用户名: 密码: 验证码:
东平湖沉积物细菌多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用T-RFLP(末端限制性片段长度多态性)技术和构建细菌16S rDNA克隆文库等分子生物学方法调查了来自于东平湖中6个采样点的枯水期和丰水期样品的微生物群落结构,并结合相关环境数据,通过PCA(主成分分析)、RDA(冗余分析)、CCA(典型对应分析)等统计学方法分析了细菌群落结构及其与环境因子之间的关系。多样性分析结果表明,东平湖沉积物细菌群落由16个细菌类群组成,包括:变形杆菌门(Proteobacteria,包括α、β、δ、ε和γ亚门)、酸杆菌门(Acidobacteria)、浮霉菌门(Planctomycetes)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)、疣微菌门(Verrucomicrobia)、硝化螺旋菌门(Nitrospira)、绿弯菌门(Chloroflexi)、芽单胞菌门(Gemmatimonadetes)、绿菌门(Chlorobi)、蓝藻门(Cyanobacteria)、脱铁杆菌门(Deferribacteres)、放线菌门(Actinobacteria)、螺旋体门(Spirochaetes)以及待划分类群OP8和OP11。来自于不同采样点和不同时期的样品间的细菌群落多样性具有明显差异。变形杆菌类群中的β-、δ-和γ-变形杆菌在11个文库(共12个)中占据优势地位。基于16S rDNA克隆文库的多样性指数分析结果表明,来自丰水期的1号点和4号点的样品具有最高的细菌多样性,而2号点样品的细菌多样性则最低。CCA和RDA分析结果都表明,沉积物中的总磷含量是与东平湖沉积物细菌群落分布相关性最强的环境因子。而对16S rDNA文库数据进行的RDA结果显示,沉积物中的浮霉菌类群与沉积物总磷含量具有最大的正相关性,适合于高磷含量的生长环境。此外,β-变形杆菌、δ-变形杆菌、ε-变形杆菌、拟杆菌以及芽单胞菌类群细菌均与总磷含量呈正相关。而酸杆菌、γ-变形杆菌、变形杆菌、厚壁菌、疣微菌、硝化螺旋菌、绿弯菌门、蓝藻门和脱铁杆菌类群则都与沉积物总磷含量呈负相关。对T-RFLP数据进行的典型对应分析结果显示,558、64.5、164、509和543 bp T-RF的分布受环境因子的影响明显,而其他14种主要的T-RFs在不同样品间分布较为平均,受环境因子的差异影响不大。
     实验结果表明,人为活动对东平湖沉积物环境产生极大影响,并进一步影响了其沉积物的细菌群落结构。
Microbial community diversity and composition at six stations of Lake Dongping in two seasons were investigated using molecular approaches (Terminal restriction fragment length polymorphisam (T-RFLP) and 16S rDNA clone libraries). Statistical methods, such as PCA (Redundance Analysis), CCA (Canonical Correspondence Analysis), and RDA (Redundance Analysis), was used to investigate the relationship between bacterial communities of Lake Dongping sediment and environmental factors.
     Members of sediment bacterial communities in Lake Dongping included 16 phyla (or subphylum): Proteobacteria (includingα-Proteobacteria,β-Proteobacteria,δ-Proteobacteria,ε-Proteobacteria,γ-Proteobacteria), Acidobacteria, Planctomycetes, Bacteroidetes, Firmicutes, Verrucomicrobia, Nitrospira, Chloroflexi, Gemmatimonadetes, Chlorobi, Cyanobacteria, Deferribacteres, Actinobacteria, OP8, Spirochaetes and OP11. Bacterial diversity and composition displayed noticeable spatial and temporal variations at 6 stations. Beta-, delta-, and gamma-proteobacterial sequences were dominated in 11 of 12 clone libraries derived from sediments. The greatest bacterial diversity was present in samples collected in station 1 and station 4 in July and the least diversity in those collected in station 2 in October. The results of CCA and RDA indicated that TP (Total phosphorus) was the most important environmental factor to influence the structure of bacterial communities in sediments of Lake Dongping. Total phosphorus concentration significantly correlated to the distribution of bacterial communities in sediments of Lake Dongping. RDA was used to analysis the relationships between bacterial species and environmental factor. Planctomycetes showed the highest positive correlation with concentration of TP.β-Proteobacteria, δ-Proteobacteria,ε-Proteobacteria, Bacteroidetes, and Gemmatimonadetes were all positively correlated with TP. Additionally, Acidobacteria,γ-Proteobacteria,α-Proteobacteria, Firmicutes, Verrucomicrobia, Nitrospira, Chloroflexi, Chlorobi, Cyanobacteria, and Deferribacteres were all negatively correlated with TP. The results of CCA based on T-RFLP suggested that the abundance of 558, 64.5, 164, and 509 bp T-RFs were significant affected by environmental factors, while other 14 T-RFs were not significant correlated with environmental factors.
