用户名: 密码: 验证码:
刀豆愈伤组织建立及愈伤组织中刀豆氨酸的形成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刀豆氨酸是一种天然非蛋白氨基酸,和精氨酸的分子结构非常相似,由于其能代替精氨酸被精氨酸tRNA合成酶误认为是精氨酸而合成到蛋白质中,而使含刀豆氨酸的蛋白质生理功能有缺陷,从而有良好的抗肿瘤性。刀豆氨酸是蝶形花亚科(Papilionnoidea)和豆科(leguminosae)植物种子中的可溶性氮的存贮库,它也被认为是一种保护植物不被病虫害等侵染的植物天然性次生代谢产物,这是因为刀豆氨酸对某些害虫表现出一定的毒性作用,由于其具有毒性而被认为是一种潜在的杀虫剂,其优点表现为低毒性,对自然界无污染,从它的作用机制判断,由于它不损害病虫的寄生性天敌,因此具有保护病虫天敌昆虫特性。刀豆氨酸的主要来源是通过人工合成和从植物中提取两种途径。而植物提取中通过组织培养技术可以获得次生代谢产物且一般是成本低,收取率高,对环境污染少,目前国内还未见关于刀豆愈伤组织的报道,本研究主要是利用刀豆种子诱导愈伤组织,以细胞鲜重、干重、细胞相对生长率以及刀豆氨酸含量为考察指标,进行多因素多水平的优化实验,分析液体悬浮培养过程中生理生化指标,且对其中的刀豆氨酸含量进行测定,通过研究拟建立一种新的简便、快速测定刀豆氨酸的方法,研究结果表明:
     (1)通过研究2,4-二硝基氟苯与刀豆氨酸在pH 9.5硼砂缓冲溶液中反应的最佳条件,建立了一种新的、快速简便的测定刀豆氨酸的方法,即运用了分光光度法测定络合物在571 nm处的吸光度。结果表明:在50℃水浴30 min后,刀豆氨酸与2,4-二硝基氟苯发生显色反应,即形成绿色1:1的稳定络合物。其最大吸收峰在571nm,表观摩尔吸光系数ε= 1.086×104L/(mol·cm),在13.75~220.00μg/mL范围内遵守比尔定律,对应线性回归方程为:y=0.0051x+0.0682;相关系数为:R2=0.9939。加标回收率为96.60 ~101.56%范围之内,相对标准偏差在1.768%之内,从而建立了刀豆氨酸简单、快速测定的新方法。
     (2)以刀豆种子为材料,诱导刀豆愈伤组织,建立刀豆愈伤组织体系,并进一步培养和增殖,同时,测定了不同颜色愈伤组织中刀豆氨酸含量和不同生长时期愈伤组织中刀豆氨酸含量。结果表明:在MS培养基中可以诱导出浅绿色的刀豆愈伤组织,且在增殖培养基中刀豆愈伤组织的生长特点呈现“S”型曲线模式,生长周期为24d。研究发现在绿色愈伤组织中刀豆氨酸含量最高为43.462μg/gFW(细胞鲜重),其次是浅绿色的,接着是白色的,含量最少的是褐化的愈伤组织21.626μg/gFW。在愈伤组织组织生长过程中刀豆氨酸含量呈先上升后有所下降趋势。含量最高的时期为培养24d,其刀豆氨酸含量为30.675μg/gFW。
     (3)运用正交试验设计方法,以鲜重、干重、细胞相对生长率以及刀豆氨酸含量为指标,对刀豆愈伤组织进行多因素多水平进行考察。结果表明:蔗糖对愈伤组织生长的影响最为显著。同时也对刀豆氨酸含量影响显著。如果以愈伤组织生长量为目标:最佳培养基为MS+3.0 mg/L6-BA+0.8 mg/LNAA+40g/L蔗糖+7.8g/L琼脂,最佳培养基条件下愈伤组织相对生长率为0.1016,干重达1.1318g.瓶-1;如果以愈伤组织中刀豆氨酸含量为目标:最佳培养基为MS+3.0 mg/L6-BA+0.2 mg/LNAA+20g/L蔗糖+ 7.8g/L琼脂,最佳培养基条件下刀豆氨酸含量为63.2432μg/L FW和617.5320μg/L DW。
     (4)挑选质地疏松、生长状态均一、分散性好的刀豆愈伤组织作为接种材料进行悬浮培养,比较分析了悬浮培养过程中各种生理生化指标以及刀豆氨酸含量的变化。实验结果表明:刀豆愈伤组织悬浮培养呈“S”型曲线,生长周期为18d。胞内和胞外可溶性蛋白含量以及细胞活力呈先上升后下降趋势,而培养液中的pH变化和胞外过氧化物酶含量呈先下降再上升趋势;且刀豆氨酸含量先稍有下降然后再上升,最后又下降的趋势,表明培养液的pH值和胞外过氧化物酶活性与刀豆氨酸含量具有相关性。
Canavanine, a structural analogue of arginine, is one of the predominant natural non-protein amino acids in the Leguminosae and Canavalia lineata. The structural analogy between L-canavanine and L-arginine is so marked that canavanine can be arginine instead of arginine tRNA synthetase mistaken for arginine and the synthesis of the protein .The protein have defective physiological functions, So it has good anti-tumor. The roles of canavanine as a nitrogen storing metabolite in Papilionaceae (Papilionnoidea), legumes (leguminosae), It has been proposed that canavanine as a defense chemical to predatory insects.It is considered that canavanine shows some toxic effectting on some pests.Therefor it could be think as a potential insecticide.The advantage of canavanine is low toxicity,no pollution, not damage the parasitoids pest from its mechanism of action, There are two sources of canavanine, One is the synthetic and another is extracted from plants. The plant extracts from tissue culture skills are generally low costcharging rate, less environmental pollution. There is still no reports of callus on the