用户名: 密码: 验证码:
青稞B组醇溶蛋白基因与上游调控区的克隆及基因表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高等植物种子胚乳贮藏蛋白是种子发芽时的主要氮源,也是人类和动物食用植物蛋白的主要来源。大麦种子胚乳贮藏蛋白主要是醇溶蛋白(hordeins),占大麦胚乳总蛋白的50-60%。根据大麦醇溶蛋白的大小和组成特点,大麦醇溶蛋白被划分为三种类型:富硫蛋白亚类(B,γ-hordeins)、贫硫蛋白亚类(C-hordeins)以及高分子量蛋白亚类(D-hordeins)。B组和C组醇溶蛋白是大麦胚乳的两类主要贮藏蛋白,它们分别占大麦总醇溶蛋白成分的70-80%和10-12%。遗传分析表明,大麦B、C、D和γ-组醇溶蛋白分别是由位于大麦第五染色体1H(5)上的Hor2、Hor1、Hor3和Hor5位点编码。Hor2位点编码大量分子量相同但组成不同的B组醇溶蛋白(B-hordein)。B-hordein的种类、数量和分布是影响大麦酿造、食用及饲养品质的重要因素之一。为深入了解B-hordein基因家族的结构和染色体组织,探明Hor2位点基因表达的发育调控机制,最终达到改良禾谷类作物籽粒品质的目的,本研究以青藏高原青稞为材料,采用同源克隆法,分别克隆B-hordein基因和启动子,通过原核生物表达验证B-hordein基因功能,并利用实时定量PCR探索B-hordein基因表达时空关系,取得如下研究结果:
     1.以具有特殊B组醇溶蛋白亚基组成的9份青藏高原青稞为材料,根据GenBank中三个B-hordein基因序列(GenBank No.X03103,X53690和X53691)设计一对引物,通过PCR扩增,获得23个B-hordein基因克隆并对其进行了序列分析。核苷酸序列分析表明,所有克隆均包含完整的开放阅读框。有11个克隆都存在一个框内终止密码子,推测这11个克隆可能是假基因。推测的氨基酸序列分析表明,所有大麦B-hordein具有相似的蛋白质基本结构,均包括一个高度保守的信号肽、中间重复区以及C-端结构域。不同大麦种重复区内重复基元的数目有较大差异。青稞材料Z07-2和Z26的B-hordeins仅具有12个重复基元结构,更接近于野生大麦。这些重复基元数目的差异导致了重复区序列长度和结构的变异。这种现象极可能是由于醇溶谷蛋白基因在进化过程中染色体的不平衡交换或复制滑动所造成的。对所克隆基因和禾本科代表性醇溶谷蛋白基因进行聚类分析,结果表明所有来自栽培大麦的B-hordeins聚类成一个亚家族,来自野生大麦的B-hordeins以及普通小麦的LMW-GS聚类成另外一个亚家族,表明这两个亚家族的成员存在显著差异。此外,我们发现B-hordein基因推测的C-末端序列具有一些有规律的特征:即具有相同C-末端序列的B-hordein基因在系统发生树中聚类为同一个亚组(除BXQ053,BZ09-1,BZ26-5分别单独聚为一类外)。这个特征将有助于我们对所有B组醇溶蛋白基因家族成员进行分类,避免了在SDS-PAGE电泳图谱上仅依靠大小分类的局限性。
     2.根据上述克隆的青稞B-hordein基因的5’端序列设计三条基因特异的反向引物,以青稞Z09和Z26的基因组DNA为模板,采用SON-PCR和TAIL-PCR技术分离克隆出8个B-hordein基因的上游调控序列(命名为Z09P和Z26P)。序列分析表明,推测的TATA box位于-80 bp,CAAT-like box位于-140 bp处。此外,Z09P和Z26P中有六个序列在-300 bp处均存在一个由高度保守的EM基序和类GCN4基序构成的胚乳盒(Endosperm Box,EB),在约-560 bp处存在一个胚乳盒类似结构。而Z09P-2和Z26P-3不存在保守的胚乳盒或其类似结构,预示着这两个启动子所调控的基因表达可能受不同类型反式作用因子的调节,推测该启动子对基因的表达调控具有多样性。
     3.将B-hordein基因的开放阅读框定向克隆到表达载体pET-30a中,将其导入大肠杆菌表达菌株BL21中进行外源基因的诱导表达以验证所克隆基因的功能。结果表明仅含重组子pET-BZ07-2和pET-BZ26-5的BL21细菌有目的表达蛋白产生。在诱导3h时的蛋白表达量最高;3 mM IPTG诱导的蛋白表达量要高于1 mM IPTG诱导的表达量。这为分离纯化B-hordein蛋白以及进一步研究其对大麦籽粒品质的影响奠定基础。
     4.根据从青稞Z09和Z26中分离克隆的B-hordein基因序列设计一对基因特异的引物,同时,选择大麦α-微管蛋白基因(GenBank no.U40042)为看家基因并设计特异引物,利用实时荧光定量PCR检测了青稞籽粒4个胚乳发育时间段的B-hordein基因表达,荧光定量结果显示:两份材料中B-hordein基因的表达量均随发育过程的进行而逐渐升高。Z09中B-hordein基因在开花后7天开始转录,而Z26开花4天后就有低水平B-hordein的表达,这表明Z26中B-hordein基因可能比Z09表达的较早或者Z09中B-hordein基因表达水平较低以致于不能被检测到。此外,在4个不同的胚乳发育时期中,Z26中B-hordein基因的表达量均高于Z09材料。在开花12天到18天的过程中,Z09和Z26中B-hordein基因的表达水平有一个急剧性的升高。这说明在不同胚乳发育时期,Hor2位点的B-hordein等位基因变异体存在mRNA的差异表达。
Seed endosperm storage proteins in higher plants are the main resources ofnitrogen for germinating and plant proteins for human and animals. Barley prolamins(also called hordeins) are the major storage proteins in the endosperm and account for50-60%of total proteins. Hordeins are classically divided into three groups:sulphur-rich (B,γ,-hordeins), sulphur-poor (C-hordeins) and high molecular weight(HMW, D-hordeins) hordeins based on the size and composition. B-hordeins andC-hordeins are two major groups and