用户名: 密码: 验证码:
PDX-1、NeuroD1及MafA转导小鼠骨髓间充质干细胞及小鼠iPS细胞制备胰岛素分泌细胞的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的观察胰岛素转录关键调控基因PDX-1、NeuroD1及MafA转染小鼠骨髓间充质干细胞(mBMSCs)和小鼠诱导多能干细胞(iPSCs)后,能否定向分化为胰岛素分泌细胞,探索体外基因转染制备胰岛素分泌细胞用于移植治疗1型糖尿病的可行性。
     方法
     (1)全基因合成小鼠PDX-1、NeuroD1及MafA基因(以下简称三基因)编码区域序列并测序。将目的基因片段分别与内部核糖体进入位点序列-绿色荧光蛋白(IRES-GFP)进行PCR拼接,得到目的基因与GFP的共表达片断,并将含目的基因序列的质粒重组到腺病毒载体上。分别将含目的基因PDX-1、NeuroD1及MafA的腺病毒载体转染293A细胞,制备重组腺病毒Ad-mPDX-1-IRES-GFP、Ad–mNeuroD-IRES-GFP、Ad-mMafA-IRES-GFP,通过免疫法检测腺病毒液滴度。
     (2)体外分离培养及鉴定mBMSCs;小鼠Oct4、Sox2、Klf4及cMyc经Tet-On慢病毒系统转导小鼠胚胎成纤维细胞(MEFs),挑选并扩增克隆。通过形态学鉴定,干性基因Nanog、Rex-1、SSEA-1检测,体内外三胚层分化等实验筛选鉴定iPSCs。
     (3)重组腺病毒Ad-mPDX-1-IRES-GFP、 Ad–mNeuroD1-IRES-GFP、Ad-mMafA-IRES-GFP体外联合转染mBMSCs及小鼠iPSCs。转染获得的细胞分别用RT-PCR检测胰岛β细胞功能基因的表达;免疫荧光检测胰岛素蛋白的表达及定位;ELISA检测不同浓度葡萄糖刺激下胰岛素的分泌量。
     (4)三基因转染的mBMSCs及小鼠iPSCs定向分化为胰岛素分泌细胞后,移植到糖尿病小鼠模型肝脏,免疫组化检测其在肝内胰岛素的表达;空腹血糖监测检测移植细胞在糖尿病小鼠体内的功能发挥。
     结果
     (1)重组腺病毒Ad-mPDX-1-IRES-GFP、 Ad-mNeuroD1-IRES-GFP、Ad-mMafA-IRES-GFP经Pac I单酶切后凝胶电泳显示会形成约2,000bp的小条带及腺病毒载体将近35,000bp的大条带,与预期及测序结果一致,表明含三基因的同源重组腺病毒载体构建正确。
     (2) LV-ef1a-Hygromicin-TRE-Oct4/Sox2/Klf4/cMyc转染MEFs后,成功获取iPSCs,能形成边缘光整的致密克隆;表达干性基因Nanog、Rex-1、SSEA-1;在体内外能分化为三胚层组织。
     (3) Ad-mPDX-1-IRES-GFP、Ad–mNeuroD1-IRES-GFP、Ad-mMafA-IRES-GFP体外联合转染的mBMSCs及小鼠iPSCs能分化为胰岛素分泌细胞,RT-PCR结果显示其胰岛β细胞功能基因的表达与小鼠胰岛β细胞株MIN6类似;免疫荧光检测见细胞胞浆内有胰岛素合成;ELISA检测结果显示细胞对不同浓度的葡萄糖有较好的反应性。
     (4)免疫组化镜检发现移植细胞注射区域的肝实质内可见相对集中的棕黄色细胞,表明移植细胞胞浆内表达胰岛素蛋白;空腹血糖监测显示移植细胞能够控制糖尿病小鼠的高血糖,在体内发挥良好的治疗作用。
     结论
     (1) LV-ef1a-Hygromicin-TRE-Oct4/Sox2/Klf4/cMyc能成功将MEFs重编程为iPS细胞。
     (2)胰岛素转录关键调控基因PDX-1、NeuroD1和MafA三者能协同作用,促进mBMSCs及小鼠iPSCs定向分化为具有显著的胰岛素合成和分泌能力的胰岛素分泌细胞。
     (3)胰岛素转录关键调控基因修饰的mBMSCs及小鼠iPSCs移植体内能发挥一定的治疗作用,有希望成为胰岛β细胞的替代细胞用于移植治疗1型糖尿病。
Objective To evaluate the effect of insulin gene transcription regulators PDX-1,NeuroD1and MafA on the differentiation of bone marrow mesenchymal stem cells(mBMSCs)and induced pluripotent stem cells (iPSCs) into insulin-producing cells.Andto confer the new approach of cell transplantation therapy for type I diabetes.