Canavalia lineate, This report study about induction to callus of beans seeds, and evaluation callus cells in fresh weight, dry weight, relative growth rate of cells and canavanine content, and the optimization of multi-factor and multi-level. Physiological and Biochemical process of Liquid Suspension Culture and on which the canavanine were determined, at the same time a new simple and rapid method of determination of canavanine. The main results were as followes:
     (1) This paper study optimum conditions about 2,4-dinitrofluorobenzene and L-canavanine reaction in pH9.5 borax buffer solution, for establishment of a new, fast and easy determination of L-canavanine method. The method used spectrophotometry determination 571nm absorbance. The results showed that L-canavanine with 2,4- dinitrofluorobenzene occurred color reaction at 50℃for 30 min with no light, forming a stable green complex with 1:1.The maximum absorption peak at 571 nm and the apparent molar absorption coefficientε=1.086×10~4L/(mol·cm), It obeys beer’s law in 13.75-220.00μg/mL, the corresponding linear regression equation: y=0.0051x+0.0682; correlation coefficient: R2=0.9939.Recoveries were 96.60%-101.56%, relative standard deviation of 1.245% -1.768% range, thus establishing a simple new method for rapid determination L-canavanine.
     (2) Callus were induced with Canavalia ensiformis seeds, determinating a system of callus,and still training and proliferation, Canavanine was detectded in was measured in different colors callus and content of canavanine in different growth stages. The results were that it was induced the light green callus in the MS medium with beans seeds, and beans in the proliferation medium showed the characteristics of the callus growth with pattern of "S" curve. Found in the green callus canavanine content of up to 43.4620μg / g FW (fresh weight), second was light green callus, then white callus, the least browning of callus 21.6260μg /gFW . In Tissue Culture canavanine content was first increased and then decreased. To foster the highest levels during the 24d, the canavanine content 30.6750μg/g FW.
     (3) To study the optimum combinations of callus with polyfactors and polylevels by orthogonal design. Relative growth rate of cells, fresh weight, dry weight, and canavanine content was chosed as the experiment index. The results showed that: sucrose could effect the growth of callus and promote the synthesis of canavanine remarkably. For the growth of callus, the optimal culture medium for callus growth is: MS +3.0 mg/L6-BA +0.2 mg/LNAA +40g/L sucrose +7.8g/L agar, The relative growth of callus was 0.1016, dry weight was 1.1318g.flask-1 in the optimum medium conditions. For canavanine content, the optimal culture medium for callus growth is: MS +3.0 mg/L6-BA +0.8 mg/LNAA +20g/L sucrose +7.8g/L agar, the canavanine content is 63.2432μg/L FW and 617.5320μg/L DW.