     Our results suggest that different environmental stressors contribute to spatial and temporal variations of physiochemical features and bacterial communities in sediments of Lake Dongping.
引文
鲍士旦, 2005.土壤农化分析.中国农业出版社,北京.
    郝春博,张洪勋,白志辉,张保国,张徐祥, 2006.酸性矿山废水区域沉积物中嗜酸菌多样性研究.环境科学27, 2255-2260.
    姜东生,刘存功,刘桂珍,王伟,刘俊芳, 2002.东平湖及周围水环境分析. 海洋湖沼通报12, 12-15.
    龙思思,谢数涛,段舜山,韩博平, 2002.光合细菌及其应用现状.生态科学21, 91-94.
    罗佳捷,李丽立,张彬, 2009. T-RFLP技术及其在微生物群落结构研究中的应用.中国畜牧兽医36, 75-78.
    毛伟兵,庞清江,李冬梅, 2003.东平湖水污染关键因子的控制研究.山东农业大学学报(自然科学版) 34, 29-32.
    庞清江, 2000.东平湖水质现状的调查分析及改善对策.水资源保护15, 15-21.
    庞清江,李白英, 2002.东平湖水体富营养化预测.山东农业大学学报(自然科学版) 33, 459-463.
    宋福强, 2008.微生物生态学.化学工业出版社,北京.
    汪福顺,刘丛强,梁小兵, 2003.湖泊沉积物-水界面铁的微生物地球化学循环及其与微量金属元素的关系.地质地球化学31, 63-69.
    余素林,吴晓磊,钱易, 2006.环境微生物群落分析的T-RFLP技术及其优化措施.应用与环境生物学报12, 861-868.
    Aas, J.A., Paster, B.J., Stokes, L.N., Olsen, I., Dewhirst, F.E., 2005. Defining the normal bacterial flora of the oral cavity. Journal of clinical microbiology 43, 5721-5732.
    Acinas, S.G., Rodr?g?uez-Valera, F., Pedrós-Alió, C., 1997. Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA. FEMS Microbiol Ecol 24, 27-40.
    Akkerman, A.D.L.S., Mirza, M.S., H., H.J.M., 1994. Molecular ecology of microbes: A review of principles ,pitfalls and true progress. FEMSMicrobiol Rev 15, 185-194.
    Aller, R.C., Hall, P.O.J., Rude, P.D., Aller, J.Y., 1998. Biogeochemical heterogeneity and suboxic diagenesis in hemipelagic sediment s of the Panama Basin. Deep Sea Res 45, 133-165.
    Amann, R.I., Ludwig, W., Schleifer, K.H., 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
    Amann, R.I., Stromley, J., Devereux, R., Key, R., Stahl, D.A., 1992. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol 58, 614-623.
    Bell, P.E., Mills, A.L., Herman, J.S., 1987. Biogeochemical Conditions Favoring Magnetite Formation during Anaerobic Iron Reduction. Appl Environ Microbiol 53, 2610-2616.
    Blackith, R.E., Rayment, R.A., 1971. Multivariate Porphometrics. Academic Press, London.
    Bradfield, G.E., Kenkel, N.C., 1987. Nonlinear ordination using flexible shortest path adjustment of ecological distances. Ecology 68, 750-753.
    Bray, J.R., Curtis, J.T., 1957. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs 27, 325-349.
    Bruce, K.D., 1997. Analysis of mer Gene Subclasses within Bacterial Communities in Soils and Sediments Resolved by Fluorescent-PCR- Restriction Fragment Length Polymorphism Profiling. Appl Environ Microbiol 63, 4914-4919.
    Chan, O.C., Claus, P., Casper, P., Ulrich, A., Lueders, T., Conrad, R., 2005. Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment. Environ Microbiol 7, 1139-1149.