     Methods
     ⑴Coding regional sequences of transcription factors PDX-1, NeuroD1and MafAwere obtained by total gene synthesis. Then made a confirm by sequencing. Splicingsegments of target genes were augmented and jointed together with the internal ribosomeentry site sequence-green fluorescent protein(IRES-GFP) respectively,and to obtain thegene fragments expressing target genes and GFP. The next the plasmids harboring targetgenes were restructuring to adenovirus vectors. The recombinant adenovirus vectors whichharbored target genes were transfected into packaging cell line293A. And the adenoviruswhich had aggression was harvested. The titer of the adenovirus was determined byimmune method.
     (2)Mouse Embryonic Fibroblasts (MEFs) were infected with lentivirus(LV-ef1a-Hygromicin-TRE-Oct4/Sox2/Klf4/cMyc) at a multiplicity of infection. Toconfirm iPSCs pluripotency, Morphology of iPSCs, mES cell-specific cell surface markers,including Nanog, SSEA-1and Rex-1, differentiation experiments both in vitro and in vivowere detected.
     ⑶mBMSCs and iPSCs were infected with adenovirus (Ad-mPDX-1-IRES-GFP, Ad–mNeuroD1-IRES-GFP and Ad-mMafA-IRES-GFP), and then differentiated intoinsulin-producing cells in vitro. RT-PCR was applied to detecting target genes and insulingene expression, immunofluorescence to identifying the presence and location of insulinprotein, and mouse insulin enzyme-linked immunosorbent assay (ELISA) for evaluatingthe secretory volume of insulin at different concentration of glucose.
     ⑷Diabetic mice were transplanted with infection mBMSCs and iPSCs under the liverparenchyma. The grafts were analyzed by Fasting plasma glucose were used to assess thefunctions exertion of engrafted cell in vivo and revealed the therapeutic effect.
     Results
     ⑴Recombinant adenovirus vectors expressing PDX-1,NeuroD1and MafA werelinearized with Pac I, separated by agarose gel electrophoresis.2,000bp of small strap andnearly35,000bp a of big strap were appeared, with the expected results are consistent. Itproved the exactitude of homologous adenovirus vectors.
     ⑵MEFs were infected with the four reprogramming factors(LV-ef1a-Hygromicin-TRE-Oct4/Sox2/Klf4/cMyc) at a multiplicity of infection. TheiPSCs derived from MEFs were able to grow into clones with clear borders and wereconfirmed the expression of mES cell-specific cell surface markers, including Nanog,SSEA-1and Rex-1. Differentiation experiments showed that suspension cultures of allclones formed EBs in vitro and all three layers in vivo.
     ⑶The β-cell-specific transcriptional regulators and the insulin gene were expressed inmBMSCs after infection. Immunofluorescence analyses documented the activation ofexpression of insulin in the cytoplasm of differentiated cells. The release of a significantinsulin content by these cells was detected in response to a certain concentrations ofglucose stimulation.
     ⑷Immunohistochemistry was performed to detect the expression of insulin in theliver tissue of diabetic mice and it exhibited positive staining of insulin. The results offasting plasma glucose demonstrated the ability of these insulin-producing cells-transplanted mice to dispose of a glucose load.
     Conclusions
     ⑴MEFs which were infected with the four reprogramming factors(LV-ef1a-Hygromicin-TRE-Oct4/Sox2/Klf4/cMyc) can be reprogrammed into iPSCs.
     ⑵The combination of PDX-1, NeuroD1and MafA markedly induces insulinbiosynthesis and secretion in mBMSCs and iPSCs.
     ⑶Transplantation of mBMSCs and iPSCs modified by transcriptional factors hastherapeutical effect on type I diabetes and thereby is a novel approach efficiently induceinsulin-producing surrogateβ cells.
引文
[1]Steffes, M.W., S. Sibley, M. Jackson, et al. Beta-cell function and the development ofdiabetes-related complications in the diabetes control and complications trial [J].Diabetes Care,2003.26(3): p.832-6.
    [2]Robertson, R.P. and J.S. Harmon. Diabetes, glucose toxicity, and oxidative stress: A caseof double jeopardy for the pancreatic islet beta cell [J]. Free Radic Biol Med,2006.41(2): p.177-84.
    [3]Coppelli, A., R. Giannarelli, F. Vistoli, et al. The beneficial effects of pancreastransplant alone on diabetic nephropathy [J]. Diabetes Care,2005.28(6): p.1366-70.
    [4]Roche, E., A. Santana, N. Vicente-Salar, et al. From stem cells to insulin-producing cells:towards a bioartificial endocrine pancreas [J]. Panminerva Med,2005.47(1): p.39-51.