each respectively account for about 70-80%and10-12%of the total hordein fraction in barley endosperm. Genetic analysis showedthat B-, C-, C-,γ-hordeins are encoded by Hor2, Hor1, Hor3 and Hor5 locus on thechromosome 1H (5). Hor2 locus is rich in alleles that encode numerousheterogeneous B-hordein polypeptides. It is reported that B-hordein species, quantityand distribution are significant factors affecting malting, food and feed quality ofbarley. To understand comprehensively the structure and organization of B-hordeingene family in hull-less barley and explore the developmental control mechanisms ofHor2 locus gene expression and eventually to better exploitation in crop grainquality improvement, we isolated and cloned B-hordein genes and promotors ofhull-less barley from Qinghai-Tibet Plateau by PCR, and testified their expressionfounction in bacteria expression system and explore their spatial and temporalexpression pattern by quantitative real time PCR. Our results are as followed,
     1. Twenty-three copies of B-hordein gene were cloned from nine hull-less barleycultivars of Qinghai-Tibet Plateau with special B-hordein subunits and molecularlycharacterized by PCR, based on three B-hordein genes published previously(GenBank No. X03103, X53690 and X53691). DNA sequences analyses confirmedthat the six clones all contained a full-length coding region of the barley B-hordeingenes. Eleven clones all contain an in-frame stop codon and they are probablypseudogenes. The analysis of deduced amino acid sequences of the genes shows that they have similar structures including signal peptide domain, central repetitivedomain, and C-terminal domain. The number of the repeats was largerly variable andresulted in polypeptides in different sizes or structures among the genes. Twelve suchrepeated motifs were found in Z07-2 and Z26, and they are close to those of the wildbarleys, and it is most probably caused by unequal crossing-over and/or slippageduring replication as suggested for the evolution of other prolamins. The relatednessof prolamin genes of barley and wheat was assessed in the phylogenetic tree based ontheir polypeptides comparison. Our phylogenetic analysis suggested that the predictedB-hordeins of cultivated barley formed a subfamily, while the B-hordeins of wildbarleys and the two most similar sequences of LMW-GS of T. aestivum formedanother subfamily. This result indicated that the members of the two subfamilys havea distinctive difference. In addition, we found the B-hordeins with identicalC-terminal end sequences were clustered into a same subgroup (except BXQ053,BZ09-1 and BZ26-5 as a sole group, respectively), so we believe that B-hordein genesubfamilies possibly can be classified on the basis of the conserved C-terminal endsequences of predicted polypeptide and without the limit of SDS-PAGE proteinbanding patterns.
