用户名: 密码: 验证码:
肥胖对肠屏障和炎症的影响及干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分肥胖对大鼠肠屏障的影响及n-3多不饱和脂肪酸的干预研究研究背景:肥胖是一种低度的炎症反应状态,肠屏障的改变是诱发肥胖及相关炎症的重要原因,主要表现为肠道菌群的紊乱和肠道通透性增加,导致内毒素入血,从而引发机体炎症反应。n-3多不饱和脂肪酸(n-3Polyunsaturated fatty acids, n-3PUFAs)用于心血管疾病的治疗及预防,可以减轻肥胖患者的体重,改善代谢综合征,研究显示肥胖患者体内n-3PUFAs含量少于非肥胖患者。补充-3PUFAs可以改善炎性肠病、部分肝切除动物的肠道通透性,而对高脂饮食导致的肠屏障损害的作用报道较少。
     目的:观察高脂饮食诱发肥胖模型,是否引起肠屏障(肠道菌群及肠通透性)的改变,补充n-3多不饱和脂肪酸对高脂饮食导致的肥胖大鼠肠道屏障的影响及减重作用,为将来临床应用提供理论依据。
     方法:36只雄性Sprague-Dawley (SD)大鼠随机分为普通饮食组(Control diet, CD,n=10)、高脂饮食组(High-fat diet, HFD, n=10)、CD+n-3PUFAs组(n=7)、HFD+n-3PUFAs组(n=9)。饲养10周后,取大鼠新鲜粪便提取DNA,通过实时定量PCR检测肠道菌群组成。应用ELISA检测血浆中炎症因子水平。应用改良偶氮基质显色鲎试剂法检测门静脉血清内毒素水平。通过乳果糖/甘露醇方法检测肠通透性,Western blot检测小肠粘膜紧密连接蛋白的表达。
     结果:HFD组大鼠体重明显高于CD组、CD+n-3PUFAs组和HFD+n-3PUFAs组。HFD组大鼠粪便中厚壁菌门(Firmicutes)和肠杆菌科(Enterobacteriales)含量高于CD组和HFD+n-3PUFAs组大鼠,而拟杆菌门(Bacteroidetes)、双歧杆菌属(Bifidobacterium spp.)及Bacteroidetes与Firmicutes比值低于CD组和HFD+n-3PUFAs组大鼠。CD+n-3PUFAs组大鼠粪便中Bacteroidetes含量高于CD组大鼠。Peaeson相关性分析结果显示Bacteroidetes与Firmicutes比值与体重具有负相关性。HFD组大鼠尿中乳果糖/甘露醇比值高于CD组和HFD+n-3PUFAs组大鼠。CD组和CD+n-3PUFAs组大鼠尿中乳果糖/甘露醇比值无明显差异。HFD组门静脉血浆中内毒素和炎症因子水平高于CD组大鼠和HFD+n-3PUFAs组大鼠。HFD组大鼠大鼠肠粘膜紧密连接蛋白(claudin和occludin)的表达低于CD组大鼠和HFD+n-3PUFAs组大鼠。
     结论:高脂饮食导致的肥胖引起肠道菌群改变、肠通透性增加,而补充n-3PUFAs可以部分修复肥胖导致肠道菌群紊乱,降低肠道通透性,减轻炎症因子和内毒素水平,减少体重。
     第二部分肥胖症患者血清、皮下及内脏脂肪组织脂肪酸谱测定及与炎症因子、胰岛素抵抗的相关研究
     背景:肥胖是体内的异常的脂肪蓄积,脂肪组织分泌多种炎症因子,参与胰岛素抵抗等代谢综合征的形成。然而导致肥胖症患者炎症因子升高的原因未知。研究显示无论是血中还是脂肪组织中脂肪酸谱,均反映了饮食中脂肪酸的摄入及体内的代谢,尤其是脂肪组织中的脂肪酸谱更是反映了长期的脂肪酸摄入情况,而且与代谢综合征、肥胖及炎症因子相关,但有关中国重度肥胖症患者脂肪酸谱的研究较少,特别是肥胖症脂肪组织脂肪酸谱的检测在国外研究较少,国内尚无研究。
     目的:检测中国重度肥胖症患者及非肥胖患者血清及脂肪组织中脂肪酸谱、炎症因子水平并分析差异,分析脂肪酸谱与炎症因子及胰岛素抵抗的相关性。材料与方法:选取在北京协和医院接受手术的27例肥胖患者和24例非肥胖患者作为研究对象。通过气相色谱技术检测患者血清、脂肪组织脂肪酸构成,通过产物与底物计算脱氢酶活性:SCD (C16:1n-7/C16:0,C18:1n-9/C18:0)、D6D (C20:3n-6/C18:2n-6)、D5D(C20:4n-6/C20:3n-6),应用ELISA方法检测血清及脂肪组织中炎症因子(hsCRP, TNF-α, IL-6)水平,比较肥胖组与非肥胖组患者脂肪酸谱、脱氢酶活性及炎症因子水平的差异,分析脂肪酸谱与炎症因子及胰岛素抵抗指数(HOMA-IR)的相关性。
     结果:肥胖症患者血清中含有更高比例的棕榈酸(C16:0)、油酸(C18:ln-9)、二十碳三烯酸(C20:3n-3),更低比例的亚油酸(C18:2n-6)、γ亚麻酸(C18:3n-6)。肥胖症患者脂肪组织中含有更高比例的C16:0、油酸(C18:1n-9)、丫亚麻酸(C18:3n-6),更低比例的硬脂酸(C18:0)、亚油酸(C18:2n-6)、α-亚麻酸(C18:3n-3)和二十二碳六烯酸(DHA, C22:6n-3)。饱和脂肪酸(Saturated fatty acids, SFAs)和单不饱和脂肪酸(Monounsaturated fatty acids, MUFAs)的含量在肥胖组患者内脏脂肪组织中含量更高,而n-3多不饱和脂肪酸(n-3polyunsaturated fatty acids, n-3PUFAs)和多不饱和脂肪酸(Polyunsaturated fatty acids, PUFAs)的含量更低。肥胖症患者皮下脂肪组织中含有更高比例的C16:0、棕榈油酸(C16:ln-7). C18:1n-9、C18:3n-6,更低比例的C18:0、C18:2n-6、DHA、MUFAs和SFAs。SCD18和D6D的活性在肥胖组脂肪组织中高于非肥胖组。肥胖组患者内脏脂肪组织比皮下脂肪组织含有更多的SFAs及MUFAs。肥胖组患者内脏及皮下脂肪组织中炎症因子水平较高(hsCRP、TNF-α、IL-6)。肥胖组患者内脏脂肪组织中SFAs、MUFAs、SCD18、D6D活性与hsCRP. TNF-α、IL-6水平具有正相关。与hsCRP、TNF-α的含量具有负相关性的是肥胖组患者内脏脂肪中的n-3PUFAs。与胰岛素抵抗(HOMA-IR)呈正相关的是内脏脂肪组织中的SFAs、MUFAs、SCD18、D6D和皮下脂肪组织中的D6D,与胰岛素抵抗(HOMA-IR)呈负相关的是内脏脂肪组织中的PUFAs、n-3PUFAs和皮下脂肪组织中的PUFAs。
     结论:肥胖组患者与非肥胖组患者血浆及脂肪组织中脂肪酸谱存在明显的差异。不同部位脂肪组织脂肪酸谱及炎症因子水平的差异显示其不同的代谢活性,脂肪组织内饱和脂肪酸、单不饱和脂肪酸含量、脱氢酶(SCD18、D6D)活性与炎症因子、胰岛素抵抗呈正相关,而多不饱和脂肪酸与炎症因子、胰岛素抵抗呈负相关,这种相关性在肥胖患者特别显著。脂肪酸摄入与体内代谢可能参与肥胖相关炎症及代谢综合征发生。
     第三部分术前口服葡萄糖溶液减轻术后胰岛素抵抗及炎症反应研究背景:手术应激导致术后炎症反应及高血糖,增加了术后并发症的风险。传统观念认为延长禁食时间有助于减少术中误吸等并发症。1999年美国麻醉医师协会提出:针对术前需要禁食的病人,在术前2小时仍可进食温和液体,如水或者葡萄糖溶液,并且术前口服葡萄糖溶液已经被欧洲肠外肠内营养与快速康复协会推荐。尽管术前口服葡萄糖溶液可以改善病人术后糖代谢,但对于是否增加胃液量和麻醉手术风险尚存争议。虽然国内大多数医师已意识到减少禁食时间的重要性,但传统常规及考虑到手术安全并未推广实施。由此,需要术前口服葡萄糖溶液的临床研究。目的:1.观察术前胃液量及pH值及麻醉手术并发症评估术前口服葡萄糖溶液的安全性及可行性;2.观察术前口服葡萄糖溶液对胃肠手术后炎症反应、血糖及胰岛素抵抗(Insulin resistance, IR)的影响。
     方法:胃肠手术48例患者术前签署知情同意书,随机分研究组23例,对照组25例。研究组术前3h一次性口服25%葡萄糖溶液300ml(75g),比较两组术前胃内容物量、pH值及术后第1天的血清高敏C反应蛋白(high sensitivity C-reactive protein, hsCRP)、空腹血糖、胰岛素水平、胰岛素抵抗指数稳态模型(Homeostasis model assessment-Insulin resistance, HOMA-IR)。
     结果:所有病人按计划口服葡萄糖溶液后均无不适主诉,两组均无麻醉及手术并发症。麻醉前两组胃内容物量(30.88±25.93vs27.94±24.04ml)、pH值(1.99±0.34vs2.13±0.43)无明显差异;术前两组hsCRP、血糖、胰岛素水平、HOMA-IR无明显差异。术后第1天研究组空腹血糖、HOMA-IR及hsCRP均明显低于对照组(6.51±1.15vs7.49±0.57mmol/L, P=0.038),(4.34±1.60vs6.09±2.81, P=0.043),(40.45±27.02vs80.02±38.98mg/L, P=0.03),术后第2天研究组hsCRP均明显低于对照组(70.33±32.19vs101.12±42.73,P=0.041)。
     结论:术前口服葡萄糖溶液安全可行,可明显改善患者术后应激所致的高血糖及IR、炎症反应。
     第四部分腹腔镜减重手术治疗重度肥胖症患者的临床研究研究背景:肥胖症已经严重影响健康及生活质量,是导致代谢综合征和诸多合并症的主要原因。近10年来国内外的研究实践证实减重手术是病态性肥胖症患者获得稳定减重效果的方法,国内减重外科处于起步发展阶段,存在诸多问题和困难,但由于手术适应症及方式选择,手术效果不理想,术后复胖及术后并发症的问题,需要针对中国肥胖症患者大样本、多中心的临床研究证实减重手术的效果。肥胖症患者就诊时合并多系统的问题,需要在术前多学科评估及术后专业团队的随诊才能保证手术安全与效果。为了规范我国肥胖症外科治疗流程,北京协和医院在国内率先开展多学科模式下手术治疗病态性肥胖症患者。
     目的:肥胖症综合治疗的多科协作模式腹腔镜可调节胃束带术(Laparoscopic adjustable gastric banding, LAGB)及腹腔镜袖状胃切除术(Laparoscopic sleeve gastrectomy, LSG)的临床减重效果、安全性及对合并症的治疗效果,比较两种手术方式对肥胖症相关炎症及减重效果,为中国肥胖症患者手术方式的选择上提供依据。方法:分析2009年10月至2014年3月多学科模式下北京协和医院基本外科施行LAGB31例及LSG14例病态性肥胖患者临床资料和术后的随访数据。总结在多科协作模式下肥胖症患者的围手术期和术后随访管理流程,观察手术安全性和术后长期减重效果及合并症的改善情况。
