverine fish communities. Neth. J. Zool., 42: 323-335.
    [135] Schiemer, F. Keckeis, G. Winkler and L. Flore, 2001. Large rivers: the relevance of ecotonal structure and hydrological properties for the fish fauna. Arch. Hydrobiol. Suppl., 132 (2-4): 487-508.
    [136] Schiemer F., 2000. Fish as indicators for the assessment of the ecological integrity of large rivers. Hydrobiologia, 422/423: 271-278.
    [137] Smith, R. J. F., 1985. The control of Fish Migration, Springer-Verlag, Berlin.
    [138] Snodgrass, J. W., A. L. B., Jr., R. F. Lide and G. M., Smith, 1996. Factors affecting the occurrence and structure of fish assemblages in isolated wetlands of the upper coastal plain, U. S. A. Can. J. Fish. Aquat. Sci., 53: 443-454.
    [139] Sparks R. E., Bayley P. B., Kohler SL, et al., 1990. Disturbance and recovery of large floodplain rivers. Environmental Management, 14: 699-709.
    [140] Southwood, T. R. E., 1977. Habitat, the templet for ecological strategies? Journal of Animal Ecology, 46: 337-365.
    [141] Statzner, B. and B. Higler. 1986. Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshwater Biology, 16:127-139.
    [142] Tejerina-Garro,F. L., Fortin, R., & Rodríguez, M. A., 1998. Fish community structure in relation to environmental variation in floodplain lakes of the Araguaia River, Amazon Basin. Environmental Biology of Fishes, 51: 399-410.
    [143] Thoms, M.C., Southwell, M., McGinness, H.M., 2005. Floodplain–river ecosystems: Fragmentation and water resources development. Geomorphology, 71: 126-138.
    [144] Tockner K., Schiemer F. & Ward J.V., 1998. Conservation by restoration: the managementconcept for a riverfloodplain system on the Danube River in Austria. Aquatic Conservation, 8: 71-86.
    [145] Tockner K., Schiemer F., Baumgartner C., Kum G., Weigand E., Zweimüller I. & Ward J.V., 1999. The Danube restoration project: species diversity patterns across connectivity gradients in the floodplain system. Regulated Rivers: Research and Management, 15: 245-258.
    [146] Tockner, K., Malard, F., Ward, J.V., 2000. An extension of the flood pulse concept. Hydrological Processes 14, 2861-2883.
    [147] Tockner, K, Ward J.V. & Stanford, J.A., 2002. Riverine flood plains: present state and future trends. Environmental Conservation, 29: 308-330.
    [148] Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2000. Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshwater Ecology, 43: 175-205.
    [149] Van den Brink F.W.B., Van der Velde G., Buijse A.D. & Klink A.G., 1996. Biodiversity of the Lower Rhine and Meuse river-floodplains: its significance for ecological management. Netherlands Journal of Ecology, 30: 129-149.
    [150] Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R. & Cushing C.E., 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137.
    [151] Ward, J. V. & Stanford, J. A., 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research and Management, 11: 105-119.
    [152] WCD (World Commission on Dams). 2000. Dams and development:a new framework for decision-making. London, UK: Earthscan Publications.
    [153] Welcomme, R.L. and Hagborg, D., 1977. Towards a model of a floodplain fish population and its fishery. Environ. Biol. Fish, 2: 7-24.
    [154] Welcomme, R. L., 1979. Fisheries Ecology of Floodplain Rivers. London, Longman Group Ltd.
    [155] Welcomme, R.L., 1985. River fisheries. FAO Fish. Tech. Pap, 262.
    [156] Welcomme, R.L., 2001. Inland Fisheries; ecology and management. Fishing New Books, Blackwell Science, Oxford.
    [157] Welcomme, R.L., Winemiller, K.O., Cowx, I.G., 2006. Fish environmental guilds as a tool for assessment of ecological condition of rivers. River Research and Applications, 22: 377-396.
    [158] Williams, R., 1971. Fish ecology of the Kafue River and floodplain environment. Fish. Res. Bull. Zambia, 5: 305-330.
    [159] Winemiller, K. O., 1989. Patterns of variation in life history among South American fishes in seasonal environments. Oecologia, 81: 225-241.
    [160] Wootton R. J., 1998. Ecology of teleost fishes. Kluwer academic publishers, Drodrecht / Boston / Landon.
    [161] Xie P., 2003. Three-Gorges Dam: Risk to Ancient Fish. Science, 302: 1149.
    [162] Zamora L., Moreno-Amich R. 2002. Quantifying the activity and movement of perch in a temperate lake by integrating acoustic telemetry and a geographic information system [J]. Hydrobiologia, 83: 209-218.
    [163] Zigler S. J., Dewey M. R., Knights B C., et al. 2003. Movement and habitat use by radio-tagged paddlefish in the upper Mississippi River and tributaries [J]. North American Journal of Fisheries Management, 23 (1): 189-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700