     2. The specific primers were designed according to the published sequences ofbarley B-hordein genes from Z09 and Z26. Using total DNA isolated from them asthe templates, eight clones (designated Z09Pand Z26P) of upstream sequences of theknown B-hordein genes was obtained by TAIL-PCR and SON-PCR. Sequencesanalysis shows that the putative TATA box was present at position -80 bp andCAAT-like box at position -140 bp. Besides, a putative Endosperm Box includingan Endo sperm Motif (EM) and a GCN4-Like Motif was found at position -300 bp insix clones, and another Endosperm-like box was found at positon -560 bp.While the Endosperm Box or Endosperm-like box was not found in Z09P-2and Z26P-3. This may indicate that gene expression drived by the two promtors wasprobably controlled by different trans-acting factors and the genetic controlmechanism of corresponding gene expression may be diverse.
     3. The B-hordein genic region coding for the mature peptide was cloned into expression vector pET-30a and transformed into bacterial strain BL21 for identifyinggene expression fountion. Protein SDS-PAGE analysis showed that only thetransformed lysate with the pET-BZ07-2 and pET-BZ26-5 constructs producedproteins related to B-group hordeins of barley, and the mounts of proteins induced by3 mM IPTG and 3 h were higher than other conditions. This established a base forisolating and putifying B-hordein and further exploring their effects on barley grainquality.
     4. The gene-specific primers of B-hordein genes from Z09 and Z26 were usedfor the quantification of B-hordein gene expression. Theα-tubulin gene fromHordeum vulgate subsp, vulgate (GenBank accession number U40042) was used as acontrol gene. The result shows the transcription of the B-hordein genes in Z09 wasfound 7 days after flowering, while the transcription of the B-hordein genes in Z26was found 4 days after flowering, but at a very low level, and it suggested that theB-hordein genes in Z26 probably expressed earlier than those in Z09, or the B-hordeingenes in Z09 expressed at so a lower level than Z26 that it can not detected. Inaddition, B-hordein genes in Z26 accession showed higher expression levels thanthose in Z09 in four developing stages. Furthermore, a progressive increase in theexpression levels of the B-hordein genes between 12 and 18 days after anthesis wasobserved in both Z09 and Z26. It implies that the B-hordein allelic variants encodedby Hor2 locus exist the differential expression in mRNA levels of during barleyendosperm development.
引文
1. Matus I.A., Hayes P.M. 2002. Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome. 45, 1095-1106.
    2.颜济,杨俊良.2004.小麦族生物系统学.中国农业出版社.第2卷.
    3. Taketa S., Kikuchi S., Awayama T., Yamamoto S., Ichii M., Kawasaki S. 2004. Monophyletic origin of naked barley inferred from molecular analyses of a marker closely linked to the naked caryopsis gene. nud. Theor Appl Genet. 108, 1236-1242.
    4. Liu C.T., Wesenberg D.M., Hunt C.W., Branen A.L. 1996. Hulless barley: A new look for barley in Idaho. [on line] available: http://info.ag.uidaho.edu/resources/PDFs/CIS1050.pdf.
    5. Atanassov P., Borries C., Zahrieva M., Monneveux P. 2001. Hordein polymorphism and variation of agromorphological traits in a collection of naked barley. Genetic Resources and Crop Evolution. 48, 353-360.
    6. Edney M.J., Langrell D.E. 2004. Evaluating the malting quality ofhulless CDC Dawn, acid-dehusked Harrington, and Harrington barley. J. Am. Soc. Brew. Chem. 62, 18-22.
    7. Rendell M., Vanderhoof J., Venn M., Shehan M.A., Arndt E., Rao C.S., Gill G., Newman R.K., Newman C.W. 2005. Effect of a Barley Breakfast Cereal on Blood Glucose and Insulin Response in Normal and Diabetic Patients. Plant Foods for Human Nutrition. 60, 63-67.