     结果:全部患者均顺利施行手术,未出现围手术期死亡病例。LAGB组患者术前平均体重121.7±22.5kg,平均体重指数(BMI)42.86±6.95kg/m2。术后48个月平均体重和BMI分别为82.7±12.43kg和32.5±4.64kg/m2,LSG组患者术前平均体重126.3±38.9kg,平均BMI43.57±10.21kg/m2。术后12月平均体重和BMI分别为91.67±51.63kg和30.59±14.98kg/m2。术后LAGB组早期并发症1例全身炎症反应综合征及肺呼吸功能衰竭,远期并发症2例注水泵处皮肤感染、注水泵突出皮肤。LSG组患者有1例因上消化道不全梗阻。术后体重和体质指数逐渐下降,LAGB组患者术后48个月平均额外体重减轻48.0%。规律随诊、依从性良好组额外体重减轻百分比显著高于不规律随诊、依从性差组。LSG组患者术后12个月平均额外体重减轻89.5%。术后12月LSG减重效果优于LAGB。两组患者术后肥胖症相关代谢性疾病均有不同程度改善。
     结论:LAGB与LSG安全可靠,有效减轻病态性肥胖症患者体重,减轻炎症、改善合并症,多科协作模式可优化疾病诊治流程,保障围手术期安全及疗效更优。术后规律随诊对获得长期减重效果有重要影响。LSG的减重效果优于LAGB
Part.1Effect of obesity and intervention of n-3polyunsaturatedfatty acids on intestinal barrier
     Background:Growing evidences showed that an important characteristic of obesity is low-grade inflammation. Changes in intestinal barrier, which included the gut microbiota dysbiosis, increased intestinal permeability and elevated endotoxin in blood, thereby triggering the inflammatory response. N-3polyunsaturated fatty acids were used for the treatment and prevention of cardiovascular disease, could reduce the body weight of obese patients, improve the metabolic syndrome. Our previous study showed that there were less contents of n-3PUFAs in the obese patients than non-obese patients. Supplementation of n-3PUFAs can improve the intestinal permeability in the models of inflammatory bowel disease and partial hepatectomy animal, but the effect of n-3PUFAs on the intestinal barrier impaered by high fat died is less reported.
     Objective:The aim of the present study is to investigate the effect of high fat diet incduced obeisty on the the intestinal barrier and protection effects of supplementation with n-3polyunsaturated fatty acids, which provides theoretical basis for clinical application in the future.
     Methods:Thirty-six Sprague-Dawley rats were divided into four groups randomly, fed control diet(CD), high-fat diet(HFD), control diet supplemented with n-3polyunsaturated fatty acids and high-fat diet supplemented with n-3polyunsaturated fatty acids respectively. Fresh fecal samples were collected to analyze the gut microbiota after10weeks feeding. DNA was exacted from the fresh fecal samples. Real-time PCR was used to detect the composition of the gut microbiota. The levels of hsCRP, TNF-α and IL-6in plasma were measured through ELISA, respectively. The endotoxin levels were detected though modified azo chromogenic substrate limulus amebocyte lysate assay. Intestinal permeability(lactose/mannitol ratio in the urine, L/M)was determined on the end of this study. Western blotting method was used to detect tight junction protein of intestinal mucosa.
     Results:The HFD induced a more increase in the body weight than the CD, CD+n-3PUFAs, HFD+n-3PUFAs groups. There were more contents of the Firmicutes, Enterobacteriales, and less contents of Bacteroidetes, Bifidobacterium spp. and ratios of Bacteroidetes to Firmicutes in the fecal of the rats from HFD group compared to the CD and HFD+n-3PUFAs groups. There were more contents of the Bacteroidetes in the fecal of the rats from CD+n-3PUFAs group compared to the CD group. The Pearson's correlation coefficient shows that there is a negative correlation between the body weight and the ratios of Bacteroidetes-to-Firmicutes. Intestinal permeability(L/M) was increased significantly in HFD group compared to CD and HFD+n-3PUFAs groups, but there is no significant difference in the L/M ratio between the CD and CD+n-3PUFAs groups. The endotoxin and inflammatory factors in plasma in portal vein from rats of HFD group were higher than CD and HFD+n-3PUFAs groups, but expression of claudin and occludin in intestinal mucosa of HFD group were lower than CD and HFD+n-3PUFAs groups.
     Conclusion:HFD-induced obesity changed the gut microbiota and increased intestinal permeability. Supplement with n-3PUFAs could counteract these gut dysbiosis and reduce the intestinal permeability as well as improve inflammatory factors and the body weight.
     Part.2Fatty acid composition and estimated desaturase activities in visceral and subcutaneous adipose tissues of morbidly obese patients, and are associated with inflammatory factors and insulin resistance
     Background:Obesity is characterized by abnormal fat storage and low-grade inflammation in adipose tissue and serum. Adipose tissue from obese patients abnormally secretes abundant inflammatory factors that promote the insulin resistance and metabolic syndrome. However, the cause of elevated infalmmatory factors is still unknown. Previous studies showed that fatty acid composition in both blood and adipose tissue reflected the diet intake of fatty acid, and was associated with metabolic syndrome, obesity and inflammatory factors. But the studies on the fatty acid composition in serum and adipose tissue from Chinese morbidly obese patiens are limited.
