用户名: 密码: 验证码:
苹斑芫菁Mylabris calida Palla斑蝥素合成期体内可溶性蛋白的比较蛋白组学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斑蝥素(Cantharidin, C10H12O4)是鞘翅目(Coleoptera)芫菁科(Meloidae)昆虫分泌的萜类防御物质,化学名:六氢-3a,7a-二甲基-4,7-环氧异苯并呋喃-1,3-二酮。研究发现它有杀虫作用,但资源问题无法解决。目前斑蝥素的生产采用人工提取和化学合成两种方法,两者都存在明显的局限性,无法实现斑蝥素的大规模生产,生物合成是解决这一问题的有效途径。但由于芫菁生理系统和斑蝥素产生过程的复杂性,到目前为止人们对斑蝥素的合成机理还知之甚少。以前的研究主要集中于斑蝥素含量检测、斑蝥素衍生物合成及毒理等方面,有关斑蝥素生物合成方面的研究少有报道,体内合成是一个极其复杂的过程,是资源昆虫研究中的热点问题之一。
     蛋白质组学是在蛋白水平大规模研究基因表达的产物,直接研究蛋白的表达水平和相关蛋白的活性状态。芫菁雄虫羽化后0~30天无论在形态还是斑蝥素合成量方面都发生了显著变化。因此本研究利用SDS-PAGE、双向电泳和质谱相结合的蛋白质组学研究方法对不同时期的苹斑芫菁Mylabris calida雄虫的蛋白表达进行了比较研究,以进一步研究这个复杂的生物学过程,同时也为阐释斑蝥素合成机理提供信息。在综述蛋白质组学的研究现状和进展,包括蛋白质组学研究中的关键技术—2DE、生物质谱以及生物信息学的进展和现状,概述了斑蝥素的研究进展和有待进行研究的内容的基础上,提出了本课题工作的研究方向和目的。
     本研究主要获得如下结果:
     1.确定了研究芫菁蛋白质组学的技术条件。本试验采用不同的方法对芫菁可溶性蛋白进行了双向电泳研究,从样品提取液、等点聚焦条件、第二向聚焦条件、试验中常见的问题等因素对芫菁双向电泳研究体系进行了全面的分析和优化。结果发现,对于芫菁可溶性蛋白,采用尿素裂解液液氮粉碎高速离心法比采用咪唑缓冲液组织匀浆法更为适合,蛋白损失少,图谱均匀清晰。因此本试验经过各种条件优化确定了一套适合于芫菁可溶性蛋白样品分析的双向电泳研究方法,利用这种方法所获得的双向电泳图谱中的蛋白点分辨率和重复性更高。在建立蛋白点肽质量指纹图谱分析体系时,确定了胶内消化过程中的胰酶用量,挖点大小、基质辅助激光解吸飞行时间质谱的参数选择等试验条件,构建了芫菁质谱分析研究平台。
     2.斑蝥素合成期芫菁可溶性蛋白样品的SDS-PAGE电泳分析。通过观察斑蝥素合成增长期的蛋白质表达变化,探讨相关合成酶的分布范围。利用蛋白质凝胶电泳技术,对苹斑芫菁在羽化后0~25天的体内可溶性蛋白进行了分析。经蛋白质电泳图谱分析发现,有3条蛋白带的表达量在芫菁雄虫中明显大于雌虫,这些蛋白的分子量分别为:80KD,45KD,30 KD;其中分子量约为80 KD,45KD的蛋白带在芫菁雄虫羽化后第2天出现,其浓度不断的增加。30KD的蛋白带在芫菁雄虫羽化后1小时出现,主要作用是调控成虫的生长和变态发育。推测蛋白组份45KD中的某种或几种关联蛋白质在芫菁雄虫羽化后斑蝥素合成增长期发挥了重要作用。
     3.斑蝥素合成期的蛋白质双向电泳及质谱鉴定。前人研究发现芫菁大量合成斑蝥素发生在羽化后,通过对这一时期的芫菁体内可溶性蛋白研究,探索斑蝥素合成相关酶蛋白的种类和合成机理。采用蛋白质双向电泳和飞行质谱技术,分析了合成前期、大量合成早期和大量合成末期的蛋白质组成的变化。研究发现,合成前期蛋白质具有区别于其它时期蛋白质的明显特征:蛋白质大多分布在PI值4-7、分子量20-80KD的区域,且分布不均匀,主要集中在偏酸性一端,20~45KD蛋白质差异明显。芫菁羽化后1小时的蛋白质点数目为471个,羽化后第2天增加到569个,羽化后第4天蛋白点数目增加到645个;随着芫菁进入斑蝥素大量合成期,蛋白点数目明显增加,大量合成早期和合成末期蛋白点数为827个和999个,比合成准备期增长了25%以上。结果显示:三个时期蛋白质组成的变化趋势刚好与芫菁合成斑蝥素含量显著峰值变化相吻合,表明芫菁体内斑蝥素的合成是多种蛋白参与的复杂过程,这些蛋白分子量范围在20~45 kD。利用MALDI-TOF MS对明显差异蛋白进行鉴定时,发现这些蛋白质分别是Actin-87E isoform 1(肌动蛋白87E亚型1)、putative secreted protein(分泌蛋白)、LD04994p(肌动蛋白,LD04994p)、GM19279(肌动蛋白,GM19279)、cytoplasmic actin(胞质型肌动蛋白)、molybdenum cofactor biosynthesis protein C(钼辅因子合成蛋白C)、ABC transporter ATP-binding protein(ATP结合ABC转运子蛋白)、pheromone binding protein 1(信息素结合蛋白1)、ATP-dependent DNA ligase(ATP依赖DNA连接酶)、zinc-containing alcohol dehydrogenase superfamily protein (含锌乙醇脱氢酶)。
Cantharidin (C10H12O4, hexahydro-3aα, 7aα-dimethyl-4β, 7β-epoxyisobenzofuran-1, 3-diketone) is secreted defensive substance found in meloid insects. It is used as a medicine and also is found of have insecticidal effect in plant protection. However, artificial extraction and chemical synthesis are only ways to produce small amount of cantharidin, and neither can achieve large-scale cantharidin