    Coolen, M.J., Overmann, J., 1998. Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Appl Environ Microbiol 64,4513-4521.
    D' Angelo, E.M., Reddy, K.R., 1994. Diagenesis of organic matter in a wetland receiving hypereutrophic lake water: I. Distribution of dissolved nutrients in the soil and water column. J Environ Qual 23, 928-936.
    Devereux, R., Mundfrom, G.W., 1994. A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Appl Environ Microbiol 60, 3437-3439.
    Dhillon, A., Teske, A., Dillon, J., Stahl, D.A., Sogin, M.L., 2003. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69, 2765-2772.
    Dong, H., Zhang, G., Jiang, H., Yu, B., Chapman, L.R., Lucas, C.R., Fields, M.W., 2006. Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology. Microb Ecol 51, 65-82.
    Doricha, R.A., Nelsona, D.W., Sommers, L.E., 1984. Availability of phosphorus to algae from eroded soil fractions. Agriculture, Ecosystems & Environment 11, 253-264.
    Dunbar, J., Takala, S., Barns, S.M., Davis, J.A., Kuske, C.R., 1999. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65, 1662-1669.
    Dykhuizen, D.E., 1998. Santa Rosalia revisited: why are there so many species of bacteria? Antonie van Leeuwenhoek 73, 25-33. Eckerrot, A., Pettersson, K., 1993. Pore water phosphorus and iron concentrations in a shallow, eutrophic lake-indications of bacterial regulation. Hydrobiologia 253, 165-177.
    Eichner, C.A., Erb, R.W., Timmis, K.N., Wagner-Dobler, I., 1999. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol 65, 102-109.
    Eiler, A., Olsson, J.A., Bertilsson, S., 2006. Diurnal variations in the auto- andheterotrophic activity of cyanobacterial phycospheres (Gloeotrichia echinulata) and the identity of attached bacteria. Freshwater Biology 51, 298-311.
    Etchebehere, C., Errazquin, M.I., Dabert, P., Muxi, L., 2002. Community analysis of a denitrifying reactor treating landfill leachate. FEMS Microbiol Ecol 40, 97-106.
    Felske, A., Wolterink, A., Van Lis, R., De Vos, W.M., Akkermans, A.D., 2000. Response of a soil bacterial community to grassland succession as monitored by 16S rRNA levels of the predominant ribotypes. Appl Environ Microbiol 66, 3998-4003.
    Fernandez, A., Huang, S., Seston, S., Xing, J., Hickey, R., Criddle, C., Tiedje, J., 1999. How stable is stable? Function versus community composition. Appl Environ Microbiol 65, 3697-3704.
    Friedrich, U., Prior, K., Altendorf, K., Lipski, A., 2002. High bacterial diversity of a waste gas-degrading community in an industrial biofilter as shown by a 16S rDNA clone library. Environ Microbiol 4, 721-734.
    Garrity, G.M., Bell, J.A., Lilburn, T.G., 2004. Taxonomic outline of the procaryotes. . Bergey's manual of systematic bacteriology. Springer Berlin Heidelberg, New York.
    Gauch, H.G., 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, London.
    Giovannoni, S.J., Britschgi, T.B., Moyer, C.L., Field, K.G., 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60-63.
    Gittins, R., 1985. Canonical Analysis: A Review with Application in Ecology. Springer-Verlag, Berlin.
    Good, I.L., 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40, 237-264.
    Greig-Smith, P., 1983. Quantitative Plant Ecology. Blackwell Scientific Publications, London.
    Hansen, M.C., Tolker-Nielsen, T., Givskov, M., Molin, S., 1998. Biased 16SrDNA PCR amplification caused by interference from DNA flanking the template region. FEMS Microbiol Ecol 26, 141-149.
    Herser, W.J., 1987. Joint ordinaition of species and sites: the unfolding technique. In: Legendre, P., Legendre, L. (Eds.), Developments in Numerical Ecology. Springer-Verlag, Berlin, pp. 189-221.
    Hill, M.O., Gauch, H.G., 1980. Detrended correspondence analysis: An improved ordination technique. Vegetatio 42, 47-58.
    Hojberg, O., Canibe, N., Poulsen, H.D., Hedemann, M.S., Jensen, B.B., 2005. Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl Environ Microbiol 71, 2267-2277.
    Hongoh, Y., Yuzawa, H., Ohkuma, M., Kudo, T., 2003. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol Lett 221, 299-304.