     Objective:The objective of this study was to investigate the differences in fatty acid composition and estimates desaturase activities in visceral and subcutaneous adipose tissue between morbidity obese and non-obese subjects, and to investigate the correlation between fatty acid composition and desaturase activities with obesity-associated inflammatory factors, such as high sensitivity C-reactive protein (hsCRP), tumour necrosis factor alpha (TNF-a) and interleukin-6(IL-6) in adipose tissue, and insulin resistance.
     Methods:Visceral and subcutaneous adipose tissues were obtained from27obese subjects with metabolic syndrome or type2diabetes and24non-obese subjects. Analysis of fatty acid composition in adipose tissue was performed using gas chromatography. The desaturase activities were estimated from the ratio of product to precursor:SCD (C16:ln-7/C16:0and C18:ln-9/C18:0), D6D (C20:3n-6/C18:2n-6) and D5D (C20:4n-6/C20:3n-6). The levels of hsCRP, TNF-a and IL-6in adipose tissue and serum were measured through ELISA, respectively. The differences in fatty acid composition, estimated desaturase activities and inflammatory factors levels between both groups were compared, and the correlations between fatty acid composition and inflammatory factors levels, HOMA-IR were analyzed.
     ResultscObese subjects had higher levels of oleic (C18:ln-9), palmitic (C16:0), palmitoleic (C16:ln-7) and dihomo--y-linolenic (C18:3n6) acids in both visceral and subcutaneous adipose tissue, and lower levels of stearic acid (C18:0), linoleic acid (C18:2n6) and C18:3n3than the non-obese controls. There were more oleic acid, saturated fatty acids and monounsaturated fatty acids in visceral adipose tissue of obese group, more saturated fatty acids in visceral adipose tissue of non-obese group,compared to subcutaneous adipose tissue. The levels of hsCRP,TNF-a, IL-6and the estimated activities of SCD18and D6D were significantly higher in visceral and subcutaneous adipose tissue of the obese subjects. Also, we found that there were more hsCRP and IL-6in the visceral adipose tissue than in the subcutaneous adipose tissue. hsCRP, TNF-a and IL-6in adipose tissue were positively associated with the cotents of SFAs, MUFAs and estimated activities of SCD18and D6D. hsCRP in adipose tissue was negatively associated with the cotents of n-3PUFAs. HOMA-IR was positively associated with the cotents of SFAs, MUFAs, estimated activities of SCD18and D6D in visceral adipose tissue and estimated activities of D6D in subcutaneous adipose tissue, while it was negatively associated with the cotents of PUFAs and n-3PUFAs in visceral adipose tissue and n-3PUFAs in subcutaneous adipose tissue.
     Conclusion:There were differences in fatty acid composition and estimated desaturase activities of adipose tissue between obese and non-obese subjects. These difference reflected the a long period of fatty acid intake and metabolism in both groups. Differsence fatty acid composition and inflammtory facors levels between the visceral and subcutaneous adipose tissue showed the discrepant metabolic activities of different fat depots. The high correlations of contents of some fatty aicd and desaturases activities with hsCRP, TNF-a, IL-6in adipose tissue and HOMA-IR suggest that fatty acid intake and metabolsim may play a role in the development of chronic inflammation commonly found in morbid obesity and metabolic syndrome.
     Part.3Preoperative oral carbohydrate alleviates postoperative insulin resistance and inflammatory reaction
     Background:Stress of operation induces postoperative hyperglycemia and inflammatory response that increases the risk of postoperative complications. Long preoperative fasting has been a standard practice for patients undergoing elective surgery to avoid vomiting and pulmonary aspiration during anesthesia induction.In1999, the American Society of Anesthesiologists (ASA) issued a practice guideline for preoperative fasting in which patients (except those with delayed gastric emptying) are allowed to have clear fluids such as water, carbonated beverages until2h before surgery. Preoperative oral carbohydrate administration for adult patients has been recommended by European Society for Parenteral and Enteral Nutrition and Enhanced Recovery After Surgery. Although preoperative oral carbohydrate may improve patient perioperative glucose metabolism, its effects on the gastric contents and anesthesia operation risk remain controversial. Although most domesticphysicians aware of the importance of reduced fasting time and preoperative oral carbohydrate, but management is not implemented considering the operation safety. Therefore, the similar research will contribute to clinical application.
     Objective:The purpose of the present study is to assess the safety of effect of preoperative oral glucose solution through observe the gastric contents and pH as well as anesthesia and operation complicationson. The effects of preoperative oral blood glucose solution on the perioperative glucose, insulin resistance and inflammatory reaction of ptients after gastrointestinal operation were observed.
     Methods:48patients received gastrointestinal operation signed informed consent and were randomly divided into the study group (n=23) and the control group (n=25). Patients in study group were given300ml oral administration of25%glucose solution in3hours before operation. Before anesthesia induction, gastric contents were aspirated through nasogastric tube to examine its volume and pH. Serum hsCRP, fasting blood glucose, insulin level and HOMA-IR were detected before operation and in the first morning after operation between both groups.
     Results:There were no anesthesia and operation complications in both groups. Patients had similar gastric contents volume(30.88±25.93vs27.94±24.04ml) and the pH value of gastric contents(1.99±0.34vs2.13±0.43). There were no significant differences in serum hsCRP, fasting blood glucose and HOMA-IR of patients in the two groups preoperatively. But on the first postoperative day, fasting blood glucose and HOMA-IR of the patients in the study group were significantly lower than those in the control group (6.51±1.15vs7.49±0.57mmol/L, P=0.038;4.34±1.60vs6.09±2.81, P=0.043), and hsCRP level of the patients in the study group was significantly lower than the control group (40.45±27.02vs80.02±38.98mg/L, P=0.03). On the second postoperative day, hsCRP level of the patients in the study group was significantly lower than the control group(70.33±32.19vs101.12±42.73, P=0.041)
     Conclusion:Preoperative oral glucose solution(25%) is safe and feasible, obviously improved blood glucose and insulin resistance after operation, at the same time, alleviated postoperative inflammatory reaction.
     Part.4A clinical study of Laparoscopic bariatric surgery in treating modality for
     Background:Obesity has seriously affected the health and quality of life, become a important reason that induce the metabolic syndrome and complication of obesity. The recent10years studies show that the effect of conservative treatment on patients with severe obesity is limitied and bariatric surgery is the most effective method in weight control of morbid obesity patients. However, bariatric surgery is at the initial stage in China. There are many problems, such as the operation indication, unsatisfactory operation effect, the problem of postoperative complications and regain obesity, so there are still more research whcih need large sample, multi-center to confirm its effect. Obese patients accompany with multi-system problems, that need to multidisciplinary professional team to follow up and ensure the operation safety and effect. In order to standardize the process of treating obesity surgery in China, the Peking Union Medical College Hospital launched a model of multidisciplinary in treating morbid obese patients.
     Objective:To investigate the multidisciplinary modality for obesity treatment and evaluate the safety and long-term efficacy of laparoscopic adjustable gastric banding(LAGB) and laparoscopic sleeve gastrectomy(LSG) on weight loss, inflammation and obesity related metabolic diseases in obesity patients. Comparison effects of two kinds of bariatric surgeries provides the basis in the choice of mode of operation for the Chinese obese patients.
     Methods:The clinical and follow-up data of31and14morbidly obese patients, receiving LAGB and LSG respectively in Dept. General Surgery of PUMC hospitM in a multidisciplinary modality from Oct2009to March2014were retrospectively analyzed. The strategy of perioperative and follow-up management was summarized and the safety and long-term efficacy of LAGB and LSG on weight loss and comorbidity were evaluated.
     Results:All patients were successfully performed operation, without death case. Mean body weight of the subjects was121.7±22.5kg and mean BMI42.86±6.95kg/m2in LAGB group preoperatively, while mean body weight of the subjects was126.3±38.9kg and mean BMI43.57±10.21kg/m2in LSG group. All patients underwent LAGB and LSG successfully without perioperative mortality. Early postoperative complications included1case(3.2%) in LAGB of systemic inflammatory response syndrome and1case(7.1%) in LSG of incomplete obstruction. Long-term complications included2cases(6.5%) in LAGB of port infection and elevation. Mean body weight and BMI decreased gradually after LAGB and LSG. The mean percentage of excess weight loss(%EWL) at postoperative48months in LAGB group and12months in LSG group were48.0%and89.5%respectively. LSG was more effective in controling weight than LAGB at postoperative12months.%EWL of the group with regular follow-up and good compliance after LAGB was significantly higher than the other group. Complete or partial remission was observed in obesity related metabolic diseases at the last follow-up after LAGB and LSG.