production. Biosynthesis is an effective way to solve this problem but because of the complexity of the physical system and the sythesis process of cantharidin. we know little about the mechanism of cantharidin synthesis. Previous studies mainly focused on cantharidin content detection, cantharidin derivatives synthesis and toxicology, few studies reported in vivo synthesis of cantharidin. cantharidin synthesis is an extremely complex process.
     Proteomics is a large-scale study of the gene expression at the protein level, which ultimately provides direct measurement of protein expression levels and insight into the activity state of all relevant proteins. Male blister beetle undergo significant changes in morphology and cantharidin content during the 0-30 days after eclosion. Changes of soluble protein composition at the stage of cantharidin synthesis were analysed by SDS-PAGE , two-dimensional gel electrophoresis and mass spectrometry in order to study this complex biological processes, explain the mechanism of cantharidin synthesis.
     Outlining the progress of the cantharidin study and the problem to be carried out, I give a proteomics overview of the research, including key techniqs in proteomics research -2DE,mass spectrometry and bioinformatics. Research topics and objectives are proposed for this study.
     The main results are as follows:
     1. Establishment of technical conditions for blister beetle proteomics research
     The experimental conditions of using two-dimensional gel electrophoresis in this study was optimized by different experimental conditions, including different sample processing, focusing conditions, the SDS-PAGE focus condition, the experiment factors. The results showed that, for the blister beetle soluble protein, using liquid nitrogen urea lysate with high-speed centrifugation is more suitable than the imidazole buffer method for blister beetle tissue, providing a pattern with less loss and more clearity. Therefore, we established two-dimensional gel electrophoresis analysis methods suitable to soluble protein samples of blister beetle through optimizing experimental conditions and the resolution and repeatability of a two-dimensional gel electrophoresis pattern of protein spots is higher with the methods. Experimenting with in-gel digestion, trypsin digestion, size of excised gel, the parameters for matrix-assisted laser desorption time-of-flight mass spectrometry were analyzed and optimum parameters were choosen for experiments. We have built the MS research platform with reference of the silkworm protein MALDI-TOF MS research platform.