     (4) With selecting of loose texture, growth state of uniform, dispersion of good calli as inoculation material, Suspension culture is established for study on phisiological variaton of suspension calli and canavanine formation in calli. The results showed that: The suspension cultures cell growth curves were like“S”, the growth period of the cell is 18d; Intracellular and extracellular soluble proteins and cell activity was increased and then decreased, while pH of the cultured medium and extracellular peroxides activities of cultured cell were decreased at first, then increased gradually; and canavanine content was slightly decreased and then increased, later decreased. So the pH of the cultured medium and extracellular peroxidase activity were related to canavanine content.
引文
[1]李宁,李铣,冯志国,等.刀豆的化学成分[J].沈阳药科大学学报,2007,24(11):676~677
    [2]张红宇,杨守书.刀豆种子的萌发特性研究[J].作物杂志,2007,38~39
    [3]彭海鹏.防癌食品——刀豆[J].特种经济动植物,2001,3:27
    [4] Bell E A, Laky J A,and Dohil R M. Systematic significana of canavanine in papillionoideae (Fabiodea)[J]. Biochem system. Ecol,1978, 6: 193~204.
    [5] Rosenthal, G. A. Nitrogen callocation for L - canavanine Synthesis and its relationship to chemical defense of the seed. Biochem System Eco.1977. l5: 219~220
    [6]高艳,张小林,胡廷雷,等.L-刀豆氨酸的研究进展[J].化工中间体,2006,3:5~7
    [7]汪文陆,程振衡.刀豆氨酸对亚洲玉米螟生长发育及生殖的影响[J].华南农业大学学报,1995,16(2):86~91
    [8] Rosenthal G A, Dahlman D L.Degradation of aberrent proteins by larval tobacco hornworm, Manduca sexta L(Spingidae) [J]. Arch.Insect Biochem Physiol,1988. 8(3):165~172
    [9] Rosenthal G A,Lamber J.Hoffmann DL-canavanine incorporation into vitellogenin and micromolecular conformation[J]. Biolchem .1989.264 (23):3693~3696
    [10] Dahlman D L.Effect of L-canavanine on the consumption and utilization of artificial diet by the tobacco hornworm.M.Sexta. [J].Entomol exp and appl 1977,22:123~131
    [11]郝赤.L-刀豆氨酸与克百威对大菜粉蝶幼虫毒力对比试验[J].昆虫知识,1998, 35(2):68~70.
    [12]郝赤.L-刀豆氨酸及其与昆虫的相互作用[J].山西农业大学学报,1995,15(4):394~398.
    [13] Kitagawa M, Yamada H. An amino- compound in the jack bean and a corresponding new ferment [J] .Biochem [J]. Tokyo.1929, 11: 265~271.
    [14] Kitagawa M, Yamada H. Studies on diamino acid [M].Tokyo: Canavanine Biochem J, 1932, 16: 339~349.
    [15] Gulland J M, Morris C J O.Canavanine [J].Chem.Soc.1935,763~766
    [16] Kitagawa M. Studies on a diamino acid Canavanine V. the synthesis of canaline[J]. Biochem (Tokyo), 1936,25:23~41
    [17] Frankal M, KnoblerY and Zvilichorsky G. Synthesis of DL- canavanine [J].Chem Soc, 1963, 3127~3130.
    [18] Greenstrain J F,Winitz M.Chemistry of the amino acids[J].John wilsy and sons,New York.1961,3:2622~2629
    [19] Damadara M, Narayanan K G. The preparation of L- canavanine from Canavalia obtusfolia [J].Biochem,1939, 33: 1740~1741
    [20] Hunt G E,Thompson J F. L- canavanine sulfate from canavalia ensiformis (Jackbean) [J]. Biochemical Pevparations, 1971,13: 41~45
    [21] Rosenthal G A. Preparation and colorimetric analysis of L- canavanine [J]. Anal Biochem,1977, 77:149~151.
