用户名: 密码: 验证码:
六盘山叠叠沟小流域土壤水分动态变化与植被生长的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
考虑林水矛盾和优化林水相互关系是在西北半干旱地区进行林业生态环境建设时必须重视的核心问题,本文在处于半干旱区的六盘山北坡叠叠沟小流域研究了当地主要植被类型的生长及其耗水规律,典型坡面的土壤水分动态变化规律,有关结果充实了半干旱地区林水关系研究中植被和水分相互影响的内容,利于促进发展半干旱地区森林植被建设和管理的理论与技术,提高林水协调管理水平,为当地植被恢复与植被建设提供科学指导。具体结果如下:
     1.土壤水分动态
     土壤水分变化分期和分层:结合研究期间降水分布比较了不同典型样地(0~180 cm)土壤水分的季节变化,可分为土壤水分积累期、消耗期和恢复期;不同样地(0~180 cm)土壤水分垂直变化可大致分为土壤水分速变层、利用层、次要利用层和稳定层4个层次。
     土壤含水量变异系数的坡面变化:0~100 cm土层的土壤水分变异系数(CV%)在阴坡从坡下部华北落叶松林样地(22.4%)向上呈波浪式增加趋势;阳坡草地土壤含水量变异系数沿坡面从下向上呈波浪式增加趋势;阳坡坡面土壤水分变异系数范围在22.1%~38.5%之间。半阴坡土壤含水量变异系数的范围为23.5%~43%,在坡面呈单峰型变化趋势。
     2.坡面典型植被的生长特征
     华北落叶松高生长:对本研究涉及的阴坡华北落叶松人工林林分,以其年高生长速率可划分为缓慢生长期(栽植后5年)和迅速生长期(5~20年)。连年高生长有多种影响因素,相同立地同龄林木的高生长受林木生长和空间特征影响;不同立地同龄林木的高生长同土层厚度呈正相关,其次受林分密度影响。林分密度与林木高生长相关性不很高,说明密度不能很好映林木间竞争关系。
     阴坡草本植被:阴坡坡面共出现29种植物,各月的物种丰富度均随坡长增加表现为先升高后降低,呈明显的单锋格局,峰值在坡中部出现。
     阳坡草本植被:阳坡坡面共出现23种植物种类,物种丰富度从坡脚向坡顶呈波浪式逐渐减少趋势。在坡面,总生物量沿着海拔的增加呈现出波浪式的变化。地下生物量以则在坡中下部的1-3号样地最大,坡中上部的1-7号样地最小。
     半阴坡草本植被:半阴坡坡面共出现26种植物,物种丰富度从坡脚向坡中部呈波浪式变动趋势,而由坡中部向坡顶则逐渐降低。总生物量沿海拔增加呈现波浪式变化。地下生物量的变化趋势与总生物量一致,而地上生物量的变化规律在整个坡面上不很明显,可见半阴坡草地的总生物量变化趋势取决于地下生物量变化。同时也发现半阴坡草地各样地的地上生物量也均明显小于地下生物量。
Considering and optimazing the interrelationship between forest/vegetation and water resources is one of the important subjects for ecological reconstruction and vegetation restoration in the semi-arid zone of Northwest China. In this paper the growth and water use regularities were studied for main vegetation type which is one of the main plantation tree species on north side of the Liupan Mountains. This study is helpful to understand the interrelation between plantation growth and water condition in the semiarid area, and to promote the development of theories and techniques of the restorationan of forest/vegetation in semiarid area. The research conclusions could offer scientific guidance for the harmonious and integrated management of forest and water. The main conclusions were as follows:
     1. Study on dynamics of soil water
     Soil water dynamics during different periods and between different layers: Considering the precipitation during the research period, the soil water seasonal dynamic in different typical plots(0~180cm) can be divided into accumulating period and consuming period and restoring period; soil water dynamics in vertical direction can be divided into soil water variable greatly layer, soil water using layer, soil water subactive using layer and water stable layer.