     2. This study observed the change of protein expression during the rapid growth period of cantharidin synthesis to probe the distribution of related synthesis enzymes. Using protein gel electrophoresis technology,soluable proteins of Mylabris calida Palla from 0 to 25 days after eclosion were analyzed. On protein electrophoresis patterns of Mylabris calida, 3 protein expression bands were found significantly higher in males than females, and their molecular weights are about 80 kD, 45 kD and 30 kD. The bands of 80 kD, 45 kD in males appeared during the first 2 days after emergence and their concentration content increased continously. The protein band of 30 kD expressed at 1 h after eclosion playing a major role in the growth and metamorphosis of adult development. It was presumed that one or several related proteins of 45 kD protein group played an important role in the synthesis of cantharidin.
     3. The study on soluble protein after eclosion that was the stage of synthesis cantharidin in Mylabris calida Palla would help to clarify the synthesis mechanism of cantharidin and involved enzymes of the synthesis. The changes of soluble protein composition during the pre-stage, early stage and advanced stage of cantharidin synthesis in Mylabris calida Palla were analysed by SDS-PAGE and two-dimensional electrophoresis. The SDS-PAGE results showed that there were significant differences at different stages during 1h to 25d after eclosion for expression of 80 kD, 45 kD and 30 kD proteins. The characteristic of the pre-stage of synthesis was that most proteins were 20-80 KD, distributed at PI 4-7 and located in the acidic side, especially for 20 kD to 45kD proteins. There were 471 protein spots in the 2D map at one hour after eclosion, while there were 569 spots the second day and 645 spots the fourth day after eclosion. During the period of cantharidin synthesis, the amount of protein spots increased, up to 827 spots and 999 spots at the early stage and advanced stages of cantharidin synthesis, respectively. The protein spots were increased a kind of 25% compared to pre-stage. The results revealed that the developing trend of proteins produced during the three periods was consistent with the course of cantharidin synthesis, indicating that synthesis of cantharidin is a complex process involved a variety of proteins with a molecular weight were range from 20 kD to 45 kD. The obviously different spots were identified as Actin-87E isoform 1, putative secreted protein, LD04994p, GM19279, cytoplasmic actin, molybdenum cofactor biosynthesis protein C, ABC transporter ATP-binding protein, pheromone binding protein 1, ATP-dependent DNA ligase, zinc-containing alcohol dehydrogenase superfamily protein .
引文
[1] Nature 1999. Proteomics, transcriptomics: What’s in a name? Nature 402:715.
    [2] Wilkins MR, Sanchez JZ, Gooley AA . Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology, 1995, 13: 19-35.
    [3] Fleischmann R D. Whole-genome random sequencing and assembly of Haemophilus influenzae. Science, 1995, 269:496-512.
    [4] Matthew Bogyo, James HH, Proteomics and genomics. Current Opinion in Chemical Biology. 2003, 7: 2-4.
    [5] Blackstock W. P. and Weir M. P. 1999. Proteomics: Quantitative and physical mapping of cellular proteins. Trends Biotechnol. 17:121-127.
    [6] Papayannopoulos, I. A. Mass Spectrom .Rev, 1995, 14 :49 .
    [7] Patterson S.D 2000. Protomics: The industrialization of protein chemistry. Current Opinion in Biology. 11: 413-418.
    [8] Patterson S.D 2000. Mass spectrometry and proteomics. Physiol. Genomics 2: 59-65.
    [9] Unlu M,Morgan ME,Minden JS.Difference gel electrophoresis:asingle gel method for detecting changes in protein extracts.Electrophoresis 1997,18(11):2071-2077.
    [10] Gygi SP, Corthals GL, Zhang Y. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology .Proc Natl Acad Sci USA, 2000, 97 :9390~9395 .
    [11]刘东.蛋白质组学及其研究进展.中山大学研究生学刊(自然科学、医学版), 2007,(04) .
    [12]吴世容,李志良,李根容,杨胜喜.生物质谱的研究及其应用.重庆大学学报(自然科学版), 2004,(01) .
    [13] Paweletz C, Trock B, Pennanen M, et al. Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarker to aid in the diagnosis of breast cancer .Dis. Marker, 2001, 17(4) :301~307 .
    [14] He Q Y, Yi T T, Li M, et al. Proteomic analyses of arsenicinduced cell transformation with SELDI-TOF ProteinChip technology .J Cell Biochem, 2003, 88(1) :1~8 .
    [15] Julie A. Smith-Morrow.蛋白质组学面临的新问题.生命科学仪器, 2007,(01) .