     Conclusion:LAGB and LSG are safe and have good long-term efficacy on weight loss, reduce obesity-associated inflammation and improve comorbidity of morbidly obese patients. Better services can be provided for obesity patients in a muhidiseiplinaly modabty. It is important for the patients to follow up regularly after surgery in order to maintain long-term weight loss. LSG has a better effect on weight loss than LAGB
引文
[1]Trogdon, J., E. Finkelstein, T. Hylands, et al., Indirect costs of obesity:a review of the current literature, Obesity Reviews[J],2008,9 (5):489-500.
    [2]Chen, Z., G. Yang, M. Zhou, et al., Body mass index and mortality from ischaemic heart disease in a lean population:10 year prospective study of 220 000 adult men, International journal of epidemiology [J],2006,35 (1):141-150.
    [3]康维明等,,北京地区体检人群血糖异常发生率及其相关因素分析,肠外与肠内营养[J],2009,16(3):129-132.
    [4]Tobias, D.K., A. Pan, C.L. Jackson, et al., Body-Mass Index and Mortality among Adults with Incident Type 2 Diabetes, New England Journal of Medicine[J],2014,370 (3):233-244.
    [5]Sundaram, S., A.R. Johnson, L. Makowski, Obesity, metabolism and the microenvironment: Links to cancer, Journal of carcinogenesis[J],2013,12 (1):19.
    [6]Karagozian, R., Z. Derdak, G. Baffy, Obesity-associated mechanisms of hepatocarcinogenesis, Metabolism:clinical and experimental[J],2014.
    [7]Backhed, F., H. Ding, T. Wang, et al., The gut microbiota as an environmental factor that regulates fat storage, Proceedings of the National Academy of Sciences of the United States of America[J],2004,101 (44):15718-15723.
    [8]Turnbaugh P J, L.R.E., Mahowald M A, et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature[J],2006,444 (7122):1027-1131.
    [9]Cani, P.D., J. Amar, M.A. Iglesias, et al., Metabolic endotoxemia initiates obesity and insulin resistance, Diabetes[J],2007,56 (7):1761-1772.
    [10]De Filippo, C., D. Cavalieri, M. Di Paola, et al., Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa, Proceedings of the National Academy of Sciences of the United States of America[J],2010,107 (33):14691-14696.
    [11]Muegge, B.D., J. Kuczynski, D. Knights, et al., Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans, Science (New York, N.Y.)[J],2011,332 (6032):970-974.
    [12]Astrup, A., Dietary management of obesity, JPEN. Journal of parenteral and enteral nutrition[J],2008,32 (5):575-577.
    [13]Campbell, K., K. Hesketh, Strategies which aim to positively impact on weight, physical activity, diet and sedentary behaviours in children from zero to five years. A systematic review of the literature, Obesity reviews[J],2007,8 (4):327-338.
    [14]Katan, M.B., J.P. Deslypere, A.P. van Birgelen, et al., Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue:an 18-month controlled study, Journal of lipid research[J],1997,38 (10):2012-2022.
    [15]Hodson, L., C.M. Skeaff, B.A. Fielding, Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake, Progress in lipid research[J],2008,47 (5): 348-380.
    [16]You, T., R. Yang, M.F. Lyles, et al., Abdominal adipose tissue cytokine gene expression: relationship to obesity and metabolic risk factors, American journal of physiology. Endocrinology and metabolism[J],2005,288 (4):E741-747.
    [17]Maury, E., S.M. Brichard, Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome, Molecular and cellular endocrinology[J],2010,314 (1):1-16.
    [18]Antoni, L., S. Nuding, J. Wehkamp, et al., Intestinal barrier in inflammatory bowel disease, World journal of gastroenterology:WJG[J],2014,20 (5):1165-1179.
    [19]Le Bot, N., Obesity-associated gut microbiota induce liver cancer, Nature cell biology[J],2013,15 (8):894.
    [20]Sanyal, D., Diabetes is predominantly an intestinal disease, Indian journal of endocrinology and metabolism[J],2013,17 (Suppll):S64.
    [21]Ridaura, V.K., J.J. Faith, F.E. Rey, et al., Gut microbiota from twins discordant for obesity modulate metabolism in mice, Science (New York, N.Y.)[J],2013,341 (6150):1241214.
    [22]Qin, J., R. Li, J. Raes, et al., A human gut microbial gene catalogue established by metagenomic sequencing, Nature[J],2010,464 (7285):59-65.
    [23]Eckburg, P.B., E.M. Bik, C.N. Bernstein, et al., Diversity of the human intestinal microbial flora, Science (New York, N.Y.)[J],2005,308 (5728):1635-1638.
    [24]Backhed F, D.H., Wang T, et al., The gut microbiota as an environmental factor that regulates fat storage, Proceedings of the National Academy of Sciences of the United States of America[J],2004,101 (44):15718-15723.
    [25]Hotamisligil, G.S., Endoplasmic reticulum stress and the inflammatory basis of metabolic disease, Cell [J],2010,140 (6):900-917.
    [26]Reaven, G.M., The insulin resistance syndrome:definition and dietary approaches to treatment, Annu. Rev. Nutr.[J],2005,25 391-406.
    [27]Kamdar, K., V. Nguyen, R.W. DePaolo, Toll-like receptor signaling and regulation of intestinal immunity, Virulence[J],2013,4 (3):207-212.
    [28]Buckley, J.D., P.R. Howe, Long-chain omega-3 polyunsaturated fatty acids may be beneficial for reducing obesity-a review, Nutrients[J],2010,2 (12):1212-1230.
    [29]Russo, G.L., Dietary n-6 and n-3 polyunsaturated fatty acids:From biochemistry to clinical implications in cardiovascular prevention, Biochemical pharmacology[J],2009,77 (6):937-946.
    [30]Teng, K.-T., C.-Y. Chang, L.F. Chang, et al., Modulation of obesity-induced inflammation by dietary fats:mechanisms and clinical evidence, Nutrition Journal[J],2014,13 (1):12.
    [31]Prostek, A., M. Gajewska, D. Kamola, et al., The influence of EPA and DHA on markers of inflammation in 3T3-L1 cells at different stages of cellular maturation, Lipids in health and disease[J],2014,13(1):3.
    [32]Pinel, A., B. Morio-Liondore, F. Capel, n-3 polyunsaturated fatty acids modulate metabolism of insulin-sensitive tissues:implication for the prevention of type 2 diabetes, Journal of physiology and biochemistry[J],2013,1-12.
    [33]Abete, I., E. Goyenechea, M. Zulet, et al., Obesity and metabolic syndrome:potential benefit from specific nutritional components, Nutrition, Metabolism and Cardiovascular Diseases[J],2011,21:B 1-B15.
    [34]Micallef, M., I. Munro, M. Phang, et al., Plasma n-3 polyunsaturated fatty acids are negatively associated with obesity, British journal of nutrition[J],2009,102 (09):1370-1374.
    [35]He, K., E.B. Rimm, A. Merchant, et al., Fish consumption and risk of stroke in men, JAMA: the journal of the American Medical Association[J],2002,288 (24):3130-3136.
    [36]Iso, H., K.M. Rexrode, M.J. Stampfer, et al., Intake of fish and omega-3 fatty acids and risk of stroke in women, JAMA:the journal of the American Medical Association[J],2001,285 (3): 304-312.
    [37]Collado, M.C., E. Isolauri, K. Laitinen, et al., Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women, The American journal of clinical nutrition[J],2008,88 (4):894-899.
    [38]Turnbaugh, P.J., R.E. Ley, M.A. Mahowald, et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature[J],2006,444 (7122):1027-1131.
    [39]McCoy, A.N., F. Araujo-Perez, A. Azcarate-Peril, et al., Fusobacterium is associated with colorectal adenomas, PloS one[J],2013,8 (1):e53653.
    [40]Zhang, C., M. Zhang, S. Wang, et al., Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice, The ISME journal[J],2010,4 (2): 232-241.