     The law of soil water variation in different position on slope: the variance coefficient of soil (0~100 cm) water of Larix principis-rupprechti ahowed a fluctuant rising;The variance coefficient of sunny slope soil water showed a fluctuant rising. The variance coefficient ranged from 22.1% to 38.5%. The variance coefficient of soil water of semi-shady slope showed single peak and the variance coefficient ranged from 23.5% to 43%.
     2. Hillslopes typical characteristics of vegetation growth
     Larix principis-rupprechti high growth: Of this study involved Larix principis-rupprechti shade slope in Plantation forest, Its high growth rate can be divided into a slow growth period (5 years after planting) and the rapid growth period (5 ~ 20 years). High-growth year after year there are several factors, the same site of the same age, height growth of trees by tree growth and the impact of spatial characteristics; Different site of the same age, height growth of trees with the soil thickness was positively correlated, followed by the impact of stand density.Stand density and tree height growth is not very high correlation showed that the density can not be good relations between the competition.
     Shady slope herbaceous vegetation: The Slope of the shade slope there were 29 kinds of plants, each month species richness increased with slope length increased were showed increasing first and then decreasing each month, was clearly a single-front pattern of the central peak appears in the slope.
     Sunny slope herbaceous vegetation: Sunny slope there were 23 kinds of plant species, species richness to just over a hill from the foot of the slope peak showed a wave-like gradually decreasing trend. In the slope, total biomass increased along the elevation showing a wave-like changes. To below-ground biomass in the lower part of the slope in the plot of the 1-3 largest slope in the upper part of the smallest sample 1-7.
     Semi-shady slope herbaceous vegetation: The Semi-shady slope, there were 26 kinds of plants, species richness from the foot of the slope to the middle slope changes in the trend of a wave-like by the middle slope is gradually reduced to the slope peak. Total biomass along an altitudinal increase in a wave-like changes. Below-ground biomass trends consistent with the total biomass, and aboveground biomass of the change of in the whole slope is not very clear, we can see the semi-shade slope glass of the trend of total biomass change depending on changes in below-ground biomass. At the same time, It is found that the semi-shade slope each sample plot of above-ground biomass were also significantly less than the below-ground biomass.
引文
[1]李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J],生态学报,1983, 3(3): 91-101.
    [2]王孟本,李洪建著.黄土高原人工林水分生态研究[J].北京:中国林业出版社, 2001.
    [3]杨文治,邵明安,彭新德,等.黄土高原环境的旱化与黄土的水分关系.中国科学(D辑), 1998, 28(4):357-365.
    [4]马履一.国外土壤水分研究现状与进展.世界林业研究.1997(5): 32-36.
    [5]周凌云,陈志雄,李卫民.TDR法测定土壤含水量的标定研究[J].土壤学报,2003(1):59-63.
    [6]张学礼,胡振琪,初士立.土壤含水量测定方法研究进展[J].土壤通报,2005(1):118-123.
    [7] Calbo A G.A Rapid Method for Measuring SoilWater Content in the Field With a Areomet [J].Scientia Agricola,2002,59(4):811-814.
    [8]王力,邵明安,王全九,等.林地土壤水分运动研究述评[J].林业科学, 2005, 41(2): 147-153.
    [9]王力.陕北黄土高原土壤水分匮缺状况与林木生长关系[D].博士论文,西北农林科技大学, 2002.
    [10]胡良军,邵明安,杨文治,等.黄土高原景观生态特征及其生态恢复的意义[J].天津师范大学学报(自然科学版), 2003, 23(4): 27-32.
    [11] Faith R, Kearns N, Maggi K, etal.A method for the use of landscape metrics in freshwater research and management[J].Landscape Ecology,2005,20(1):113-125.
    [12]程积民,万惠娥,王静,等.黄土丘陵半干旱区天然草地土壤水分调控[J].草地学报,2003,11(4):296-300.
    [13]王新平,康尔泗,张景光,等.草原化荒漠带人工固沙植丛区土壤水分动态[J].水科学进展,2004,15(2):216-222.
    [14]陈海滨,孙长忠,安锋,等.黄土高原沟壑区林地土壤水分特征的研究I.土壤水分的垂直变化和季节变化特征[J].西北林学院学报,2003,18(4):13-16.