    [5]Ryan, E.A., B.W. Paty, P.A. Senior, et al. Five-year follow-up after clinical islettransplantation [J]. Diabetes,2005.54(7): p.2060-9.
    [6] Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adultpancreatic exocrine cells to beta-cells [J]. Nature.2008,455(7213):627-632.
    [7]Lu YH, Wang ZW, Zhu MY. Human Bone Marrow Mesenchymal Stem CellsTransfected with Human InsulinGenes Can Secrete Insulin Stably [J]. Ann Clin LabSci.2006,36(2):127-136.
    [8]Xu J, Lu Y, Ding F, Zhan X, Zhu M, Wang Z.Reversal of Diabetes in Mice byIntrahepatic Injection of Bone Derived GFP-Murine Mesenchymal Stem Cells Infectedwith Recombinant Retrovirus Carrying Human Insulin Gene [J]. World J Surg.2007,31(9):1872-1882.
    [9]Shajun Zhu, Yuhua Lu, Jianwei Zhu, Jian Xu, Hua Huang, Mingyan Zhu, Yuquan Chen,Yuan Zhou, Xiangjun Fan, Zhiwei Wang. Effects of intrahepatic bone-derivedmesenchymal stem cells autotransplantation on the diabetic Beagle Dogs [J]. Journal ofSurgical Research. published online2009,30October.
    [10]Tateishi K, He J, Taranova O, Liang G, D'Alessio AC, Zhang Y. Generation ofInsulin-secreting Islet-like Clusters from Human Skin Fibroblasts [J]. J Biol Chem.2008,283(46):31601-31607.
    [11]Andrali, S.S., M.L. Sampley, N.L. Vanderford, et al. Glucose regulation of insulin geneexpression in pancreatic beta-cells [J]. Biochem J,2008.415(1): p.1-10.
    [12]Kataoka, K. Multiple mechanisms and functions of maf transcription factors in theregulation of tissue-specific genes [J]. J Biochem,2007.141(6): p.775-81.
    [13]Aramata, S., S.I. Han, and K. Kataoka. Roles and regulation of transcription factorMafA in islet beta-cells [J]. Endocr J,2007.54(5): p.659-66.
    [14]Kaneto, H., T.A. Matsuoka, T. Miyatsuka, et al. PDX-1functions as a master factor inthe pancreas [J]. Front Biosci,2008.13: p.6406-20.
    [15]Melloul, D. Transcription factors in islet development and physiology: role of PDX-1in beta-cell function [J]. Ann N Y Acad Sci,2004.1014: p.28-37.
    [16]Im, S.S., S.Y. Kim, H.I. Kim, et al. Transcriptional regulation of glucose sensors inpancreatic beta cells and liver [J]. Curr Diabetes Rev,2006.2(1): p.11-8.
    [17]Hernandez-Sanchez, C., A. Mansilla, E.J. de la Rosa, et al. Proinsulin in development:New roles for an ancient prohormone [J]. Diabetologia,2006.49(6): p.1142-50.
    [18]Qiu, Y., M. Guo, S. Huang, et al. Insulin gene transcription is mediated by interactionsbetween the p300coactivator and PDX-1, BETA2, and E47[J]. Mol Cell Biol,2002.22(2): p.412-20.
    [19]Kim, J.Y., K. Chu, H.J. Kim, et al. Orphan nuclear receptor small heterodimer partner,a novel corepressor for a basic helix-loop-helix transcription factor BETA2/neuroD [J].Mol Endocrinol,2004.18(4): p.776-90.
    [20]Huang, H.P., K. Chu, E. Nemoz-Gaillard, et al. Neogenesis of beta-cells in adultBETA2/NeuroD-deficient mice [J]. Mol Endocrinol,2002.16(3): p.541-51.
    [21]Oliver-Krasinski, J.M. and D.A. Stoffers. On the origin of the beta cell [J]. Genes Dev,2008.22(15): p.1998-2021.
    [22]Kaneto, H., T.A. Matsuoka, S. Kawashima, et al. Role of MafA in pancreatic beta-cells[J]. Adv Drug Deliv Rev,2009.61(7-8): p.489-96.
    [23]Artner, I., Y. Hang, M. Guo, et al. MafA is a dedicated activator of the insulin gene invivo [J]. J Endocrinol,2008.198(2): p.271-9.
    [24]Kaneto H, Matsuoka TA, Katakami N, Matsuhisa M. Combination of MafA, PDX-1and NeuroD is a Useful Tool to Efficiently Induce Insulin-Producing Surrogate β Cells[J].Curr Med Chem.2009,16(24):3144-3151.