    [41]Xie, W.D., H. Wang, J.F. Zhang, et al., Enhanced peroxisomal beta-oxidation metabolism in visceral adipose tissues of high-fat diet-fed obesity-resistant C57BL/6 mice, Experimental and therapeutic medicine[J],2011,2 (2):309-315.
    [42]Qiao, Y., J. Sun, S. Xia, et al., Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity, Food & function[J],2014.
    [43]Hildebrandt, M.A., C. Hoffmann, S.A. Sherrill-Mix, et al., High-fat diet determines the composition of the murine gut microbiome ndependently of obesity, Gastroenterology[J],2009,137 (5):1716-1724. e1712.
    [44]Ley, R.E., F. Backhed, P. Turnbaugh, et al., Obesity alters gut microbial ecology, Proceedings of the National Academy of Sciences of the United States of America[J],2005,102 (31):11070-11075.
    [45]Lyra, A., S. Lahtinen, K. Tiihonen, et al., Intestinal microbiota and overweight, Beneficial microbes[J],2010,1(4):407-421.
    [46]Turnbaugh, P.J., M. Hamady, T. Yatsunenko, et al., A core gut microbiome in obese and lean twins, Nature[J],2009,457 (7228):480-484.
    [47]Cani, P.D., E. Lecourt, E.M. Dewulf, et al., Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal, The American journal of clinical nutrition[J],2009,90 (5):1236-1243.
    [48]Kim, K.-A., W. Gu, I.-A. Lee, et al., High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway, PloS one[J],2012,7 (10): e47713.
    [49]Wang, J.-H., S. Bose, G.-C. Kim, et al., Flos Lonicera Ameliorates Obesity and Associated Endotoxemia in Rats through Modulation of Gut Permeability and Intestinal Microbiota, PloS one[J],2014,9(l):e86117.
    [50]Erridge, C., T. Attina, C.M. Spickett, et al., A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation, The American journal of clinical nutrition[J],2007,86 (5):1286-1292.
    [51]Ghoshal, S., J. Witta, J. Zhong, et al., Chylomicrons promote intestinal absorption of lipopolysaccharides, Journal of lipid research[J],2009,50 (1):90-97.
    [52]Beguin, P., A. Errachid, Y. Larondelle, et al., Effect of polyunsaturated fatty acids on tight junctions in a model of the human intestinal epithelium under normal and inflammatory conditions, Food & function[J],2013,4 (6):923-931.
    [53]Cani, P.D., A.M. Neyrinck, F. Fava, et al., Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia, Diabetologia[J],2007,50 (11):2374-2383.
    [54]Shen, L., L. Su, J.R. Turner, Mechanisms and functional implications of intestinal barrier defects, Digestive Diseases[J],2009,27 (4):443-449.
    [55]Farhadi, A., A. Banan, J. Fields, et al., Intestinal barrier:an interface between health and disease, Journal of gastroenterology and hepatology[J],2003,18 (5):479-497.
    [56]Turner, J.R., Intestinal mucosal barrier function in health and disease, Nature Reviews Immunology[J],2009,9 (11):799-809.
    [57]DeMeo, M.T., E.A. Mutlu, A. Keshavarzian, et al., Intestinal permeation and gastrointestinal disease, Journal of clinical gastroenterology[J],2002,34 (4):385-396.
    [58]Travis, S., I. Menzies, Intestinal permeability:functional assessment and significance, Clin Sci[J],1992,82 (5):471-488.
    [59]Teixeira, T.F., N. Souza, P.G. Chiarello, et al., Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors, Clinical Nutrition[J],2012,31 (5): 735-740.
    [60]de La Serre, C.B., C.L. Ellis, J. Lee, et al., Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation, American Journal of Physiology-Gastrointestinal and Liver Physiology[J],2010,299 (2):G440.
    [61]Turnbaugh, P.J., F. Backhed, L. Fulton, et al., Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome, Cell host & microbe[J],2008,3 (4): 213-223.
    [62]Cani PD, P.S., Van de Wiele T, et al., Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability, Gut[J],2009,58 (8):1091-1103.
    [63]Brun, P., I. Castagliuolo, V.D. Leo, et al., Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis, American Journal of Physiology-Gastrointestinal and Liver Physiology [J],2007,292 (2):G518-G525.
    [64]Cani, P.D., R. Bibiloni, C. Knauf, et al., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice, Diabetes[J],2008,57 (6):1470-1481.
    [65]Chen, C.M., Overview of obesity in Mainland China, Obesity reviews:an official journal of the International Association for the Study of Obesity[J],2008,9 Suppl 114-21.
    [66]Nakamura, Y., T.C. Turin, Y. Kita, et al., Associations of obesity measures with metabolic risk factors in a community-based population in Japan, Circulation journal:official journal of the Japanese Circulation Society[J],2007,71 (5):776-781.
    [67]Li, J.J., C.J. Huang, D. Xie, Anti-obesity effects of conjugated linoleic acid, docosahexaenoic acid, and eicosapentaenoic acid, Molecular nutrition & food research[J],2008,52 (6):631-645.
    [68]Kawashima, A., S. Sugawara, M. Okita, et al., Plasma fatty acid composition, estimated desaturase activities, and intakes of energy and nutrient in Japanese men with abdominal obesity or metabolic syndrome, Journal of nutritional science and vitaminology[J],2009,55 (5):400-406.
    [69]Caron-Jobin, M., D. Mauvoisin, A. Michaud, et al., Stearic acid content of abdominal adipose tissues in obese women, Nutrition & diabetes[J],2012,2 e23.
    [70]Kawashima, A., S. Sugawara, M. Okita, et al., Plasma fatty acid composition, estimated desaturase activities, and intakes of energy and nutrient in Japanese men with abdominal obesity or metabolic syndrome, Journal of nutritional science and vitaminology[J],2008,55 (5):400-406.
    [71]Garaulet, M., F. Perez-Llamas, M. Perez-Ayala, et al., Site-specific differences in the fatty acid composition of abdominal adipose tissue in an obese population from a Mediterranean area: relation with dietary fatty acids, plasma lipid profile, serum insulin, and central obesity, The American journal of clinical nutrition[J],2001,74 (5):585-591.
    [72]Maruyama, C., M. Yoneyama, N. Suyama, et al., Differences in serum phospholipid fatty acid compositions and estimated desaturase activities between Japanese men with and without metabolic syndrome, Journal of atherosclerosis and thrombosis[J],2008,15 (6):306-313.
    [73]Martinelli, N., D. Girelli, G. Malerba, et al., FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease, The American journal of clinical nutrition[J],2008,88 (4):941-949.
    [74]Galic, S., J.S. Oakhill, G.R. Steinberg, Adipose tissue as an endocrine organ, Molecular and cellular endocrinology[J],2010,316 (2):129-139.
    [75]Hajer, G.R., T.W. van Haeften, F.L. Visseren, Adipose tissue dysfunction in obesity, diabetes, and vascular diseases, European heart journal[J],2008,29 (24):2959-2971.
    [76]Hodson, L., C.M. Skeaff, B.A. Fielding, Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake, Progress in lipid research[J],2008,47 (5): 348-380.
    [77]Huang, T., M.L. Wahlqvist, T. Xu, et al., Increased plasma n-3 polyunsaturated fatty acid is associated with improved insulin sensitivity in type 2 diabetes in China, Molecular nutrition & food research[J],2010,54 (S1):S112-S119.
    [78]Iggman, D., J. Arnlov, B. Vessby, et al., Adipose tissue fatty acids and insulin sensitivity in elderly men, Diabetologia[J],2010,53 (5):850-857.
    [79]Ralston, J.C., F. Badoud, B. Cattrysse, et al., Inhibition of stearoyl-CoA desaturase-1 in differentiating 3T3-L1 preadipocytes upregulates elongase 6 and downregulates genes affecting triacylglycerol synthesis, International journal of obesity[J],2014.
    [80]Liu, X., M. Miyazaki, M.T. Flowers, et al., Loss of Stearoyl-CoA Desaturase-1 Attenuates Adipocyte Inflammation Effects of Adipocyte-Derived Oleate, Arteriosclerosis, thrombosis, and vascular biology[J],2010,30 (1):31-38.
    [81]Petersson, H., L. Lind, J. Hulthe, et al., Relationships between serum fatty acid composition and multiple markers of inflammation and endothelial function in an elderly population, Atherosclerosis[J],2009,203 (1):298-303.