    [15]黄志刚,李锋瑞,曹云,等.南方红壤丘陵区杜仲人工林土壤水分动态[J].2007,18(9): 1937-1944.
    [16]韩仕峰,黄旭.黄土高原土壤水分利用和生态环境的关系[J].生态学杂志,l993,l2(1):25-28
    [17]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社, 2000.67-85.
    [18]王力.陕北黄土高原土壤水分亏缺状况与林木生长关系[D].博士论文,西北农林科技大学, 2002.
    [19]杨海军.陕西黄土高原水土保持林地水分平衡研究[J].林业科学,1989,25(6):549-553
    [20]申卫军,彭少麟,周国逸,等.鹤山丘陵草坡的水文特征及水量平衡[J].植物生态学报,2000,24(2):162-168.
    [21]魏天兴,余新晓,朱金兆,等.黄土区防护林主要造林树种水分供需关系研究[J].应用生态学报,2001,12(2):185-189.
    [22]田晶会,王百田.黄土半干早区刺槐林水分与生长关系研究[J].水土保持学报.2002,16(5):61-63.
    [23]沈芳,贺康宁,张光灿.黄土半干旱区集水造林地刺槐的林木生产力和水分生产潜力[J].水土保持学报,2002,16(5):58-60.
    [24]魏天兴,朱金兆.黄土区人工林地水分供耗特点与林分生产力研究[J].北京林业大学学报,1999, 5(4):45-51.
    [25]阳园燕,郭安红,安顺清,等.土壤-植物-大气连续体(SPAC)系统中植物根系吸水模型研究进展[J].气象科技, 2004, 32(5): 316-321.
    [26]吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社, 1998. 1-15.
    [27]郭忠升,邵明安.半干旱区人工林草地土壤旱化与土壤水分植被承载力[J].生态学报, 2003,23(8): 1640-1647.
    [28]马履一.国内外土壤水分研究现状[J].世界林业研究,1997(5): 26-31.
    [29]王治军,雒天峰.滴灌条件下侧柏林地根区土壤水分运动规律研究[J] .干旱地区农业研究, 2008(7):13-16.
    [30]刘雪芹,范兴科,马甜.滴灌条件下砂壤土水分运动规律研究[J].灌溉排水学报, 2006,25(3):56-59.
    [31]汪志荣,王文焰,王全九,等.点源入渗土壤水分运动规律实验研究[J].水利学报, 2000,6:39-44.
    [32]赵玉涛,余新晓,张志强,等.长江上游亚高山峨嵋冷杉林地被物层界面水分传输规律研究[J].水土保持学报,2002,16(3):118-121.
    [33]王力,邵明安,王全九.林地土壤水分运动研究述评[J].林业科学,2005,41(2):147-153.
    [34] Sloan P G, Moore I D.Modelling subsueface stromflow on steeply sloping forested watersheds[J]. Water Resour Research,1984,20(12):1815-1822.
    [35]刘延玺.壤中流形成机理的数学描述[J].内蒙古农牧学院学报, 1994, 15(3): 84-90.
    [36] Arnold J G,Srinivasan R,Muttiah R S,etal.Large area hydrologic modeling and assessment, PartⅠ:model development[J].Journal of the American Water Resources Association,1998,34:73 -89.
    [37] Swartzendruber D.Derivation of a two-term infiltration equation from the Green-Ampt model.Journal of Hydrology,2000,236:247-251.
    [38] Eckhardt K, Haverkamp S, Fohrer N, et al. SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments[J].Physics and Chemistry of the Earch,2002,27: 641-644.
    [39]王印杰,王玉珉.非饱和土壤水分函数解析与Richards方程入渗新解[J].水文,1996(2): 1-9
    [40]邵爱军,段生贵,彭建萍,等.田间非饱和土壤水分运动的数值模拟-I源汇项及上边办条件的研究[J].河北地质学院学报,1995,18(4): 355-364.