    [25]Kaneto H, Matsuoka TA, Kawashima S, Yamamoto K, Kato K, Miyatsuka T, KatakamiN, Matsuhisa M.Role of MafA in pancreatic beta-cells [J].Adv Drug Deliv Rev.2009,61(7-8):489-496.
    [26]Matsuoka TA, Kaneto H, Stein R, Miyatsuka T, Kawamori D, Henderson E, Kojima I,Matsuhisa M, Hori M, Yamasaki Y. MafA Regulates Expression of Genes Important toIslet Cell Function.Mol Endocrinol [J].2007,21(11):2764-2774.
    [27]Girard CA, Shimomura K, Proks P, Absalom N, Castano L, Perez de Nanclares G,Ashcroft FM.Functional analysis of six Kir6.2(KCNJ11) mutations causing neonataldiabetes [J]. Pflugers Arch.2006,453(3):323-32.
    [28]Masia R, Koster JC, Tumini S, Chiarelli F, Colombo C, Nichols CG, Barbetti F.AnATP-binding mutation (G334D) in KCNJ11is associated with asulfonylurea-insensitive form of developmental delay, epilepsy, and neonatal diabetes[J]. Diabetes.2007,56(2):328-36.
    [30]Zhang, D., W. Jiang, M. Liu, et al. Highly efficient differentiation of human ES cellsand iPS cells into mature pancreatic insulin-producing cells [J]. Cell Res,2009.19(4):p.429-38.
    [31]Li, Y., R. Zhang, H. Qiao, et al. Generation of insulin-producing cells from PDX-1gene-modified human mesenchymal stem cells [J]. J Cell Physiol,2007.211(1): p.36-44.
    [32]Lu, Y., Z. Wang, and M. Zhu. Human bone marrow mesenchymal stem cellstransfected with human insulin genes can secrete insulin stably [J]. Ann Clin Lab Sci,2006.36(2): p.127-36.
    [33]Xu, J., Y. Lu, F. Ding, et al. Reversal of diabetes in mice by intrahepatic injection ofbone-derived GFP-murine mesenchymal stem cells infected with the recombinantretrovirus-carrying human insulin gene [J]. World J Surg,2007.31(9): p.1872-82.
    [34]Li, Y., R. Zhang, H. Qiao, et al. Generation of insulin-producing cells from PDX-1gene-modified human mesenchymal stem cells [J]. J Cell Physiol,2007.211(1): p.36-44.
    [35]Yakubov E, Rechavi G, Rozenblatt S, Givol D.Reprogramming of human fibroblasts topluripotent stem cells using mRNA of four transcription factors.Biochem Biophys ResCommun [J]. published online2010Feb24.
    [36]Mayhew CN, Wells JM. Converting human pluripotent stem cells into beta-cells:recent advances and future challenges. Curr Opin Organ Transplant,2010,15:54-60.
    [37]Gannon, M., E.T. Ables, L. Crawford, et al. pdx-1function is specifically required inembryonic beta cells to generate appropriate numbers of endocrine cell types andmaintain glucose homeostasis [J]. Dev Biol,2008.314(2): p.406-17.
    [38]Wang, H.W., M.B. Breslin, and M.S. Lan. Pdx-1modulates histone H4acetylation andinsulin gene expression in terminally differentiated alpha-TC-1cells [J]. Pancreas,2007.34(2): p.248-53.
    [39]Shimoda, M., S. Chen, H. Noguchi, et al. Neurogenic differentiation1directsdifferentiation of cytokeratin19-positive human pancreatic nonendocrine cells intoinsulin-producing cells [J]. Transplant Proc,2010.42(6): p.2071-4.
    [40]Chu, K., E. Nemoz-Gaillard, and M.J. Tsai. BETA2and pancreatic islet development[J]. Recent Prog Horm Res,2001.56: p.23-46.
    [41]Matsuoka, T.A., H. Kaneto, T. Miyatsuka, et al. Regulation of MafA expression inpancreatic beta-cells in db/db mice with diabetes [J]. Diabetes,2010.59(7): p.1709-20.
    [42]Kaneto H, Matsuoka TA, Kawashima S, Yamamoto K, Kato K, Miyatsuka T, KatakamiN, Matsuhisa M.Role of MafA in pancreatic beta-cells [J].Adv Drug Deliv Rev.2009,61(7-8):489-496.
    [43]Zhou, Q., J. Brown, A. Kanarek, et al. In vivo reprogramming of adult pancreaticexocrine cells to beta-cells [J]. Nature,2008.455(7213): p.627-32.
    [44]Lu, Y.C., C. Sternini, E. Rozengurt, et al. Release of transgenic human insulin fromgastric g cells: a novel approach for the amelioration of diabetes [J]. Endocrinology,2005.146(6): p.2610-9.