    [22] Ozinskas A J,Rosenthal G A. Synthesis of L- canaline and functional 2-aminobutyric acid derivatives [J]. Organic Chemistry,1986, 51(26):5047~5052.
    [23] Ozinskas A J,Rosenthal G A .L-canavanine synthesis by zinc-mediated guannidination of L-canaline with cyanamide [J]. Bioorganic Chemistry.1986,14:157~162
    [24] Rosenthal G A, Dahlman D L, Crooks P A, etal. Insecticidal properties of some derivativees of L-canavanine [J].Agric Food Chem, 1995,43:2728~2734
    [25] Ozinskas A J and Rosenthal G A. L- Canavanine synthesis by zinc-mediated guannidination of L- canaline with cyanamide [J]. Bio organic Chemistry,1986, 14:157~162.
    [26] Tschiersch B. Non-competative inhibition of enzymatic reactions by canavanine [J]. Tetrabedron letters, 1966,28:3237~3241
    [27] Vanetten C H, Kwolek W F. Amino acid composition of twenty seven selective seed meals[J]. Agric Food. Chem, 1961,9:79~82
    [28]Rosenthal G A.The interrelationship of canavanine and urease in seed of the lotoideae [J]. exo.Bot, 1974,25:605~614
    [29] In Doo Hwang, Sang-Gu Kim,Young Myung Kwon. Canavanine metabolism in tissue cultures of Canavalia lineate [J].Plant Cell Tissue and Organ Culture. 1996,45: 17~23
    [30] Steohen E, Williams, Gordon E Hunt.Canavanine distribution in jack bean fruit during fruit growth[J]. Planta (Berl.) 1967,77, 192~202
    [31] Kwon Y M,Chung H C,Koh S C, etal.On utilization of canavanine and activity of canavanase during germination and growth of canavalia lineata [J].Korean .Bot . 1986,29:85~94
    [32] Gindling H L, Rosenthal G A, Dahlman D L.Purification of L-arginine kinase from the tobacco budworm helothis virescens [noctuidae] and its function in L-canavaine detoxification [J]. Insect Biochem Molec Biol, 1995, 25(8): 933~938.
    [33] Rosenthal G A. The biochemical basis for the potent antimetabolic effects of L-canavanine [J]. Phytochemistry,1991, 30: 1055~1058.
    [34] Rosenthal G A and Harper L. L-Homoarginine studies provide insight into theantimetabolic properties of L-canavanine[J]. Insect Biochem Molec.Biol, 1996,26(4): 389~394.
    [35] Bence A K,Crooks P A. The mechanism of L-canavanine cytotoxicity arginyl tRNA synthesase as a novel target for anticancer drug discovery [J]. Enzyme Inhibition and Medicinal Chemistry,2003, 18(5):383~394.
    [36] Bleiler J. Rosenthal G A and Janzen D H.Biochemical ecology of canavanine-eating seed predators[J] . Ecology, 1988,59, 427~433.
    [37] Rosenthal G A. Biochemical adaptation of the bruchid beetle, Caryedes brasiliensis to L-canavanine , a higher plant allelochemical[J]. Chem. Ecol. 1983,9: 803-815.
    [38] Rosenthal G A. Biochemical insight into the protective efficacy of L-canavanine, a toxic higher plant metabolite[J]. Bioscience 1988,38:104-109.
    [39] Robert J L, Hayashi J A. Exacerbation of SLE- associated with alfalfa ingestion[J].New Eng, Med, 1983.308~361.
    [40] Malinaw M, Bardana E J, Pirofsky B, etal.Systemic Lupus Erythematosus-Like Syndrome in Monkeys Fed Alfafa Sprouts: Role of a Nonprotein Amino Acid[J].Science, 1982, 216: 415~417.
    [41] Berge M A and Rosenthal G A. Metabolism of L-canavanine and L-canaline in the tobacco budworm , Heliothis virescens (Noctuidae)[J].Chem.Res.Toxicol.1991, 4:237~240
    [42] Thomas D A, Rosenthal G A, Gold D V and Dickey K. Growth inhibition of a rat colon tumor by L-canavanine[J]. Cancer Res. 1986,46:2898~2903.