    [16]曾嵘,夏其昌.蛋白质组学研究进展与趋势.中国科学院院刊, 2002,(03) .
    [17] O’Farrell PH. High resolution two-dimensinal electrophoresis of proteins. J Biol Chem, 1975, 250: 4007–4021.
    [18] Hunt DF, Yates JR 3rd, Shabannowitz J, Winston S, Hauer C R. Protein sequencing by tandem mass spctrometry. Proc Natl Acad Sci USA, 1986, 83(17): 6233-6237.
    [19] Yates III, J. R , Carmack E., Hays L., Link A. J., Eng J. K. Automated protein identification using microcolumn liquid chromatography-tandem mass spectrometry. Methods in Molecular Biology. 1999, 112:553-69.
    [20] Medzihradszky, K.F, Campbell, J.M, Baldwin, M.A, Falick, A.M, Juhasz, P, Vestal, M.A, Burlingame, A.L, The Characteristics of Peptide Collision-Induced dissociation using a high performanceMALDI-TOF/TOF Tandem Mass Spectrometer, Anal Chem, 2000,72, 552-558.
    [21] Sheeley, D.M., Reinhold, V.N. Detailed Structural Characterization of Carbohydrate Sequence, Linkage, and Branching in A Quadrupole Ion-Trap Mass Spectrometer: Neutral Oligosaccharides and N-linked Glycans. 1998. Anal Chem. 70, 3053-3059.
    [22] Rout, M. P., Aitchison, J. D., Suprapto, A., Hjertaas, K., Zhao, Y., Chait, B. T. The Yeast Nuclear Pore Complex: Composition, Architecture, and Transport Mechanism. JCB. 2000, 148: 635-652
    [23] Link A J, Eng J, Schieltz D M, et al. Nat Biotechnol, 1999, 17: 676–682.
    [24]纪建国,茹炳根.蛋白质组学研究相关技术及其在生物医学研究中的应用.药物生物技术, 2002, 9(1):1~11.
    [25] Uetz P, Giro L, Cagency G. A comprehensive analysis of protein-protein interaction inSaccharomyces cerevisiae. Nature, 2000, 403(6 770):623~627.
    [26] Grunenfelder B, Runmmel G, Vohradsky J, et al. Proteomic analysis of the bacterial cell cycle[J]. Proc Natl Acad Sci, USA, 2001, 98(8):4 681.
    [27]陆荣斌,赵劲民.蛋白质组学在创伤后异位骨化调控蛋白研究中的意义.中国组织工程研究与临床康复, 2009,(02) :341-344
    [28] ]Chang WW, Huang L, Shen M. Patterns of synthesis and tolerance of anoxia in root tips of maize seedlings accli-mated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiology, 2000,122: 3 517~3 526.
    [29] Plomion C, Pionneau C, Brach J. Compression wood-responsive proteins in developing xylem of Maritime pine. Plant Physiology, 2000, 123(3):959.
    [30] Chambers G, Lawrie L, Cash P. Proteomics : a new approach to the study of disease. J Pathol, 2000, 192:280~288.
    [31]李江,谭琛,向秋,.用双向电泳和质谱技术检测NGX6转染后人鼻咽癌细胞表达差异的蛋白质.生物化学与生物物理进展, 2001, 28:573~578.
    [32] Pasinetti GM, Ho L. From cDNA microarrays to high-throughput proteomics. Implications in the search for preventive initiatives to slow the clinical progression of Alzheimer’s disease dementia. Restor Neurol Neuro Sci, 2001, 18(2,3): 137.
    [33] Mujer CV, Wagner MA, Eschenbrenner M, et al. Global analysis of Brucella melitensis proteomes. Ann N Y Acad Sci, 2002, 969:97~101.
    [34] Greenbaum D C, Baruch A, Grainger M. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science , 2002, 298(5600):2002~2006.
    [35] Sofia de Morais Guedes,Rui Vitorino,Kenneth Tomer,et al. Drosophila melanogast er larval hemolymph protein mapping .Biochemical and Biophysical Research Communications, 2003, 312 :545-554 .