    [45]Segev H, Fishman B, Ziskind A, Shulman M, Itskovitz-Eldor J. Differentiation ofhuman embryonic stem cells into insulin-producing clusters [J]. Stem Cells,2004.22(3):265-74.
    [46]Sulzbacher S, Schroeder IS, Truong TT, Wobus AM. Activin A-induced differentiationof embryonic stem cells into endoderm and pancreatic progenitors-the influence ofdifferentiation factors and culture conditions [J]. Stem Cell Rev.2009.5(2):159-73.
    [47]Shi Y, Hou L, Tang F, Jiang W, Wang P, Ding M, Deng H. Inducing embryonic stemcells to differentiate into pancreatic beta cells by a novel three-step approach withactivin A and all-trans retinoic acid [J]. Stem Cells,2005.23(5):656-62.
    [48]Alipio Z, Liao W, Roemer EJ, Waner M, Fink LM, Ward DC, Ma Y. Reversal ofhyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derivedpancreatic beta-like cells [J]. Proc Natl Acad Sci U S A.2010.107(30):13426-31.
    [49]Saito H, Takeuchi M, Chida K, Miyajima A. Generation of glucose-responsivefunctional islets with a three-dimensional structure from mouse fetal pancreatic cellsand iPS cells in vitro [J]. PLoS One,2011.6(12): e28209.
    [49]Lu, Y., Z. Wang, and M. Zhu. Human bone marrow mesenchymal stem cellstransfected with human insulin genes can secrete insulin stably [J]. Ann Clin Lab Sci,2006.36(2): p.127-36.
    [50]Xu, J., Y. Lu, F. Ding, et al. Reversal of diabetes in mice by intrahepatic injection ofbone-derived GFP-murine mesenchymal stem cells infected with the recombinantretrovirus-carrying human insulin gene [J]. World J Surg,2007.31(9): p.1872-82.
    [1] Mertes H, Pennings G. Cross-border research on human embryonic stem cells:legaland ethical considerations. Stem Cell Rev,2009,5(1):10-17.
    [2] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonicand adult fibroblast cultures by defined factors. Cell,2006,126(4):663-676.
    [3] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adulthuman fibroblasts by defined factors. Cell,2007,131(5):861-872.
    [4] Yu J, Vodyanik M A, Smuga-Otto K, et al. Induced pluripotent stem cell lines derivedfrom human somatic cells. Science,2007,318(5858):1917-1920.
    [5] Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adultmouse liver and stomach cells[J]. Science,2008,321:699-702.
    [6] Kim JB, Zaehres H, Wu G, et al. Pluripotent stem cells induced from adult neural stemcells by reprogramming with two factors[J]. Nature,2008,454:646-650.
    [7] Kim JB, Sebastiano V, Wu G, et al. Oct4-Induced Pluripotency in Adult Neural StemCells[J]. Cell,2009,136:411-419.
    [8] Stadtfeld M, Brennand K, Hochedlinger K. Reprogramming of pancreatic b cells intoinduced pluripotent stem cells[J]. Curr Biol,2008,18:890-894.
    [9] Loh YH, Agarwal S, Park IH, et al. Generation of induced pluripotent stem cells fromhuman blood[J]. Blood,2009,113(22):5476-5479, Science,2007,318(5858):1917-1920.
    [10] Seki T, Yuasa S, Oda M, et al. Generation of induced pluripotent stem cellsfrom human terminally differentiated circulating T cells[J]. Cell Stem Cell,2010,7(1):11-14.
    [11] Tamaoki N, Takahashi K, Tanaka T, et al. Dental pulp cells for inducedpluripotent stem cell banking[J]. J Dent Res,2010,89(8):773-778.
    [12]Liao J, Cui C, Chen S, et al. Generation of induced pluripotent stem cell lines fromadult rat cells. Cell Stem Cell,2009,4(1):11-15.
    [13]Li W, Wei W, Zhu S, et al. Generation of rat and human induced pluripotent stem cellsby combining genetic reprogramming and chemical inhibitors. Cell Stem Cell,2009,4(1):16-19.
    [14]Liu H, Zhu F, Yong J, et al. Generation of induced pluripotent stem cells from adultrhesus monkey fibroblasts. Cell Stem Cell,2008,3(6):587-590.
    [15]Honda A, Hirose M, Hatori M, et al. Generation of induced pluripotent stem cells inrabbits: potential experimental models for human regenerative medicine. J Biol Chem,2010,285(41):31362-31369.
    [16]Wu Z, Chen J, Ren J, et al. Generation of pig induced pluripotent stem cells with adrug-inducible system. J Mol Cell Biol,2009,1(1):46-54.