    [82]Schmitz, G., J. Ecker, The opposing effects of n-3 and n-6 fatty acids, Progress in lipid research[J],2008,47 (2):147-155.
    [83]Warensjo, E., M. Rosell, M.-L. Hellenius, et al., Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans:links to obesity and insulin resistance, Lipids in health and disease[J],2009,8 (37):10.1186.
    [84]Warensjo, E., M. Ohrvall, B. Vessby, Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women, Nutrition, metabolism and cardiovascular diseases[J],2006,16 (2):128-136.
    [85]Zhao, G., T.D. Etherton, K.R. Martin, et al., Dietary a-linolenic acid inhibits proinflammatory cytokine production by peripheral blood mononuclear cells in hypercholesterolemic subjects, The American journal of clinical nutrition[J],2007,85 (2): 385-391.
    [86]Sioen, I., M. Hacquebard, G. Hick, et al., Effect of ALA-enriched food supply on cardiovascular risk factors in males, Lipids[J],2009,44 (7):603-611.
    [87]Hardwick, J.P., K. Eckman, Y.K. Lee, et al., Eicosanoids in metabolic syndrome, Advances in pharmacology (San Diego, Calif.)[J],2013,66 157.
    [88]Lopez-Vicario, C., A. Gonzalez-Periz, B. Rius, et al., Molecular interplay between Delta5/Delta6 desaturases and long-chain fatty acids in the pathogenesis of non-alcoholic steatohepatitis, Gut[J],2014,63 (2):344-355.
    [89]Mayneris-Perxachs, J., M. Guerendiain, A.I. Castellote, et al., Plasma fatty acid composition, estimated desaturase activities, and their relation with the metabolic syndrome in a population at high risk of cardiovascular disease, Clinical Nutrition[J],2014,33 (1):90-97.
    [90]Yue, L., J.W. Christman, T. Mazzone, Tumor necrosis factor-a-mediated suppression of adipocyte apolipoprotein E gene transcription:primary role for the nuclear factor NF-κB pathway and NF-κB p50, Endocrinology[J],2008,149 (8):4051-4058.
    [91]Kopp, A., C. Buechler, M. Neumeier, et al., Innate Immunity and Adipocyte Function: Ligand-specific Activation of Multiple Toll-like Receptors Modulates Cytokine, Adipokine, and Chemokine Secretion in Adipocytes, Obesity[J],2009,17 (4):648-656.
    [92]Cao, H., Adipocytokines in obesity and metabolic disease, Journal of Endocrinology[J],2014,220 (2):T47-T59.
    [93]Miyazaki, Y., L. Glass, C. Triplitt, et al., Abdominal fat distribution and peripheral and hepatic insulin resistance in type 2 diabetes mellitus, American Journal of Physiology-Endocrinology and Metabolism[J],2002,283 (6):El 135-E1143.
    [94]Lichtenstein, L., F. Mattijssen, N.J. de Wit, et al., Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages, Cell metabolism[J],2010,12 (6):580-592.
    [95]Zhu, A., B. Cui, H. Dang, et al., Correlation of abdominal fat distribution with different types of diabetes in a Chinese population, Journal of diabetes research[J],2013,2013 651462.
    [96]Nygren, J., A. Thorell, H. Jacobsson, et al., Preoperative gastric emptying. Effects of anxiety and oral carbohydrate administration, Annals of surgery[J],1995,222 (6):728.
    [97]Soop, M., J. Nygren, P. Myrenfors, et al., Preoperative oral carbohydrate treatment attenuates immediate postoperative insulin resistance, American Journal of Physiology-Endocrinology And Metabolism[J],2001,280 (4):E576-E583.
    [98]Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration:application to healthy patients undergoing elective procedures:a report by the American Society of Anesthesiologist Task Force on Preoperative Fasting, Anesthesiology[J],1999,90 (3):896-905.
    [99]Noblett, S.E., D.S. Watson, H. Huong, et al., Pre-operative oral carbohydrate loading in colorectal surgery:a randomized controlled trial, Colorectal disease:the official journal of the Association of Coloproctology of Great Britain and Ireland[J],2006,8 (7):563-569.
    [100]Yildiz, H., S.E. Gunal, G. Yilmaz, et al., Oral carbohydrate supplementation reduces preoperative discomfort in laparoscopic cholecystectomy, Journal of Investigative Surgery[J],2013,26(2):89-95.
    [101]Yildiz, H., S.E. Gunal, G. Yilmaz, et al., Oral carbohydrate supplementation reduces preoperative discomfort in laparoscopic cholecystectomy, Journal of investigative surgery:the official journal of the Academy of Surgical Research[J],2013,26 (2):89-95.
    [102]Thorell, A., J. Nygren, O. Ljungqvist, Insulin resistance:a marker of surgical stress, Current Opinion in Clinical Nutrition & Metabolic Care[J],1999,2 (1):69-78.
    [103]Yagci, G., M.F. Can, E. Ozturk, et al., Effects of preoperative carbohydrate loading on glucose metabolism and gastric contents in patients undergoing moderate surgery:a randomized, controlled trial, Nutrition (Burbank, Los Angeles County, Calif.)[J],2008,24 (3):212-216.
    [104]Tamura, T., T. Yatabe, H. Kitagawa, et al., Oral carbohydrate loading with 18% carbohydrate beverage alleviates insulin resistance, Asia Pacific journal of clinical nutrition[J],2013,22 (1).
    [105]Soop, M., J. Nygren, P. Myrenfors, et al., Preoperative oral carbohydrate treatment attenuates immediate postoperative insulin resistance, American journal of physiology. Endocrinology and metabolism[J],2001,280 (4):E576-583.
    [106]Ceriello, A., Oxidative stress and glycemic regulation, Metabolism:clinical and experimental[J],2000,49 (2 Suppl 1):27-29.
    [107]Vigano, J., E. Cereda, R. Caccialanza, et al., Effects of preoperative oral carbohydrate supplementation on postoperative metabolic stress response of patients undergoing elective abdominal surgery, World journal of surgery[J],2012,36 (8):1738-1743.
    [108]Kristiansson, M., L. Saraste, M. Soop, et al., Diminished interleukin-6 and C-reactive protein responses to laparoscopic versus open cholecystectomy, Acta Anaesthesiologica Scandinavica[J],1999,43 (2):146-152.
    [109]Soreide, E., L. Eriksson, G. Hirlekar, et al., Pre-operative fasting guidelines:an update, Acta Anaesthesiologica Scandinavica[J],2005,49 (8):1041-1047.
    [110]Hausel, J., J. Nygren, M. Lagerkranser, et al., A carbohydrate-rich drink reduces preoperative discomfort in elective surgery patients, Anesthesia & Analgesia[J],2001,93 (5): 1344-1350.
    [111]Sato, C., H. Shibuya, M. Nishino, et al., Effects of preoperative oral carbohydrate administration on gastric contents, Masui. The Japanese journal of anesthesiology[J],2012,61 (8): 810-813.
    [112]Itou, K., T. Fukuyama, Y. Sasabuchi, et al., Safety and efficacy of oral rehydration therapy until 2 h before surgery:a multicenter randomized controlled trial, Journal of anesthesia[J],2012,26 (1):20-27.
    [113]Buchwald, H., R. Estok, K. Fahrbach, et al., Weight and type 2 diabetes after bariatric surgery:systematic review and meta-analysis, The American journal of medicine[J],2009,122 (3): 248-256. e245.
    [114]Schauer, P.R., S.R. Kashyap, K. Wolski, et al., Bariatric surgery versus intensive medical therapy in obese patients with diabetes, New England Journal of Medicine[J],2012,366 (17): 1567-1576.
    [115]于健春.,肥胖症的多学科综合治疗模式,中国医学科学院学报[J],2010,32(1):1-3.
    [116]中华医学会第十一次全国内分泌学学术会议,中华内分泌代谢杂志[J],9(4):9.
    [117]Carlsson, L.M., M. Peltonen, S. Ahlin, et al., Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects, New England Journal of Medicine[J],2012,367 (8):695-704.
    [118]Sjostrom, L., K. Narbro, C.D. Sjostrom, et al., Effects of bariatric surgery on mortality in Swedish obese subjects, New England Journal of Medicine[J],2007,357 (8):741-752.