    [36] E. Vierstraete, A. Cerstiaens, G. Baggerman, G. Van den Bergh, A. De Loof, L. Schoofs, Proteomics in Drosophila melanogaster: first 2D database of larval hemolymph proteins, Biochem Biophys Res Commum 304(2003) 831-838.
    [37]王永强,靳远祥,何秀玲,徐孟奎,孟智启.家蚕蛋白质组研究现状与趋势.蚕业科学, 2006,(04) .
    [38] G.I Prevot,C.Laurent-Winter,A.M.Feldmann,F.Rodhain,C.Bourgouin. Two-dimensional gel analy-sis of midgut proteins of Anopheles stephensi lines with different susceptibility to Plasmodium falciparum infec-tion .Insect Mol Biol. 1998, 7 :375~383 .
    [39] Chun J, McMaster J, Han YS, Schwartz A, Paskewitz SM, 2000. Two-dimensional gel analysis of haemolymph proteins from Plasmodium-melanizing and non-melanizing strains ofAnopheles gambiae.InsectMol.Biol., 9(1): 39-45
    [40] Frank Stadler, Dinah Hales. Highly-resolving two-dimensional electrophoresis for the study of insect proteins. Proteomics, 2002, 2:1347-1353.
    [41] Rebeca J. McNall a, Michael J. Adang. Identification of novel Bacillus thuringiensis CryⅠAC binding proteins in Manduca sexta midgut through proteomic analysis. Insect Biochemistry and Molechular Biology, 2003,33:999-010.
    [42] D. G. Biron, L. Marche, F. Ponton, H. D. Loxdale, N. Galeotti, L. Renault, C. Joly, F. Thomas, Behavioural manipulation in a grasshopper harbouring hairworm: a proteomics approach, Proc Biol Sci, 2005, 272; 2117-2126.
    [43]王广生.斑蝥水解及去甲基对其泌尿系刺激的缓解.药学通报, 1983, 18 (7): 384-388.
    [44]张志勇,袁锋.斑蝥类昆虫营养成分分析.西北农业学报, 1998, 7(3): 63-66.
    [45]黄天守.化学化工药学大词典.台北:大学图书公司, 1982, 117.
    [46] Robiquet M. Ann. Chim. 1810, 1: 76.
    [47] Gadamer J. The constitution of cantharidin. Arch.Pharm. 1914, 25(2): 609-632.
    [48]李晓飞,陈祥盛,王雪梅,侯晓晖.芫菁体内斑蝥素的含量及存在形式.昆虫学报, 2007,(07) :750-754.
    [49] Carrel JE, Thompson W and McLaughlin M. Parental transmission of a defensive chemical(cantharidin) in blister beetles. Am. Zool, 1973, 13: 1258.
    [50]尹璇,陈志伟.斑蝥素及其药理作用研究进展.生命科学仪器, 2009,(03) :3-6
    [51] Capinera JL, Gardner DR, Stermets FR. Cantharidin levels in blister beetles(Coleoptera: Meloidae) associated with alfalfa in Colorado. Econ. Etomol. 1985, 78: 1052-1055.
    [52] Carrel JE, Doom JP, McCormick JP. Quantitative determination of cantharidin in biological materials using capillary gas chromatography with flame ionion detection. Biol. Chem, 1985, 342: 411-415.
    [53] Carrel JE, Doom JP, McCormick JP. Identification of cantharidin in false blister beetles (Coleoptera,oedemeridae)from Florida. Chromatogr, 1986, 12: 741-747.
    [54] Blodgett SL, Carrel JE, Higgins RA. Cantharidin content of Blister Beetles (Coleoptera: Meloidae) collected from Kansas USA alfalfa and imlications for inducing cantharidiesis. Environ. Entomol, 1991, 20(3): 776-780.
    [55]张建辉,陈建伟,李祥.斑蝥及其近缘种属药用资源研究进展.中国中药杂志, 2009,(06) :647-650.
    [56] Jorg Knapp, Peter Boknik, Iva Lüss, et al. The protein phosthatase inhibitor cantharidin alters vascular endothelial cell permeability[J]. Pharm and Experi Therap, 2000, 289(3): 1480-1486.
    [57] Honkanen RE. Cantharidin,another natural toxin that inhibits the activity of serine/ threonine proteinphosphatases typesⅠand 2A. FEBS Lett, 1993, 330(3): 283-286.