    [17]Esteban Ma, Xu J, Yang J, et al. Generation of induced pluripotent stem cell lines fromtibetan miniature pig. J Biol Chem,2009,284(26):17634-17640.
    [18]Tsuji O, Miura K, Okada Y, et al. Therapeutic potential of appropriately evaluatedsafe-induced pluripotent stem cells for spinal cord injury Proc. Natl Acad Sci USA,2010,107(28):12704-12709.
    [19]Meng X, Shen J, Kawagoe S, et al.Induced pluripotent stem cells derived from mousemodels of lysosomal storage disorders. Proc Natl Acad Sci USA,2010,107(17):7886-7891.
    [20]Alipio Z, Liao W, Roemer E J, et al. Reversal of hyperglycemia in diabetic mousemodels using induced pluripotent stem (iPS) derived pancreatic β-like cells. Proc NatlAcad Sci USA,2010,107(30):13426-13431.
    [21]Ebert A D, Yu J, Rose F F, et al. Induced pluripotent stem cells from a spinal muscularatrophy patient. Nature,2009,457(7227):277-280.
    [22]Carvajal-Vergara X, Sevilla A, D'Souza S L, et al. Patient-specific induced pluripotentstem-cell-derived models of LEOPARD syndrome. Nature,2010,465(7299):808-812.
    [23]Lee G, Papapetrou E P, Kim H, et al. Modelling pathogenesis and treatment of familialdysautonomia using patient-specific iPSCs. Nature,2009,461(7262):402-406.
    [24]Nakao Y, Narazaki G, Hoshino T, et al. Evaluation of antiangiogenic activity ofazumamides by the in vitro vascular organization model using mouse inducedpluripotent stem (iPS) cells. Bioorg Med Chem Lett,2008,18(9):2982-2984.
    [25]Liao J, Cui C, Chen S, et al. Generation of induced pluripotent stem cell lines fromadult rat cells. Cell Stem Cell,2009,4(1):11-15.
    [26]Li W, Wei W, Zhu S, et al. Generation of rat and human induced pluripotent stem cellsby combining genetic reprogramming and chemical inhibitors. Cell Stem Cell,2009,4(1):16-19.
    [27]Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells fromadult human fibroblasts by defined factors. Cell,2007,131(5):861-872.
    [28]Yu J, Vodyanik M A, Smuga-Otto K, et al. Induced pluripotent stem cell lines derivedfrom human somatic cells. Science,2007,318(5858):1917-1920.
    [29]Wu Z, Chen J, Ren J, et al. Generation of pig induced pluripotent stem cells with adrug-inducible system. J Mol Cell Biol,2009,1(1):46-54.
    [30]Esteban Ma, Xu J, Yang J, et al. Generation of induced pluripotent stem cell lines fromtibetan miniature pig. J Biol Chem,2009,284(26):17634-17640.
    [31]Liu H, Zhu F, Yong J, et al. Generation of induced pluripotent stem cells from adultrhesus monkey fibroblasts. Cell Stem Cell,2008,3(6):587-590.
    [32]Honda A, Hirose M, Hatori M, et al. Generation of induced pluripotent stem cells inrabbits: potential experimental models for human regenerative medicine. J Biol Chem,2010,285(41):31362-31369.
    [33]Maherali N, Ahfeldt T, Rigamonti A, et al. A high-efficiency system for the generationand study of human induced pluripotent stem cells. Cell Stem Cell,2008,3(3):340-345.
    [34]Hockemeyer D, Soldner F, Cook E G, et al. A drug-inducible system for directreprogramming of human somatic cells to pluripotency. Cell Stem Cell,2008,3(3):346-353.
    [35]Sommer Ca, Stadtfeld M, Murphy G J, et al. iPS cell generation using a singlelentiviral stem cell cassette. Stem Cells,2009,27(3):543-549.
    [36]Carey B W, Markoulaki S, Hanna J, et al. Reprogramming of murine and humansomatic cells using a single polycistronic vector. Proc Natl Acad Sci USA,2009,106(1):157-162.
    [37]Kaji K, Norrby K, Paca A, et al. Virus free induction of pluripotency and subsequentexcision of reprogramming factors. Nature,2009,458(7239):771-775.
    [38]Woltjen K, Michael I P, Mohseni P, et al. piggyBac transposition reprogramsfibroblasts to induced pluripotent stem cells. Nature,2009,458(7239):766-770.
    [39]Gonzalez F, Barragan Monasterio M, Tiscornia G, et al. Generation of mouse-inducedpluripotent stem cells by transient expression of a single nonviral polycistronic vector.Proc Natl Acad Sci USA,2009,106(22):8918-8922.
    [40]Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotentstem cells without viral vectors. Science,2008,322(5903):949-953.