    [43] Dahlman D L and Berge M A.Possible mechanism for adverse effects of L-canavanine on insect.In M.B.Green and P.A.Hedia(ed),Natural Resistana of Plants to Pest (Role of Auelochemicals)American chemical Society,1986,118-129
    [44] Dahlman D L,etal. L - canavanine effects on growth and development of four species of Muscidae[J]. Econ. Ent. 1979,72: 678~679
    [45] Dahlman D L and Rosenthal G A. Further studies of the effects of L-canavanine on the tobacco hornworm. M anduca sexta (L. ) (Sphingidae) [J]. Insect Physio1976. l(22): 265~271
    [46] Koul O. Foliage spray tests with L-canavanine for coutrol of Spodoptera litura. Phytopasitica[J]. 1985,13 (3/4) :167~172
    [47]郝赤,等.L-刀豆氨酸对菜蛾P lu tella xy lostella (L. )幼虫生长发育及取食的影响[J].山西农业大学学报,1997,17(1):46~50
    [48]程振衡,朱志强.刀豆氨酸对亚洲玉米螟生长发育的影响[J].昆虫学报,1996,29(2):143~147
    [49]郝赤, L-刀豆氨酸对菜蛾氯氰菊酯敏感品系与抗性品系幼虫的毒力测定[J].山西农业大学学报,1996,16(3):239~242.
    [50] Odilyama V B. Effect of L-canavanine On Pieris brassicae. MscThesis[J].University of Newcastle uponTyne,1987
    [51]叶水英,王小琴.植物次生物质与植物保护[J].生物学教学,2006,1(9):67~68
    [52] Volcani B E and Snell E E .The effects of canavanine , arginine ,and nelated compounds on the growth of bacteria [J] .Bio.chem,1948,174:893-903
    [53] Cummings D J,Chanpman V A, Delong S S,etal. Znduced Structure defects in T-even Dacteriophage [J] .virology ,1967,1:193-204
    [54] Fowden L D and Tristran H.Toxic amino acids as antimetabocites[J]. Adv, Entomol, 1967.29:89-163
    [55] Rosenthal G A. The biological effects and mode of action of L-canavanine, a structural analog of L-arginine[J]. Quart. Rev. Biol. 1977 ,52:155-178.
    [56]王院本,余国行.胰腺癌的化学治疗[J].中国新药与临床杂志,2004,23:9~11.
    [57]朱华栋,周玉淑,于学忠,等.L-刀豆氨酸在创伤性休克中的应用研究[J].中华创伤杂志,2000,16(10):62
    [58] Fearon R and Bell E A.canavanine:Direction and occurrence in Colutea arborescems [J].Biochem.1955,59:221~224
    [59] Rosenthal G A and Dahlman D L.A cautionary note on pentacyanoammonioferrate use for determining L-canavanine occurrence in biological materials [J]. Experientia 1982.38:1034~1035
    [60]吴莹莹,佟建明,张琪,等.苜蓿种子中刀豆氨酸含量的测定[J].中国饲料, 2008, 17:35-37
    [61] Natelson S, Bratton G R.Canavanine assay of some alfalfa varieties(Medica) practical procedure for canavanine preparation[J].Microchem.J, 1984, 29: 26~43.
    [62] Thomas A D,Mello J P F.HPLC Analysis of Canavanine and Canaline in Canavalia ensiformis, and in Excreta and Serum of Chicks[J].J Sci.Food.Agric,1990, 50: 63~77.
    [63] Van Balgooy J N A.Separation of canavanine and canaline by high performance liquid chromatography[J].Cellular and Molecular Life Sciences, 1987, 43( 9) : 1034~1037.