    8. EHRENBERGEROVA J., BELCREDIOVA N., PRYMA J., VACULOVA K., NEWMAN C.W. 2006. Effect of Cultivar, Year Grown, and Cropping System on the Content of Tocopherols and Tocotrienols in Grains of Hulled and Hulless Barley. Plant Foods for Human Nutrition. 61, 145-150.
    9. Takahashi R. 1955. The origin and evolution of cultivated barley. Adv Genet 7, 227-266.
    10. Zhang Q., MaroofM.S., Yang G. 1992. Ribosomal DNA polymorphisms and the Oriental-Occidental genetic differentiation in cultivated barley. Theor Appl Genet. 84, 682-687.
    11. Nimazhaxi. 1998. Hull-less barley and food safety in the region of plateau. Tibetan Agriculture and Technology 20, 20-25.
    12. Yin Y.Q., Ma D.Q., Ding Y. 2003. Analysis of genetic diversity of hordein in wild close relatives of barley from Tibet. Theor Appl Genet 107, 837-842.
    13. Luan Y.F., He Y. 2004. Tendency and counter measures on breeds improvement of Tibet highland barley. Barley Sci. 12, 1-4.
    14.高新起.2005.种子贮藏蛋白的运输、积累和基因表达调控.细胞生物学杂志.27,35-38.
    15.阎其涛,李建粤,米东,刘佳.2004.重要谷类种子贮藏蛋白的特性及改良研究.西北植物学报.24,754-759.
    16.孙崇荣,黄伟达.1995.小麦等谷类植物种子贮藏蛋白基因的表达与调控.植物生理学通讯.31,71-73.
    17.湛小燕.1990.大麦醇溶蛋白研究概况.遗传.12,35-38
    18. Shewry P., Napier J., Tatham A. 1995. Seed storage proteins: structures and biosynthesis. Plant Cell. 7, 945-956.
    19. Kreis M., Rahman S., Forde B., Pywell P., Shewry E, Miflin B. 1983. Sub-families of hordein mRNA encoded at the hor 2 locus of barley. Mol Gen Genet. 191, 194-200.
    20. Rahman S., Kreis M., Forde B.G., Shewry P.R., Miflin B.J. 1984. Hordein-gene expression during development of the barley (Hordeum vulgare) endosperm. Biochem. J. 223,315-322
    21. Faulks A.J., Shewry P.R., Miflin B.J. 1981. The Polymorphism and Structural Homology of Storage Polypeptides (Hordein) Coded by the Hor-2 Locus in Barley (Hordeum vulgare L.). Biochemical Genetics. 19
    22. Shewry P.R., Lew E.J.-L., Kasarda D.D. 1981. Structural homology of storage proteins coded by the Hor-1 locus of barley (Hordeum vulgare L.). Planta 153, 246 253.
    23. Brandt A., Montembault A., Cameron-mills V. 1985. Primary structure of a Bl-hordein gene from barley. Carlsberg Res Commun. 50, 333-345.
    24. Shewry P.R., Bunce N.A.C., Kreis M., Forde B.G. 1985. Polymorphism at the Hot 1 Locus of Barley (Hordeum vulgare L.). Biochemical Genetics. 23, 391-404.
    25. Shewry P.R., Tatham A.S. 1990. The prolamine storage proteins of cereal seeds: structure and evolution. Biochem J.. 267, 1-12.
    26. Blake T.K., Ullrich S.E., Nilan R.A. 1982. Mapping of the Hot-3 Locus Encoding D Hordein in Barley. Theor. Appl. Genet. 63,367-371.
    27. Lehfer H., Busch W., Martin R., Herrmann R.G. 1993. Localization of the. B-hordein locus on barley chromosomes using fluorescence in situ hybridization. Chromosoma. 102, 428-432.
    28. Jensen J., Jorgensen J.H., Jensen H., Doll H. 1980. Linkage of the hordein loci Hor1 and Hor2 with the powdery mildew resistance loci Ml-k and Ml-a on barley chromosome 5. Theoret Appl Genet 58, 27-31.
    29.潘志芬.2006.青藏高原栽培青稞遗传多样性研究.
    30.朱睦元,黄培忠.1999.大麦育种与生物工程.上海科技技术出版社.