    [41]Fusaki N, Ban H, Nishiyama A, et al. Efficient induction of transgene-free humanpluripotent stem cells using a vector based on Sendai virus, an RNA virus that doesnot integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci,2009,85(8):348-362.
    [42]Seki T, Yuasa S, Oda M, et al. Generation of induced pluripotent stem cells fromhuman terminally differentiated circulating T cells. Cell Stem Cell,2010,7(1):11-14.
    [43]Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vectorand transgene sequences. Science,2009,324(5928):797-801.
    [44]Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generatedwithout viral integration. Science,2008,322(5903):945-949.
    [45]Xu N, et al. MicroRNA-145RegulatesOCT4, SOX2, and KLF4and Rep ressesPluripotency in Human Embryonic Stem Cells [J]. Cell,2009,137:647-658.
    [46]Jia F, Wilson K D, Sun N, et al. A nonviral minicircle vector for deriving human iPScells. Nat Methods,7(3):197-199.
    [47]Zhou H, Wu S, Joo J Y, et al. Generation of induced pluripotent stem cells usingrecombinant proteins [J]. Cell Stem Cell,2009,4(5):381-384.
    [48]Kim D, Kim C, Moon J, et al. Generation of human induced pluripotent stem cells bydirect delivery of reprogramming proteins [J]. Cell Stem Cell,2009,4(6):472-476.
    [49]Singhal N, Graumann J, Wu G, et al. Chromatin-remodeling components of the BAFcomplex facilitate reprogramming [J]. Cell,2010,141(6):943-955.
    [50]Chen T, Yuan D, Wei B, et al. E-cadherin-mediated cell-cell contact is criticalforInduced pluripotent stem cell generation [J]. Stem Cells,2010,28(8):1315-1325.
    [51]Liao J, Wu Z, Wang Y, et al. Enhanced efficiency of generating induced pluripotentstem (iPS) cells from human somatic cells by a combination of six transcriptionfactors [J]. Cell Res,2008,18(5):600-603.
    [52]Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stemcells without Myc from mouse and human fibroblasts [J]. Nat Biotechnol,2008,26(1):101-106.
    [53]Wernig M, Meissner A, Cassady J P, et al. c-Myc is dispensable for directreprogramming of mouse fibroblasts [J]. Cell Stem Cell,2008,2(1):10-12.
    [54]Nakagawa M, Takizawa N, Narita M, et al. Promotion of direct reprogramming bytransformation-deficient Myc [J]. Proc Natl Acad Sci USA,2010,107(6):1-6.
    [55]Heng J D, Feng B, Han J, et al. The nuclear receptor Nr5a2can replace Oct4in thereprogramming of murine somatic cells to pluripotent cells [J]. Cell Stem Cell,2010,6(2):167-174.
    [56]Ichida J K, Blanchard J, Lam K, et al. A Small-molecule inhibitor of Tgf-β signalingreplaces Sox2in reprogramming by inducing Nanog [J].Cell Stem Cell,2009,5(5):491-503.
    [57]Kim J B, Sebastiano V, Wu G, et al. Oct4-induced pluripotency in adult neural stemcells. Cell,2009,136(3):411-419.
    [58]Kim J B, Greber B, Araúzo-Bravo M J, et al. Direct reprogramming of human neuralstem cells by Oct4[J]. Nature,2009,461(7264):649-653.
    [59]Yakubov E, Rechavi G, Rozenblatt S, et al. Reprogramming of human fibroblasts topluripotent stem cells using mRNA of four transcription factors [J]. Biochem BiophysRes Commun,2010,394(1):189-193.
    [60]Judson R L, Babiarz J E, Venere M, et al. Embryonic stem cell-specific microRNAspromote induced pluripotency [J]. Nat Biotechnol,2009,27(5):459-461.
    [61]Melton C, Judson R L, Blelloch R. Opposing microRNA families regulate self-renewalin mouse embryonic stem cells [J]. Nature,2010,463(7281):621-626.
    [62]Hanna J, Markoulaki S, Schorderet P, et al. Direct reprogramming of terminallydifferentiated mature B lymphocytes to pluripotency [J]. Cell,2008,133(2):250-264.
    [63]Feng B, Jiang J, Kraus P, et al. Reprogramming of fibroblasts into induced pluripotentstem cells with orphan nuclear receptor Esrrb [J]. Nat Cell Biol,2009,11(2):197-203.
    [64]Zhao Y, Yin X, Qin H, et al. Two supporting factors greatly improve the efficiency ofhuman iPSC generation [J]. Cell Stem Cell,2008,3(5):475-479.
    [65]Mali P, Ye Z, Hommond H H, et al. Improved efficiency and pace of generatinginduced pluripotent stem cells from human adult and fetal fibroblasts [J]. Stem Cells,2008,26(8):1998-2005.