    [64] Gerald D A, Rosenthal G A. L-Canavanine metabolism in Jack Bean, Canavalia ensiformis (L.) [J].Plant Physiol. 1982, 69: 1066-1069
    [65]常钰,刘涤,胡之璧.植物细胞和器官大规模培养研究的进展[J].生物技术通讯,2001, 1:31– 361
    [66]王丹,王振月,王宗权,等.药用植物次生代谢产物生产途径的研究概述[J].中医药信息,2008, 25(1) :29~32
    [67]Yu G H and Kwon Y M. Alteration of arginase activity in leaf protoplasts of Canavalia lineata. [J]. Korean Biochem. 1992,25:196-202
    [68] Park K S and Kwon Y M.The analysis of canavanine content in leaves, roots, and xylem exudate of Canavalia lineata[J]. Korean. Bot. 1990,33:119-126
    [69]Rosenthal GA and Rhodes D. L-Canavanine transport and utilization in developing jack bean, Canavalia ensgformis (L.) DC.Plant Physiol. 1984.76:541-544
    [70] Kwon Y M, Chung H C, Koh S C,etal. On utilization of canavanine and activity of canavanase during germination and growth of Canavalia lineata[J]. Korean Bot. 1986, 29:85-94
    [71] Rosenthal G A and Berge M A .Catabolism of L-canavanine and L-canaline in the jack bean, Canavalia ensiformis (L.) DC.(Leguminosae)[J].Agric.Food .Chem. 1989, 37:591-595
    [72] Park KS and Kwon YM .The analysis of canavanine content in leaves, roots, and xylem exudate of Canavalia lineata[J].Korean. Bot. 1990.33:119-126
    [73] Feung C S, Hamilton R H, Mum ma R O.Metabolism of 2,4-dichlorophenoxyacetic acid. VII. Comparison of metabolites from five species of plant callus cultures[J]. Agric. Food Chem. 1975 .23: 373-376
    [74] Gustine D L, Sherwood R T and Vance C P. Regulation of phytoalexin synthesis in jack bean callus cultures: Stimulation of phenylalanine ammonia-lyase and O-methyltransferase [J]. Plant Physiol. 1978.61:226-230
    [75] Vazquez-Flota E Quiroz J, Scorer K N and Loyola-Vargas V M.Effect of the auxin cytokinin ratio on the enzymes of nitrogen metabolism in Canavalia ensiformis L. tissue cultures[J]. Plant Physiol. 1989.135:57-62
    [76] Hwang I D, Koh S C, Kwon Y M. Induction and free amino acid analysis of callus from Canavalia lineata leaf [J]. Korean. Bot. 1991. 34:223-228
    [77] Ramirez M, Alpizar L, Quiroz J, etal. Formation of L -canavanine in in vitro cultures of Canavalia ensgformis (L.)DC[J]. Plant Cell Tiss.Org.Cult. 1992.30:231-235
    [78] ZHANG , FUMSAKI S. Production of anthocyanins by plant cell cultures [J].Biotechnol Bioprocess. Eng, 1999,4 (4):231-252.
    [79]郑光植.药用植物组织培养在工业生产上应用研究的进展[J].植物生理学通讯,1980,2:1~9.
    [80]吴永宏,德颐,王丽蓉.植物细胞的同步培养技术[J].植物生理学通讯, 1993,29(2):108~1l0.
    [81]盖博格O L,韦特L R.植物细胞培养方法[M].北京:科学出版社,1980
    [82]张自立,愈新大.植物细胞和体细胞遗传技术与原理[M].北京:高等教育出版社,1990.158~167.
    [83]巴尔茨W,赖因哈特E,岑克M H.植物组织培养及其在生物技术上的应用[M].北京:科学出版社,1983.138~143.
    [84]周平,郑光植.红花细胞克隆的平板培养[J].植物学报.1989,31:505~511.
    [85]张志良.植物生理学实验指导[M] .北京:高等教育出版社,1990. 58~59.
    [86]李杰.光度法对磺基水杨酸铁配合物的组成及稳定常数的实验研究[J].赤峰学院学报(自然科学版),2007,23(5):39-41.
    [87] Barrety A J,etal.Apple fruit pectic substances[J].Biochem J,1965.94:617~627.
    [88]步营,陈显化,王子茜,等.正交法优化植物生长调节剂在黄芪愈伤组织生长中的应用[J].时珍国医国药,2008,19(4): 872-874
    [89]刘华,等.TTC法测定红豆杉细胞活力[J].植物生理学通讯, 2001,37(6):537~539
    [90]中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,1999. 312~314.