    Hugenholtz, P., Goebel, B.M., Pace, N.R., 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180, 4765-4774.
    Jaccard, P., 1901.étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Sociétévaudoise des Sciences Naturelles 37, 547-579.
    Jin, X., Wang, S., Pang, Y., Zhao, H., Zhou, X., 2005. The adsorption of phosphate on different trophic lake sediments. Colloids and Surfaces A: Physicochemical and Engineering Aspects 254, 241-248.
    Jongman, R.H.G., ter Braak, C.J.F., van Tongeren, O.F.R., 1995. Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, UK.
    Kemp, P.F., Aller, J.Y., 2004a. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47, 161-177.
    Kemp, P.F., Aller, J.Y., 2004b. Estimating prokaryotic diversity: when are 16SrDNA libraries large enough? Limnology and Oceanography: Methods 2, 114-125.
    Kent, A.D., Smith, D.J., Benson, B.J., Triplett, E.W., 2003. Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl Environ Microbiol 69, 6768-6776.
    Kessel, S., Whittaker, R.H., 1976. Comparisons of three ordination techniques. Vegetatio 32, 21-29.
    Kim, B.S., Oh, H.M., Kang, H., Park, S.S., Chun, J., 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. Journal of microbiology and biotechnology 14, 205-211.
    Kirchman, D.L., 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39, 91-100.
    Kostka, J.E., Nealson, K.H., 1995. Dissolution and reduction of magnetite by bacteria. Environ Sci Technol 29, 2535-2540.
    Kreader, C.A., 1996. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62, 1102-1106.
    Lamar, R.T., Dietrich, D.M., 1990. In Situ Depletion of Pentachlorophenol from Contaminated Soil by Phanerochaete spp. Appl Environ Microbiol 56, 3093-3100.
    Lepere, C., Boucher, D., Jardillier, L., Domaizon, I., Debroas, D., 2006. Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin). Appl Environ Microbiol 72, 2971-2981.
    Ley, R.E., Harris, J.K., Wilcox, J., Spear, J.R., Miller, S.R., Bebout, B.M., Maresca, J.A., Bryant, D.A., Sogin, M.L., Pace, N.R., 2006. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72, 3685-3695.
    Lindstrom, E.S., Forslund, M., Algesten, G., Bergstrom, A.K., 2006. Externalcontrol of bacterial community structure in lakes. Limnology andoceanography 51, 339-342.
    Liu, W.T., Marsh, T.L., Cheng, H., Forney, L.J., 1997. Characterization ofmicrobial diversity by determining terminal restriction fragment lengthpolymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol63, 4516-4522.
    Llobet-Brossa, E., Rosselló-Mora, R., Amann, R., 1998. MicrobialCommunity Composition of Wadden Sea Sediments as Revealed byFluorescence In Situ Hybridization. Appl Environ Microbiol 64,2691-2696.
    Lloyd, T.C., 1964. Effect of alveolar hypoxia on pulmonary vascularresistance. . J Appl Physiol 19, 1086-1094.
    Lu, Y., Rosencrantz, D., Liesack, W., Conrad, R., 2006. Structure and activityof bacterial community inhabiting rice roots and the rhizosphere.Environ Microbiol 8, 1351-1360.
    Lukow, T., Dunfield, P.F., Liesack, W., 2000. Use of the T-RFLP technique toassess spatial and temporal changes in the bacterial community structurewithin an agricultural soil planted with transgenic and non-transgenicpotato plants. FEMS Microbiol Ecol 32, 241-247.
    Ma, Y., Wang, L., Qian, L., 2008. Community structure ofβ-Proteobacterialammonia-oxidizing bacteria in prawn farm sediment. Progress in NaturalScience 18, 679-684.
    Madrid, V.M., Taylor, G.T., Scranton, M.I., Chistoserdov, A.Y., 2001.Phylogenetic diversity of bacterial and archaeal communities in theanoxic zone of the Cariaco Basin. Appl Environ Microbiol 67,1663-1674.
    Maidak, B.L., Cole, J.R., Lilburn, T.G., Parker, C.T., Saxman, P.R., Stredwick,J.M., Garrity, G.M., Li, B., Olsen, G.J., Pramanik, S., Schmidt, T.M.,Tiedje, J.M., 2000. The RDP (Ribosomal Database Project) continues.Nucleic Acids Res 28, 173-174.