    [66]Park I, Zhao R, West Ja, et al. Reprogramming of human somatic cells to pluripotencywith defined factors [J]. Nature,2008,451(7175):141-146.
    [67]Mikkelsen T S, Hanna J, Zhang X, et al. Dissecting direct reprogramming throughintegrative genomic analysis [J]. Nature,2008,454(7200):49-55.
    [68]Feng B, Ng J, Heng J D, et al. Molecules that promote or enhance reprogramming ofsomatic cells to induced pluripotent stem cells [J]. Cell Stem Cell,2009,4(4):301-312.
    [69]Huangfu D, Maehr R, Guo W, et al. Induction of pluripotent stem cells by definedfactors is greatly improved by small-molecule compounds [J]. Nat biotechnol,2008,26(7):795-797.
    [70]Shi Y, Desponts C, Do J T, et al. Induction of pluripotent stem cells from mouseembryonic fibroblasts by Oct4and Klf4with small-molecule compounds [J]. CellStem Cell,2008,3(5):568-574.
    [71]Shi Y, Do J T, Desponts C, et al. A combined chemical and genetic approach for thegeneration of induced pluripotent stem cells [J]. Cell Stem Cell,2008,2(6):525-528.
    [72]Mali P, Chou B, Yen J, et al. Butyrate greatly enhances derivation of human inducedpluripotent stem cells by promoting epigenetic remodeling and the expression ofpluripotency-associated genes [J]. Stem Cells,2010,28(4):713-720.
    [73]Lyssiotis Ca, Foreman R K, Staerk J, et al. Reprogramming of murine fibroblasts toinduced pluripotent stem cells with chemical complementation of Klf4[J]. Proc NatlAcad Sci USA,2009,106(22):8912-8917.
    [74]Yoshida Y, Takahashi K, Okita K, et al. Hypoxia enhances the generation of inducedpluripotent stem cells [J]. Cell Stem Cell,2009,5(3):237-241.
    [75]Mas, A., J. Montane, X.M. Anguela, et al. Reversal of type1diabetes by engineering aglucose sensor in skeletal muscle [J]. Diabetes,2006.55(6): p.1546-53.
    [76]Furth ME, Atala A. Stem cell sources to treat diabetes [J]. J Cell Biochem.2009,106(4):507-511.
    [77]Jiang J, Au M, Lu K,et al. Generation of insulin-producing islet-like clusters fromhuman embryonic stem cells [J]. Stem Cells.2007,25(8):1940-1953.
    [78]Tateishi K, He J, Taranova O,et al. Generation of insulin-secreting islet-like clustersfrom human skin fibroblasts [J]. J Biol Chem.2008,283(46):31601-31607.
    [79]Zhang D, Jiang W, Liu M, et al. Highly effcient differentiation of human ES cells andiPS cells into mature pancreatic insulinproducing cells [J]. Cell Research,2009,19:429-438.
    [80]Maehr R, Chen S, Snitow M,et al. Generation of pluripotent stem cells from patientswith type1diabetes [J]. Proc Natl Acad Sci U S A.2009,106(37):15768-15773.
    [81]Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse modelwith iPS cells generated from autologous skin [J]. Science,2007,318(5858):1920-1923.
    [82]Dimos JT, Rodolfa KT, Niakan KK, et al. Induced pluripotent stem cells generatedfrom patients with ALS can be differentiated into motor neurons [J]. Science,2009,321(5893):1218-1221.
    [83]Soldner F, Hockemeyer D, Beard C, et al. Parkinson’s disease patient-derived inducedpluripotent stem cells free of viral reprogramming factors [J]. Cell,2009,136(5):964-77.
    [84]Karumbayaram S, Novitch BG, Patterson M, et al. Directed Differentiation of Human-Induced Pluripotent Stem Cells Generates Active Motor Neurons [J]. Stem Cells,2009,27:806-811.
    [85]Yokoo N, Baba S, Kaichi S, et al. The effects of cardioactive drugs on cardiomyocytesderived from human induced pluripotent stem cells [J]. Biochem Biophys ResCommun,2009,387(3):482-488.
    [86] Serwold T, Hochedlinger K, Swindle J, et al. T-cell receptor-driven lymphomagenesisin mice derived from a reprogrammed T cell[J]. Proc Natl Acad Sci U S A,2010,107(44):18939-18943.
    [87] Loh YH, Agarwal S, Park IH, et al. Generation of induced pluripotent stem cells fromhuman blood[J]. Blood,2009,113(22):5476-5479.
    [88] Lee G, Papapetrou EP, Kim H, et al. Modelling pathogenesis and treatment of familialdysautonomia using patient-specific iPSCs[J]. Nature,2009,461(7262):402-406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700