    [91]邹琦.植物生理学实验指导[M ].北京:中国农业出版社,2000.
    [92]李省云,杨毅萍,王朝风.苏氨酸的荷移分光光度法测定[J].2006,5(1):89-91.
    [93]谢亚军,胡海英,李鹏.老瓜头悬浮细胞培养及其生长特性的研究[J].江苏农业科学, 2008,6:79~81
    [94]刘娥娥.盐胁迫下LaCl3和CPZ对水稻抗氧化酶类活性的影响[J ].作物学报, 2002,28 (1) :42 ~ 46.
    [95]黄卓烈.吲哚丁酸处理桉树插条后过氧化物酶活性和同工酶变化与插条生根的关系[J].云南植物研究,2002 ,24:229~234.
    [96]沈海龙.植物组织培养[M].北京:中国林业出版社,2005
    [97] Hansen C E,Fredefick M J, Roland A. Hormonal regulation of zeatin riboside accumulation by cultured tobacco cells[J].Planta,1987,172:520~525.
    [98] Little C H A,Savidge R A.The role of growth plant regulators in foresl tree cambial growth [J]. Plant Growth.Rogul,1987,6:137~169
    [99] Zhang R, Zhang X,Wang J,etal. The effect of auxin on cytokinin levels and metabolism in transgenic tobacco tissue expressing an ipt gene[J]. Planta, 1995, 196:84~94
    [100]袁朝兴,丁静.水分胁迫对棉花叶片中IAA含量和IAA氧化酶和过氧化物酶活性的影响[J].植物生理学报,1990,16(2):178~180
    [101]杨万年,张秀红,熊永华,等.2,4- D和激动素对烟草愈伤组织IAA氧化酶和细胞分裂素氧化酶活性的影响[J].植物生理学通讯,2003,39(6):589~591
    [102] Kevers C,Bisbis B,Penel C,etal.Changes in the levels of horm ones and related enzyme activities in the course of a neoplastic progression in sugarbeet cells in culture [J].A critical appraisa1.Curr Top Phytochem,1999,2:35-49.
    [103]沈慧慧,等.基于无外源激素下肉苁蓉细胞悬浮培养的研究[J].石河子大学学报(自然科学版), 2008,26(1):45~48.
    [104]肖关丽,杨清辉.植物组织培养过程中内源激素研究进展[J].云南农业大学学报,2001, 16(2):136~138.
    [105]魏明,杨超英,姜绍通,等.继代周期对霍山石斛类原球茎悬浮培养动力学的影响[J].中国农学通报,2008,24(9):43~47
    [106]黄卓烈,李明,谭绍满.等.吲哚丁酸对桉树插条多酚氧化酶的影响及其与生根的关系[J].广西植物,2003,23(1):77~82
    [107]方文娟,等.植物细胞悬浮培养影响因子研究[J].植物技术通报,2005(5):11-15
    [108]方强,等.黄芩愈伤组织诱导和细胞培养研究进展[J].天然产物研究与开发,2008,20(6):l87-192
    [109]郭勇,崔堂兵,谢秀祯.植物细胞培养技术与应用[M].北京:化学工业出版社,2004:24-25.
    [110]谢从华,柳俊.植物细胞工程[M].北京:高等教育出版社2004
    [111]李善文,张东向.正交设计法优化三岛柴胡愈伤组织培养基[J].生物技术, 2010,20(1):51~54
    [112]罗凯,胡廷章,罗建平.植物细胞培养生产次生代谢产物的研究进展[J],时珍国医国药,2007, 18(1):2338~2340
    [113]侯学文,郭勇.一个快速测定悬浮培养植物细胞生物量的方法的建立[J].云南植物研究,2001, 23(4):504~508
    [114] Galston A W,Davis J P. Hormonal regulation in higher plants[J].Science,1969,163 (5):1288~1297.
    [115] Ridge I,Osbome D I. Regulation of peroxidase activity by ethylene in Pisum sativum: regiments for p rotein and RNA synthesis [J]. J Exp Bot, 1970, 21: 720~734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700