    [58] Stork, G., van Tamalen, E. E., Friedman, L. J. & Burgstahler, A. W. Cantharidin. A stereospecific total synthesis. J.Am. Chem. Soc. 1951, 73, 4501 .
    [59] DaubenWG,Kessel CR and Takemura KH. Simple efficient total synthesis of cantharidin via a high-pressure Diels-Alder reaction. Am. Chem. Soc. 1980, 102: 6893-6894.
    [60] Justin T. Mohr, Michael R. Krout, and Brian M. Stoltz. Natural Products as Inspiration for the Development of Asymmetric Catalysis. Nature. 2008 September 18; 455(7211): 323–332.
    [61] Grieco PA, Numes JJ and Gaul MD. Dramatic rate accelerations of Diels-Alder reactions in 5M lithium perchlorate-diethyl ether: The cantharidin problem reexamined. Am.Chem.Soc. 1990, 112(3): 4593-4596.
    [62] Guenther E, Ramstak and Floss HG. On the Biosynthesis of Canthardin. Jour of Pharm. Sci, 1969, 58: 1274.
    [63] McCormick JP,Carrel JE, Doom JP. Origin of oxygen atoms in cantharidin biosynthesized by beetles. Am Chem Soc,1970,108: 8071-8074.
    [64] McCormick JP, Carrel JE. Cantharidin Biosynthesis and Function in Meloid Beetles. In G.D. Prestwich & G.J. Blomquist(eds). Pheromone Biochemistry. Acade, New York, 1987,pp: 307-350.
    [65]刘纪云,张宝珣,孙家莉.肿瘤化学治疗的研究—Ⅱ.斑蝥素衍生物和类似物的合成.药学学报, 1983, 18(17): 752-759.
    [66] Sierra JR, Woggon WD, and Schmid H. Transfer of cantharidin during copulation from the adult male to the female Lytta vesicatoria (Spanish flies). Experientia, 1976, 32: 142-143.
    [67] Carrel JE, Doom JP, McCormick JP. Cantharidin biosynthesis in a blister beetle: inhibition by 6-fluoromevalonate causes chemical disarmament. Experientia, 1986, 42(7): 853-854.
    [68] Eisner Th, Conner J, Carrel JE. Systemic retention of ingested cantharidin by frogs. Chemoecology, 1990,1: 57-62.
    [69] Carrel JE, Thompson W and McLaughlin M. Parental transmission of a defensive chemical(cantharidin) in blister beetles. Am. Zool, 1973, 13: 1258.
    [70] Carrel JE, Doom JP, McCormick JP. Quantitative determination of cantharidin in biological materials using capillary gas chromatography with flame ionization detection. Chromatog. Biomed. Appl., 1985, 342: 411-415.
    [71] Snead JS and Alcock J. Aggregation formation and assortative mating in two Meloid beetles[J]. Evolution, 1985, 39(5): 1123-1131.
    [72]汪会荣,王中康,陈阶,杨迎武,曹月青,夏玉先,殷幼平.人工饲养条件下眼斑芫菁不同发育阶段斑蝥素含量的变化.昆虫学报, 2008,(03) :264-268.
    [73]李毅平,龚和,朴镐用.松针瘿蚊越冬幼虫体内酶活性的时序变化.昆虫学报, 2000, 43(3): 227-232.
    [74]杨建雄.生物化学与分子生物学试验技术教程.北京:科学出版社,2002
    [75] Capinera JL, Cardner DR, Stermitz FR, 1985. Cantharidin level in blister beetle(Coleoptera: Meloida) associated with alfalfa in Colirado. J. Econ. Entomol. ,5(10) : 1052-1055.
    [76]李晓飞,陈祥盛,王雪梅,侯晓晖. 2007.芫菁体内斑蝥素的含量及存在形式.昆虫学报, 50(7) : 750-754.
    [77]杨兆芬,许友勤,吴春山,王菲风. 2001.斑蝥素在细纹豆芫菁成虫体内的变化和配偶间的转运.昆虫知识, 38(2) : 133-136.
    [78]朱弘复.豆芫菁的生活史及变态讨论[J].昆虫学报, 1956(6): 61-71.
    [79]谭娟杰,章有为,王书水,等.中国要用甲虫芫菁科的资源考察与利用.昆虫学报,1995, 38(3) : 321-331.