    31. Shewry P.R., FaulksA.J., Miflin B.J. 1980. Effect of High-Lysine Mutations on the Protein Fractions of Barley Grain. Biochemical Genetics. 18, 133-151.
    32. Gupta R.B., Bekes F., Wrigley C.W. 1991. Prediction of physical dough properties from glutenin subunit composition in bread wheats. Cereal Chem. 68, 328-333.
    33. Khelifi D., Branlard G. 1992. The effects of HMW and LMW subunits of glutenin and of gliadins on the technological quality of progeny from four crosses between poor breadmaking quality and strong wheat cultivars. J. Cereal Sci. 16, 195-209.
    34. Gupta R.B. 1994 Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1, of common wheat. I. Its additive and interaction effects on dough properties. J. Cereal Sci. 19, 9-17.
    35. IKEDA T.M., NAKAMICHI K., NAGAMINE T., YANO H., YANAGISAWA A. 2003. Identification of Specific Low-Molecular-Weight-Glutenin Subunits Related to Gluten Quality in Bread Wheats. JARQ. 37, 99-103.
    36. Peltonen J., Rita H., Aikasalo R., Home S. 1994. Hordein and malting quality in northern barleys. Hereditas 120, 231-239.
    37. Kanazin V., Ananiev E., Blake T. 1993. Variability among members of Hor-2 multigene family. Genome 36, 397-403.
    38. Forde B.G., Heyworth A., Pywell J., Kreis M. 1985b. Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat and maize. Necleic Acids Res. 13, 7327-7339.
    39. Vicente-Carbajosa J., Beritashvili D.R., Kraev A.S., Skryabin K.G. 1992. Conserved structure and organization orB hordein genes in the Hor2 locus of barley. Plant Mol Biol 18.
    40. Hou Y.C., Liu Q., Long H., Wei Y.M., Zheng Y.L. 2006. Three novel low-molecular-weight glutenin subunit genes from Hordeum turkestanicum Nevski. biology bulletin. 33, 35-42.
    41. Piston F., Dorado G., Martin A., Barro F. 2005. Cloning and molecular characterization of B-hordeins from Hordeum chilense Roem et Schult. TheorAppl Genet. 111,551-560.
    42. Luo Z., Chen F.G., Feng D.S., Xia G.M. 2005. LMW-GS genes in Agropyron elongatum and their potential value in wheat breeding. TheorAppl Genet. 111,272-280.
    43. Cassidy B.G., Dvorak J., Anderson O.D. 1998. The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theor Appl Genet. 96, 743-750.
    44. Forde B.G., Kreis M., Williamson M.S., Fry R.E, Pywell J., Shewry P.R., Bunce N., Miflin B.J. 1985a. Short tandem repeats shared by B- and C-hordein cDNAs suggested a common evolutionary origin for two groups of cereal storage protein genes. EMBO J4, 9-15.
    45. Tatham A., Shewry P. 1995. The S-poor prolamins of wheat, barley and rye. J Cereal Sci 22, 1-16.
    46. Hsia C.C., Anderson O.D. 2001. Isolation and characterization of wheat ω-gliadin genes. Ther Appl Genet 103, 37-44.
    47. Anderson O.D., Hsia C.C., Torres V. 2001. The wheat gamma-gliadin genes: characterization often new sequences and further understanding of gamma-gliadin gene family structure. Theor Appl Genet. 103, 323-330.
    48.阎隆飞.1993.高等植物基因表达的调控.植物生理学通讯.29,401-406
    49.王颖,麦维军,梁承邺,张明永.2003.高等植物启动子的研究进展.西北植物学报,23,2040-2048.
    50.路静,赵华燕,何奕昆,宋艳茹.2004.高等植物启动子及其应用研究进展. 自然科学进展.14,856—862.
    51. Liu Y.G., Whittier R.F. 1995. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics. 25, 674-681.
    52. Antal Z., Rascle C., Fevre M., Bruel C. 2004. Single oligonucleotide nested PCR: a rapid method for the isolation of genes and their flanking regions from expressed sequence tags. Curr Genet 46, 240-246.