    Mallet, C., Basset, M., Fonty, G., Desvilettes, C., Bourdier, G., Debroas, D., 2004. Microbial population dynamics in the sediments of a eutrophic lake (Aydat, France) and characterization of some heterotrophic bacterial isolates. Microb Ecol 48, 66-77.
    Maruyama, T., Kato, K., Yokoyama, A., Tanaka, T., Hiraishi, A., Park, H.D., 2003. Dynamics of microcystin-degrading bacteria in mucilage of Microcystis. Microb Ecol 46, 279-288.
    Meyers, P.A., Ishiwatari, R., 1993. Lacustrine organic geochemistry. An overview of indicators of organic matter sources and diagenesis in lake sediments. Organic geochemistry 20, 867-900.
    Miskin, I.P., Farrimond, P., Head, I.M., 1999. Identification of novel bacterial lineages as active members of microbial populations in a freshwater sediment using a rapid RNA extraction procedure and RT-PCR. Microbiology 145, 1977-1987.
    Mohanty, S.R., Bodelier, P.L., Floris, V., Conrad, R., 2006. Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72, 1346-1354.
    Nelson, D.M., Ohene-Adjei, S., Hu, F.S., Cann, I.K., Mackie, R.I., 2007. Bacterial diversity and distribution in the holocene sediments of a northern temperate lake. Microb Ecol 54, 252-263.
    Newman, S., Reddy, K.R., 1993. Alkaline phosphatase activity in the sediment-water column at a hypereutrophic lake. J Environ Qual 22, 832-838.
    Olsen, G.J., Lane, D.J., Giovannoni, S.J., Pace, N.R., Stahl, D.A., 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 40, 337-365.
    Orloci, L., 1966. Geometric Models in Ecology: I. The Theory and Application of Some Ordination Methods. The Journal of Ecology 54, 193-215.
    Orphan, V.J., Hinrichs, K.U., Ussler, W., 3rd, Paull, C.K., Taylor, L.T., Sylva, S.P., Hayes, J.M., Delong, E.F., 2001. Comparative analysis ofmethane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67, 1922-1934.
    Orphan, V.J., Taylor, L.T., Hafenbradl, D., Delong, E.F., 2000. Culture-dependent and culture-independent characterization of microbial assemblages associated with high- temperature petroleum reservoirs. Appl Environ Microbiol 66, 700-711.
    Ott, S.J., Musfeldt, M., Wenderoth, D.F., Hampe, J., Brant, O., Folsch, U.R., Timmis, K.N., Schreiber, S., 2004. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53, 685-693.
    Ovreas, L., Torsvik, V.V., 1998. Microbial Diversity and Community Structure in Two Different Agricultural Soil Communities. Microb Ecol 36, 303-315.
    Pace, N.R., Stahl, D.A., Lane, D.J., Olsen, G.J., 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Advances in microbial ecology 9, 1-55.
    Parkinson, D., Coleman, D.C., 1991. Microbial communities, activity and biomass. Agriculture, Ecosystems & Environment 34, 3-33.
    Pascal, E.S., Peter, G.S., Daniel, B.O., 2005. Use of 16S rRNA Gene Terminal Restriction Fragment Analysis To Assess the Impact of Solids Retention Time on the Bacterial Diversity of Activated Sludge. Appl Environ Microbiol 71, 5814-5822.
    Percent, S.F., Frischer, M.E., Vescio, P.A., Duffy, E.B., Milano, V., McLellan, M., Stevens, B.M., Boylen, C.W., Nierzwicki-Bauer, S.A., 2008. Bacterial community structure of acid-impacted lakes: what controls diversity? Appl Environ Microbiol 74, 1856-1868.
    Pielou, E.C., 1969. An introduction to mathematical ecology. Wiley- Interscience, New York.
    Pielou, E.C., 1975. Ecological Diversity. John Wiley & Sons Inc, New York.
    Pielou, E.C., 1985.数学生态学(第二版).科学出版社,北京.
    Qiu, X., Wu, L., Huang, H., McDonel, P.E., Palumbo, A.V., Tiedje, J.M., Zhou, J., 2001. Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol 67, 880-887.
    Rao, C.R., 1964. The Use and Interpretation of Principal Component Analysis in Applied Research. Sankhyā: The Indian Journal of Statistics, Series A 26, 329-358.