    [80] Carrel JE, Doom JP, McCormick JP. Quantitative determination of cantharidin in biological material using capillary gas chromatography with flame ionization detection. 1985 J. Chromatography, 342: 411-415.
    [81] Carrl JE, McCairel MH, Slagle AJ, Doom J P, Brill J, McCormick J P. Cantharidin production in a blister beetle. 1993. Experientia, 49:171-174.
    [82]李毅平,龚和,朴镐用.松针瘿蚊越冬幼虫体内酶活性的时序变化.昆虫学报, 2000, 43(3): 227-232.
    [83] J.萨姆布鲁克, E. F.弗里奇, T.曼尼阿蒂斯. 1998.分子克隆试验指南.北京:科学出版社. P880-886.
    [84] Inagam IK. Studies on the proteins of the body fluid in the Silkworm: on the Electrophoretic components of the body fluid proteins. The Journal of Sericultural Science of Japan, 1954, 23: 304-307
    [85] Tojo S, Nagata M, Kobayashi M. Storage proteins in the silkworm, Bombvx mori. Insect Biochem, 1980,10: 289-303.
    [86] Nikbakhtazadeh MR, Dettner K, Boland W, Gode G, Dotterl S. 2007. Intraspecific transfer of cantharidin within selected members of the family Meloidae (Insecta: Coleoptera) . J. Insect Physiol. , 53: 890-899.
    [87]李晓飞,陈祥盛,王雪梅,侯晓晖.芫菁体内斑蝥素的含量及存在形式.昆虫学报, 2007, (07) .
    [88]姚慧鹏,郭爱芹,何芳青,鲁兴萌,吴小锋.家蚕幼虫5龄期中肠蛋白质组学.生物工程学报, 2008,(01) :89-94.
    [89] Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. (1976) 72, 248-254.
    [90]朱筱娟,曾宪录,宋朝霞,郝水.细胞核内肌动蛋白及其功能研究进展.科学通报, 2004,(11).
    [91]程超,张军,朱久进,王远亮.肌动蛋白的形态分布与细胞黏附性之间的关系.生物医学工程学杂志, 2007,(01) .
    [92]张波,孟紫强. DNA连接酶的结构与功能.生命的化学, 2001,(02) .
    [93]宋宇.生物体内乙醇脱氢酶(ADH)的活力测定、分布及其与乙醇代谢动力学的关系.四川大学, 2007.
    [94]钱荷英,徐安英.昆虫信息素结合蛋白研究进展.安徽农学通报, 2007, (23) .
    [95]李高鹏,叶露,陈孝平.多种功能的蛋白超家族——ABC家族.中国普通外科杂志, 2007, (06) .
    [96]杨自军,龙塔,冉林武,王婷,白东英,温文彦.钼的生物学功能及其在动物生产中的作用.河南科技大学学报(农学版), 2004,(02) :40-43.
    [97] L'vov NP, Ganelin VL, Alikulov Z, Kretovich VL (1975) Nature of a low molecular weight factor common to the molybdenum containing enzymes. Izv Akad Nauk SSR 3:371–376.
    [98]周严,胡晓燕,王华瑾,彭小忠,袁建刚.细胞膜蛋白与细胞骨架蛋白相互作用研究进展.生物工程进展, 2002, (01) .
    [99] Bumann D, Aksu S, Wendland M. Proteome analysis of secreted proteins of the gastric pathogen Helicobacter pylori . Infect Immun. 2002, 70(7) :3396-3403 .
    [100] Takashi Kuzuhara, Masami Suganuma, Miki Kurusu, Hirota Fujiki. Helicobacter pylori-secreting protein Tipαis a potent inducer of chemokine gene expressions in stomach cancer cells. Journal of Cancer Research and Clinical Oncology, 2007, 133(5) : 287~296.
    [101]王利国,李玲.拟南芥中ABC转运蛋白的研究进展.生命科学研究, 2002, (S1) .
    [102]修伟明,董双林,王荫长.昆虫信息素结合蛋白及其分子运输机制和生理功能研究进展.昆虫学报, 2005, (05) .
    [103] Benjamin WHJr,Smith KR,Waites KB. Ligase chain reaction .Methods Mol Biol,2003,226 : 135-50 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700