    [41]王力,邵明安,王全九,等.林地土壤水分运动研究述评[J].林业科学,2005,41(2):147-153
    [42]李笑吟,毕华兴,张建军,等.晋西黄土区土壤水分有效性研究[J].水土保持研究,2006,13(5): 205-211.
    [43]毕华兴,李笑吟,刘鑫,等.晋西黄土区土壤水分空间异质性的地统计学分析[D].北京林业大学学报,2006,28(5): 59-66.
    [44]李笑吟,毕华兴,张建军,等.晋西黄土区土壤水分有效性分析的克立格法[J].土壤学报,2006, 43(6):1004-1010.
    [45]王孟本,李洪建.晋西北黄土区人工林土壤水分动态的定量研究[J].生态学报,1995,15(2): 178-184.
    [46]尹柞栋,郭东吾.径流林业一早塬曙光[J].甘肃林业科技, 1994, (3): 45-48.
    [47]李绍良.草原土壤水分状况与植物生物量关系的初步研究[A].见:中国科学院内蒙古草原生态系统定位站.草原生态系统研究(第一集)[C].北京:科学出版社,1985.
    [48]陈有君,李立民.大针茅草原生物量动态与土壤贮水量关系模型的研究[J].内蒙古农牧学院学报, 1993,14(3):1-6.
    [49]玉义凤,姜恕.干旱气候对大针茅草原的群落结构和地上部分生物量的影响[J].植物生态学与地植物学丛刊.1982,6(4): 333-338.
    [50]杨新民,杨文治,马玉玺,等.纸坊沟流域人工刺槐林生长状况与土壤水分条件的研究[J].水土保持研究. 1994, 1(3): 31-35.
    [51]奥得姆.生态学基础[M].北京:人民教育出版社,1971.
    [52]郑晓翾,赵家明,张玉刚,等.呼伦贝尔草原生物量变化及其与环境因子的关系[J].生态学杂志,2007,26(4):533-538.
    [53] Scurlock JM,HallDO.The global carbon sink: A grass-land perspective[J]. Global Change Biology, 1998,(4): 229-233.
    [54] Flanagan LB, Johnsoa BG. Interacting effects of temperature, soilmoisture and plantbiomass production on ecosystem respiration in a northern temperate grassland[J]. Agricultural and Forest Meteorology, 2005,130: 237-253.
    [55] Kammann C, Grünhage L, GrütersU, et al. Response of aboveground grassland biomass and soilmoisture tomoderate long-term CO2 enrichment[J].Basic and Applied Ecology,2005,6: 351-365.
    [56]刘学敏,史培军.生态建设产业化一西北地区经济社会可持续发展的一种思路[J].北京师范大学学报(人文社会科学版),2002 ,(2): 141-145.
    [57]蔡学彩,李镇清,陈佐忠,等.内蒙古草原大针茅落地上生物量与降水量的关系[J].生态学报, 2005,25(7):1657-1662.
    [58]白永飞,李凌浩,王其兵,等.锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究[J].植物生态学报, 2000,24(6):667-673.
    [59]刘蔚秋,余世孝,王永繁,等.广东黑石顶森林生物量的三维估算[J].中山大学学报(自然科学版), 2004,14(2): 80-84.
    [60]朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局[J].植物生态学报, 2004,28(4):491-498.
    [61]刘玲玲,吴兆录,李青,等.滇西北藏区不同管理方式的草地生物量的比较研究[J].生态学杂志, 2005,24(1):1409-1412.
    [62]刘国华,马克明,傅伯杰,等.岷江干旱河谷主要灌丛类型地上生物量研究[J].生态学报,2003,23(9):1757-1764.
    [63]方精云,陈安平,赵淑清,等.中国森林生物量的估算:对Fang等Science一文(Science,2001, 291:2320-2322)的若干说明[J].植物生态学报, 2002,26(2): 243-249.
    [64]李裕元,邵明安,张兴昌,等.侵蚀条件下坡地土壤水分与有效磷的空间分布特征[J].水土保持学报, 2001, 15(2): 41-44.
    [65]王力,邵明安.延安试区土壤干层现状分析[J].水土保持通报, 2000, 20(3): 35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700