    Renkonen, O., 1938. Statisch-okologische Untersuchungen uber die terrestiche Kaferwelt der finnishen Bruchmoore. Ann. Zool. Soc. Bot. Fenn. Vanamo. 6, 1-231.
    Reysenbach, A.L., Giver, L.J., Wickham, G.S., Pace, N.R., 1992. Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58, 3417-3418.
    Rochellea, P.A., Craggb, B.A., Frya, J.C., Parkesb, R.J., Weightman, A.J., 1994. Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol Ecol 15, 215-225.
    Rolleke, S., Gurtner, C., Drewello, U., Drewello, R., Lubitz, W., Weissmann, R., 1999. Analysis of bacterial communities on historical glass by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. J Microbiol Methods 36, 107-114.
    Rondon, M.R., August, P.R., Bettermann, A.D., Brady, S.F., Grossman, T.H., Liles, M.R., Loiacono, K.A., Lynch, B.A., MacNeil, I.A., Minor, C., Tiong, C.L., Gilman, M., Osburne, M.S., Clardy, J., Handelsman, J., Goodman, R.M., 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66, 2541-2547.
    Roose-Amsaleg, C.L., Garnier-Sillam, E., Harry, M., 2001. Extraction and purification of microbial DNA from soil and sediment samples. Applied Soil Ecology 18, 47-60.
    Rossello-Mora, R., Amann, R., 2001. The species concept for prokaryotes. FEMS Microbiol Rev 25, 39-67.
    Sambrook, J., Russell, D.W., 2002.分子克隆实验指南.科学出版社,北京.
    Scala, D.J., Kerkhof, L.J., 1998. Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol Lett 162, 61-68.
    Schlesinger, W.H., 1990. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348, 232-234.
    Sorensen, T., 1948. A method of establishing groups of equal amplitude in plant society based on similarity of species content. K. Danske Vidensk. Selsk 5, 1-34.
    Speksnijder, A.G., Kowalchuk, G.A., De Jong, S., Kline, E., Stephen, J.R., Laanbroek, H.J., 2001. Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences. Appl Environ Microbiol 67, 469-472.
    Spring, S., Schulze, R., Overmann, J., Schleifer, K., 2000. Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies. FEMS Microbiol Rev 24, 573-590.
    Stahl, D.A., Flesher, B., Mansfield, H.R., Montgomery, L., 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54, 1079-1084.
    Tamaki, H., Sekiguchi, Y., Hanada, S., Nakamura, K., Nomura, N., Matsumura, M., Kamagata, Y., 2005. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol 71, 2162-2169.
    Ter Braak, C.J.F., 1988. A theory of gradient analysis. In: Begon, M., Fitter, A.H., Ford, E.D., Macfadyen, A. (Eds.), Advances in Ecological Research 18. Academic Press Inc London, pp. 271-371.
    Ter Braak, C.J.F., Smilauer, P., 2002. CANOCO reference manual and canodraw for windows user's guide, software for canonical community ordination (version 4.5). Microcomputer Power Ithaca, NY, USA.
    Thompson, J.R., Marcelino, L.A., Polz, M.F., 2002. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by 'reconditioning PCR'. Nucleic Acids Res 30, 2083-2088.
    von Wintzingerode, F., Gobel, U.B., Stackebrandt, E., 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21, 213-229.
    Voytek, M.A., Ward, B.B., 1995. Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Appl Environ Microbiol 61, 1444-1450.
    Wang, G.C., Wang, Y., 1997. Frequency of formation of chimeric molecules as a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes. Appl Environ Microbiol 63, 4645-4650.
    Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73, 5261-5267.
    Wang, S.R., Jin, X.C., Zhao, H.C., Wu, F.C., 2006. Phosphorus fractions and its release in the sediments from the shallow lakes in the middle and lower reaches of Yangtze River area. in China Colloids and Surfaces A: Physicochemical and Engineering Aspects 273, 109-116.
    Wilson, J.B., 1991. Methods for fitting dominance/diversity curves. Journal of Vegetation Science 2, 35-46.
    Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffonchio, D., Heylen, K., De Vos, P., Verstraete, W., Boon, N., 2009. Initial community evenness favours functionality under selective stress. Nature 458, 623-626.
    Wu, X.L., Conrad, R., 2001. Functional and structural response of a cellulose-degrading methanogenic microbial community to multipleaeration stress at two different temperatures. Environmental Microbiology 3, 355-362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700