    [119]Anwar, M., J. Collins, L. Kow, et al., Long-term efficacy of a low-pressure adjustable gastric band in the treatment of morbid obesity, Annals of surgery[J],2008,247 (5):771-778.
    [120]Ceelen, W., J. Walder, A. Cardon, et al., Surgical treatment of severe obesity with a low-pressure adjustable gastric band:experimental data and clinical results in 625 patients, Annals of surgery[J],2003,237 (1):10.
    [121]Chapman, A.E., G. Kiroff, P. Game, et al., Laparoscopic adjustable gastric banding in the treatment of obesity:a systematic literature review, Surgery[J],2004,135 (3):326-351.
    [122]O'Brien, P.E., L. MacDonald, M. Anderson, et al., Long-term outcomes after bariatric surgery:fifteen-year follow-up of adjustable gastric banding and a systematic review of the bariatric surgical literature, Annals of surgery[J],2013,257 (1):87-94.
    [123]Buchwald, H., Y. Avidor, E. Braunwald, et al., Bariatric surgery:a systematic review and meta-analysis, JAMA:the journal of the American Medical Association[J],2004,292 (14): 1724-1737.
    [124]Varela, J.E., Laparoscopic sleeve gastrectomy versus laparoscopic adjustable gastric banding for the treatment severe obesity in high risk patients, JSLS:Journal of the Society of Laparoendoscopic Surgeons[J],2011,15 (4):486.
    [125]Wang, Y., J. Liu, Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy, Obesity surgery[J],2009,19 (3):357-362.
    [126]Eid, G.M., S. Brethauer, S.G. Mattar, et al., Laparoscopic sleeve gastrectomy for super obese patients:forty-eight percent excess weight loss after 6 to 8 years with 93% follow-up, Annals of surgery[J],2012,256 (2):262-265.
    [127]Rawlins, L., M.P. Rawlins, C.C. Brown, et al., Sleeve gastrectomy:5-year outcomes of a single institution, Surgery for Obesity and Related Diseases[J],2013,9 (1):21-25.
    [128]Catheline, J.-M., M. Fysekidis, I. Bachner, et al., Five-year results of sleeve gastrectomy, Journal of visceral surgery[J],2013,150 (5):307-312.
    [129]Zachariah, S.K., P.-C. Chang, A.S.E. Ooi, et al., Laparoscopic sleeve gastrectomy for morbid obesity:5 years experience from an Asian center of excellence, Obesity surgery[J],2013,23 (7):939-946.
    [130]Diamantis, T., K.G. Apostolou, A. Alexandrou, et al., Review of long-term weight loss results after laparoscopic sleeve gastrectomy, Surgery for obesity and related diseases:official journal of the American Society for Bariatric Surgery[J],2014,10 (1):177-183.
    [131]叶欣,于健春等,肥胖症患者行腹腔镜可调节胃束带术后高热和呼吸衰竭,基础医学与临床[J],2013,33(2):219-224.
    [132]Elias-Smale, S.E., I. Kardys, M. Oudkerk, et al., C-reactive protein is related to extent and progression of coronary and extra-coronary atherosclerosis; results from the Rotterdam study, Atherosclerosis[J],2007,195 (2):el95-e202.
    [133]Ferri, C., G. Croce, V. Cofini, et al., C-reactive protein:interaction with the vascular endothelium and possible role in human atherosclerosis, Current pharmaceutical design[J],2007,13 (16):1631-1645.
    [134]Hakeam, H.A., P.J. O'Regan, A.M. Salem, et al., Impact of laparoscopic sleeve gastrectomy on iron indices:1 year follow-up, Obesity surgery[J],2009,19 (11):1491-1496.
    [135]Ramalho, R., C. Guimaraes, C. Gil, et al., Morbid obesity and inflammation:a prospective study after adjustable gastric banding surgery, Obesity surgery[J],2009,19 (7):915-920.
    [136]Woodard, G.A., J. Peraza, S. Bravo, et al., One year improvements in cardiovascular risk factors:a comparative trial of laparoscopic Roux-en-Y gastric bypass vs. adjustable gastric banding, Obesity surgery[J],2010,20 (5):578-582.
    [137]Pardina, E., R. Ferrer, J.A. Baena-Fustegueras, et al., Only C-reactive protein, but not TNF-alpha or IL6, reflects the improvement in inflammation after bariatric surgery, Obesity surgery[J],2012,22(1):131-139.
    [138]Ji, C.Y., T.O. Cheng, Epidemic increase in overweight and obesity in Chinese children from 1985 to 2005, International journal of cardiology[J],2009,132 (1):1-10.
    [139]Buettner, R., J. Scholmerich, L.C. Bollheimer, High-fat diets:Modeling the metabolic disorders of human obesity in rodents, Obesity[J],2007,15 (4):798-808.
    [140]Kooner, J.S., D. Saleheen, X. Sim, et al., Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci, Nature genetics[J],2011,43 (10):984-989.
    [141]Hotta, K., Y. Nakata, T. Matsuo, et al., Variations in the FTO gene are associated with severe obesity in the Japanese, Journal of human genetics[J],2008,53 (6):546-553.
    [142]Astrup, A., Dietary management of obesity, Journal of Parenteral and Enteral Nutrition[J],2008,32 (5):575-577.
    [143]Qin, J., R. Li, J. Raes, et al., A human gut microbial gene catalogue established by metagenomic sequencing, Nature[J],2010,464 (7285):59-65.
    [144]Wall, R., R. Ross, C. Ryan, et al., Role of gut microbiota in early infant development, Clinical Medicine. Pediatrics[J],2009,345.
    [145]Palmer, C., E.M. Bik, D.B. DiGiulio, et al., Development of the human infant intestinal microbiota, PLoS biology[J],2007,5 (7):e177.
    [146]Koenig, J.E., A. Spor, N. Scalfone, et al., Succession of microbial consortia in the developing infant gut microbiome, Proceedings of the National Academy of Sciences[J],2011,108 (Supplement 1):4578-4585.
    [147]De Filippo, C., D. Cavalieri, M. Di Paola, et al., Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa, Proceedings of the National Academy of Sciences[J],2010,107 (33):14691-14696.
    [148]Yatsunenko, T., F.E. Rey, M.J. Manary, et al., Human gut microbiome viewed across age and geography, Nature[J],2012,486 (7402):222-227.
    [149]Zhang, H., J.K. DiBaise, A. Zuccolo, et al., Human gut microbiota in obesity and after gastric bypass, Proceedings of the National Academy of Sciences[J],2009,106 (7):2365-2370.
    [150]Duncan, S., G. Lobley, G. Holtrop, et al., Human colonic microbiota associated with diet, obesity and weight loss, International journal of obesity[J],2008,32 (11):1720-1724.
    [151]Rabot, S., M. Membrez, A. Bruneau, et al., Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism, The FASEB Journal[J],2010,24 (12):4948-4959.
    [152]Piazzi, G., G. D'Argenio, A. Prossomariti, et al., Eicosapentaenoic acid free fatty acid prevents and suppresses colonic neoplasia in colitis- associated colorectal cancer acting on Notch signaling and gut microbiota, International Journal of Cancer[J],2014.
    [153]Schwiertz, A., D. Taras, K. Schafer, et al., Microbiota and SCFA in lean and overweight healthy subjects, Obesity[J],2010,18 (1):190-195.
    [154]Bjursell, M., T. Admyre, M. Goransson, et al., Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet, American Journal of Physiology-Endocrinology and Metabolism[J],2011,300 (1):E211-E220.
    [155]Samuel, B.S., A. Shaito, T. Motoike, et al., Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41, Proceedings of the National Academy of Sciences[J],2008,105 (43):16767-16772.
    [156]Cullender, T.C., B. Chassaing, A. Janzon, et al., Innate and Adaptive Immunity Interact to Quench Microbiome Flagellar Motility in the Gut, Cell host & microbe[J],2013,14 (5):571-581.
    [157]Upadhyay, V., V. Poroyko, T.-j. Kim, et al., Lymphotoxin regulates commensal responses to enable diet-induced obesity, Nature immunology[J],2012,13 (10):947-953.
    [158]Cani, P.D., S. Possemiers, T. Van de Wiele, et al., Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability, Gut[J],2009,58 (8):1091-1103.
    [159]Zhang, X., Y. Zhao, M. Zhang, et al., Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats, PloS one[J],2012,7 (8):e42529.