    53.于翠梅,马莲菊,张宝石.2006.特异性启动子在植物基因工程中的应用.生物工程学报.22
    54. Orlando V. 2000. Mapping chromosomal proteins in vivo by formaldehydecrosslinked-chromatin immunoprecitation. Trends Biochem Sci. 25, 99-104.
    55. Higo K., Ugawa Y., lwamoto M. 1999. Plant cis-acting regulatory DNA elements (PLACE) database. Nuclec Acids Res. 27.
    56. Lescot M., Dehais P., Thijs G. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico an alysis of promoter sequences. Nuclec Acids Res. 30.
    57.谢迎秋,孟蒙,朱祯.2000植物反式作用因子研究进展.高技术通讯.2.
    58. Yanagisawa S. 1995. A novel DNA binding domain that may form a single zinc finger motif. Nucleic Acids Research. 23, 3403-3410.
    59. Ofiate L., Vicente-Carbajosa J., Lara P. 1999. Barley BLZ2, a Seed-specific bZIP Protein That Interacts with BLZ1 in Vivo and Activates Transcription from the GCN4-like motif of B-hordein Promoters in Barley Endosperm. The Journal of Biological Chemistry. 274, 9175-9182.
    60. Zhao Y., Leisy D.J., Okita T.W. 1994. Tissue-specific expression and temporal regulation of the rice glutelin Gt3 gene are conferred by at least two spatially separated cis-regulatory elements. Plant Molecular Biology. 25,429-436,
    61. Wu C.-Y., Suzuki A., Washida H., Takaiwa F. 1998. The GCN4 motif in a rice glutelin gene is essential for endospermspecific gene expression and is activated by Opaque-2 in transgenic rice plants. Plant J. 14, 673-683.
    62. Wu C.-Y., Washida H., Onodera Y., Harada K., Takaiwa F. 2000. Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression. Plant J. 23, 415-421.
    63. Vickers C.E., Xue G., GresshoffP.M. 2006. A novel cis-acting element, ESP, contributes to high-level endosperm-specific in an oat globulin promoter Plant Molecular Biology. 62, 195-214.
    64. Momma K., Hashimoto W., Ozawa S. 1999 Quality and safety evaluation of genetically engineered rice with soybean glycinin : analyses of the grain composition and digestibility of glycinin in transgenic rice. Bioscience, Biotechnology and Biochemistry 63 314-318.
    65.张宪银,薛庆中.2001.用农杆菌介导法将大豆球蛋白基因导入水稻 浙江大学学报(农业与生命科学版).27 495-499.
    66.张秀君,刘俊起,赵倩.1999.用基因枪将高赖氨酸基因导入玉米及转基因植株的检测.农业生物技术学报,.7,363-367.
    67. Goto F., Yoshihara T., Shigemoto N. 1999. Iron fortification of rice seed by the soybean ferritin gene[J].. Nature Biotechnology. 17, 282-286.
    68. Singh R.J., Kolb F.L. 1991. Chromosomal interchange in six hexaploid oat genotypes. Crop Sci. 31,726-729.
    69.王关林,方宏筠.2002.植物基因工程.北京:科学出版社.742-744.
    70. Sambrook J., Fritsch E.F., Maniatis T., eds. Molecular cloning: a laboratory manual. 2nd edn ed. 1989, Cold Spring Harbor Laboratory Press: Cold Spring Harbor.
    71. Kumar S., Tamura K., Nei M. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics. 5, 150-163.
    72. Ikeda T.M., Nagamine T., Fukuoka H., Yano H. 2002. Identification of new low molecular weight glutenin subunit genes in wheat. Theor Appl Genet. 104, 680-687.
    73. Johal J., Gianibelli M.C., Rahman S., Morell M.K., Gale K.R. 2004. Characterization of low-molecular-weight glutenin genes in Aegilops tauschii. Theor Appl Genet. 109, 1028-1040.
    74. Zhao X.L., Xia X.C., He Z.H., Gale K.R., Lei Z.S., Appels R., Ma W. 2006. Characterization of three low-molecular-weight Glu-D3 subunit genes in common wheat. TheorAppl Genet. 113, 1247-1259.
    75.徐妙云,刘德虎,李刚强.2004.简论植物油体蛋白作为载体生产外源重组蛋白的研究.高技术通讯.14,100-103.
    76.程世军,王宗阳,洪孟民.2002.水稻bZIP蛋白REB结合Wx基因启动子中的GCN4基序.中国科学.32,23-29.
    77. Marris C., Gallois R, Copley J. 1988. The 5'flanking region of a barley B hordein gene controls tissue and developmental specific CAT expression in tobacco plants. Plant Molecular Biology. 10, 359-366.
    78. Davies J.T., Shewry P.R., Harris N. 1993. Spatial and temporal patterns of B hordein synthesis in developing barley (Hordeum vulgare L.) caryopses. Cell Biol Int 17, 195-203.
    79. D'Ovidio R., Masci S. 2004. The low-molecular-weight glutenin subunits of wheat gluten. Journal of Cereal Science. 39, 321-339.
    80. Zhang W., Gianibelli M.C., Ma W., Rampling L., Gale K.R. 2003. Identification of SNPs and development of allele-specific PCR markers for γ-gliadin alleles in Triticum aestivum. Theor Appl Genet. 107, 130-138.
    81. De Bustos A., Rubio P., Jouve N. 2000. Molecular characterization of the inactive allele of the gene Glu-Al and the development of a set of AS-PCR markers for HMW glutenin of wheat. TheorAppl Genet. 100, 1085-1094.
    82. Liu C.N., Rubenstein I. 1992. Molecular characterization of two types of 22-kilodaltons alpha-zein genes in a gene cluster in maize. Mol Gen Genet 234, 244-253.
    83. Anderson O.D., Greene F.C. 1997. The α-gliadin gene family Ⅱ DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet. 95, 59-65.
    84. Benmoussa M., Vezina L.P., Page M., Yelle S., Laverge S. 2000. Genetic polymorphism in low molecular weight glutenin genes from Triticum aestivum variety Chinese Spring. Theor Appl Genet 100, 789-793.
    85. Lee Y.K., Ciaffi M., Appels R., Morell M.K. 1999. The low-molecular-weight glutenin subunit proteins of primitive wheats Ⅱ The genes from A-genome species. Theor Appl Genet. 98, 126-134.
    86. Clarke B.C., Appels R. 1999. Sequence variation at the Sec-1 locus of rye Secale cereale (Poaceae). Pl. Syst. Evol.. 214, 1-14.
    87. Viotti A., Cairo G, Vitale A., Sala E. 1985. Each zein gene class can produce polypeptides of different sizes. EMBOJ. 4,1103-1111.
    
    88. Lew E.J.L., Kuzmicky D.D., Kasarda D.D. 1992. Characterization of low-molecular-weight glutenin subunits by reversed-phase high-performance liquid chromatography, sodium-dodecyl sulfate-polyacrylamide gel electrophoresis, and N-terminal amino-acid sequencing. Cereal Chem. 69, 508-515.
    
    89. Cloutier S., Rampitsch C, Penner G.A., Lukow O.M. 2001. Cloning and expression of a LMW-i glutenin gene. J Cereal Sci. 33,143-154.
    
    90. Dover G.A., Tautz D. 1986. Conservation and divergence in multigene families: alternatives to selection and drift. Philos Trans R Soc Lond. 312, 275-289.
    
    91. Qi J.-C, Zhang G-P., Zhou M.-X. 2006. Protein and hordein content in barley seeds as affected by nitrogen level and their relationship to beta-amylase activity. Journal of Cereal Science. 43, 102-107.
    
    92. Norre R, Peyrot C, Garcia C. 2002. Powerful effect of an atypical bifactorial endosperm box from wheat HMWG-Dx5 promotor in maize endosperm. Plant Molecular Biology. 50, 699-712.
    
    93. Kreis M., Shewry P.R., Forde B.G., Rahman S., Bahramian M.B., Miflin B.J. 1984. Molecular analysis of the effects of the lys3a gene on the expression of Hor loci in developing endosperms of barley (Hordeum vulgare L.). Biochem. Genet. 222-231.
    
    94. Giese H., Andersen B., Doll H. 1983. Synthesis of the major storage protein, hordein, in barley Planta. 159, 60-65.
    
    95. Shewry P.R., Tatham A.S., Halford N.G 2001. Nutritional control of storage protein synthesis in developing grain of wheat and barley. Plant Growth Regulation. 34, 105-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700