    [160]Carvalho, B., D. Guadagnini, D. Tsukumo, et al., Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice, Diabetologia[J],2012,55 (10): 2823-2834.
    [161]Boden, G., Fatty acids and insulin resistance, Diabetes care[J],1996,19 (4):394-395.
    [162]de la Granda, M.M., A. Sinclair, A. Cherubini, Fatty acids and obesity, Current Pharmaceutical Design[J],2009,15 (36):4117-4125.
    [163]Li, J.J., C.J. Huang, D. Xie, Anti-obesity effects of conjugated linoleic acid, docosahexaenoic acid, and eicosapentaenoic acid, Molecular nutrition & food research[J],2008,52 (6):631-645.
    [164]Lovejoy, J., M. DiGirolamo, Habitual dietary intake and insulin sensitivity in lean and obese adults, The American journal of clinical nutrition[J],1992,55 (6):1174-1179.
    [165]Cooper, R., Abnormalities of cell-membrane fluidity in the pathogenesis of disease, The New England journal of medicine[J],1977,297 (7):371.
    [166]Stubbs, C., Membrane fluidity:structure and dynamics of membrane lipids, Essays in biochemistry[J],1982,191-39.
    [167]Davidson, B., R. Cantrill, Fatty acid nomenclature. A short review, South African medical journal [J],1985,67 (16):633-634.
    [168]Wang, L., A.R. Folsom, Z.-J. Zheng, et al., Plasma fatty acid composition and incidence of diabetes in middle-aged adults:the Atherosclerosis Risk in Communities (ARIC) Study, The American journal of clinical nutrition[J],2003,78 (1):91-98.
    [169]Laaksonen, D., T. Lakka, H.M. Lakka, et al., Serum fatty acid composition predicts development of impaired fasting glycaemia and diabetes in middle-aged men, Diabetic Medicine[J],2002,19 (6):456-464.
    [170]Melchert, H.-U., N. Limsathayourat, H. Mihajlovic, et al., Fatty acid patterns in triglycerides, diglycerides, free fatty acids, cholesteryl esters and phosphatidylcholine in serum from vegetarians and non-vegetarians, Atherosclerosis[J],1987,65 (1):159-166.
    [171]Lee, H., J. Woo, Z. Chen, et al., Serum fatty acid, lipid profile and dietary intake of Hong Kong Chinese omnivores and vegetarians, European journal of clinical nutrition [J],2000,54 (10): 768-773.
    [172]Katan, M.B., J. Deslypere, A. Van Birgelen, et al., Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue:an 18-month controlled study, Journal of lipid research[J],1997,38 (10):2012-2022.
    [173]Vessby, B., Dietary fat, fatty acid composition in plasma and the metabolic syndrome, Current opinion in lipidology[J],2003,14 (1):15-19.
    [174]Olveira, G., A. Dorado, C. Olveira, et al., Serum phospholipid fatty acid profile and dietary intake in an adult Mediterranean population with cystic fibrosis, British journal of nutrition[J],2006,96 (02):343-349.
    [175]Pelik, T., L. Kazdov, r. Chvojkov, et al., Serum phospholipid fatty acid composition and insulin action in type 2 diabetic patients, Metabolism:clinical and experimental[J],2001,50 (12): 1472-1478.
    [176]Zak, A., E. Tvrzicka, M. Vecka, et al., Severity of metabolic syndrome unfavorably influences oxidative stress and fatty acid metabolism in men, Tohoku Journal of Experimental Medicine[J],2007,212 (4).
    [177]楼大钧,朱麒钱,尤巧英等,代谢综合征合并糖尿病患者血清磷脂脂肪酸谱与超敏C反应蛋白相关性研究,中华内分泌代谢杂志[J],2010,(3):211-213.
    [178]Novgorodtseva, T.P., Y.K. Karaman, N.V. Zhukova, et al., Composition of fatty acids in plasma and erythrocytes and eicosanoids level in patients with metabolic syndrome, Lipids in health and disease[J],2011,1082.
    [179]Rivellese, A., S. Lilli, Quality of dietary fatty acids, insulin sensitivity and type 2 diabetes, Biomedicine & pharmacotherapy[J],2003,57 (2):84-87.
    [180]HIRSCH, J., J.W. FARQUHAR, E. Ahrens, et al., Studies of Adipose Tissue in Man A Microtechnic for Sampling and Analysis, The American journal of clinical nutrition[J],1960,8 (4): 499-511.
    [181]Wahle, K., G. McIntosh, W. Duncan, et al., Concentrations of linoleic acid in adipose tissue differ with age in women but not men, European journal of clinical nutrition[J],1991,45 (4): 195-202.
    [182]Garaulet, M., F. Perez-Llamas, M. Perez-Ayala, et al., Site-specific differences in the fatty acid composition of abdominal adipose tissue in an obese population from a Mediterranean area: relation with dietary fatty acids, plasma lipid profile, serum insulin, and central obesity, The American journal of clinical nutrition[J],2001,74 (5):585-591.
    [183]Fatty acid composition of adipose tissue in humans:differences between subcutaneous sites 13.
    [184]Enevoldsen, L.H., L. Simonsen, B. Stallknecht, et al., In vivo human lipolytic activity in preperitoneal and subdivisions of subcutaneous abdominal adipose tissue, American Journal of Physiology-Endocrinology And Metabolism[J],2001,281 (5):El 110-E1114.
    [185]Fatty Acid Composition of Adipose Tissue Triglycerides After Weight Loss and Weight Maintenance:the DIOGENES Study.
    [186]Lundgren, M., M. Svensson, S. Lindmark, et al., Fat cell enlargement is an independent marker of insulin resistance and'hyperleptinaemia', Diabetologia[J],2007,50 (3):625-633.
    [187]Schneider, B., I. Faust, R. Hemmes, et al., Effects of altered adipose tissue morphology on plasma insulin levels in the rat, American Journal of Physiology-Endocrinology and Metabolism[J],1981,240 (4):E358-E362.
    [188]Weyer, C., J. Foley, C. Bogardus, et al., Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance, Diabetologia[J],2000,43 (12):1498-1506.
    [189]Roberts, R., L. Hodson, A. Dennis, et al., Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans, Diabetologia[J],2009,52 (5): 882-890.
    [190]Iggman, D., J. Arnlov, B. Vessby, et al., Adipose tissue fatty acids and insulin sensitivity in elderly men, Diabetologia[J],2010,53 (5):850-857.
    [191]Merino, D.M., D. Ma, D.M. Mutch, Genetic variation in lipid desaturases and its impact on the development of human disease, Lipids in health and disease[J],2010,9 (63):10.1186.
    [192]Kim, O.Y., H.H. Lim, L.I. Yang, et al., Fatty acid desaturase (FADS) gene polymorphisms and insulin resistance in association with serum phospholipid polyunsaturated fatty acid composition in healthy Korean men:cross-sectional study, Nutrition & metabolism[J],2011,8 (1): 24-7075.
    [193]Paillard, F., D. Catheline, F.L. Duff, et al., Plasma palmitoleic acid, a product of stearoyl-coA desaturase activity, is an independent marker of triglyceridemia and abdominal adiposity, Nutrition, Metabolism and Cardiovascular Diseases[J],2008,18 (6):436-440.
    [194]Sjogren, P., J. Sierra-Johnson, K. Gertow, et al., Fatty acid desaturases in human adipose tissue:relationships between gene expression, desaturation indexes and insulin resistance, Diabetologia[J],2008,51 (2):328-335.
    [195]Nakamura, M.T., T.Y. Nara, Structure, function, and dietary regulation of △ 6, △5, and △9 desaturases, Nutrition (Burbank, Los Angeles County, Calif.)[J],2004,24.
    [196]Wallis, J.G., J.L. Watts, J. Browse, Polyunsaturated fatty acid synthesis:what will they think of next?, Trends in Biochemical Sciences[J],2002,27 (9):467-473.
    [197]Lopez-Vicario, C, A. Gonzalez-Periz, B. Rius, et al., Molecular interplay between △5/A6 desaturases and long-chain fatty acids in the pathogenesis of non-alcoholic steatohepatitis, Gut[J],2014,63 (2):344-355.
    [198]Saito, E., T. Okada, Y. Abe, et al., Abdominal adiposity is associated with fatty acid desaturase activity in boys:Implications for C-reactive protein and insulin resistance, Prostaglandins, Leukotrienes and Essential Fatty Acids[J],2013,88 (4):307-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700