用户名: 密码: 验证码:
定量测量OH基浓度的PLIF技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足火箭发动机燃烧机理研究的需要,本文发展了一种基于平面激光诱导荧光技术定量测量燃烧流场OH基浓度的手段。
     通过详细推导荧光信号公式,分析荧光强度的影响因素,发现在合理选择激发谱线及采用统一的实验参数情况下,可忽略其他因素对荧光信号的影响,使得荧光强度与OH基摩尔分数成正比。由此提出了利用PLIF技术定量测量OH基浓度的方案,即结合平面标定火焰的数值计算与实验结果,求出荧光强度与OH基摩尔分数的比例因子,然后将该比例因子应用到其他火焰中,就可通过荧光强度得到OH基绝对浓度分布。
     为了得到标定火焰的数值计算结果,研究了甲烷空气详细化学反应机理的简化方法,得到了19组分39方程的简化机理,并对该简化机理进行了验证,发现简化机理能够较好地预测已燃区重要组分的浓度。在此基础上,将简化机理应用到标定火焰的数值计算中,得到了轴线上的OH基摩尔浓度分布。
     进行了平面标定火焰的PLIF实验研究,获得了较高信噪比的OH基PLIF图像。对图像进行降噪处理及邻域平均,得到了燃烧器轴线上的荧光信号灰度值。结合标定火焰的数值计算结果,得到荧光信号灰度与OH基摩尔浓度的比例因子。
     采用相同的实验设置对甲烷空气扩散火焰进行了PLIF实验研究,得到了清晰的火焰结构图像,应用比例因子求出了扩散火焰中的OH基浓度分布。对部分预混火焰进行了实验研究,求出了火焰中的OH基浓度,发现随着内层预混当量比的减小,OH基浓度逐渐增加。对扰流火焰进行了PLIF实验研究,发现湍流扰动会大大增强火焰的褶皱。
     为了分析本文OH基定量PLIF技术的精度,对甲烷空气部分预混火焰进行了实验研究,得到了燃烧器轴线上的OH基摩尔浓度,并与耶鲁大学测量的数据进行了对比,结果表明:本文定量得到的OH基摩尔浓度值与实际值在同一量级的水平。对于OH基这类极其活泼且含量非常小的自由基,可认为已初步实现了定量测量。
In purpose of studying the combustion in rocket engines, a PLIF based scheme to measure the radical mole concentration of OH component is proposed.
     By deducing the PLIF signal expression in detail, the influencing factors are analysed. It is found that if the OH transition lines are carefully chosen and the experiment setups are consistent, other factors can be omitted except the OH radical mole concentration and PLIF signal is proportional to the OH radical mole concentration. Thus, with the simulation and experiment results of a laminar flame, which is used for calibration, the coefficient can be determined, and then OH radical mole concentration in other flames can be determined by corresponding PLIF signals and the coefficient.
     A reduced reaction mechanism for methane/air combustion is obtained, with 19 species and 39 reactions considered. The rationality of it is tested and it is verified to forecast the mole concentration of important species well. On this basis, the reduced mechanism is applied to the simulation of the laminar flame, and the OH mole concentration along the axis is obtained.
     PLIF experimental investigations on the laminar flame provide clear OH-PLIF images, and the PLIF signals along the axis is obtained by image processing. Comparing with the simulation results of the laminar flame, the coefficient is determined.
     Afterwards, with the same experimental setups, PLIF experiments are carried out on methane/air diffusion flame, which clearly show the structure of the flame. OH mole fraction distribution of the flame is obtained with the forenamed coefficient. Furthermore, partially premixed flames are studied, which indicate that the OH mole fraction is increasing with the strengthening of premixing. Disturbance to flames are studied in experiments and it is found that turbulence will cause larger distortion in flames.
     At last, in order to analyse the precision of the presented method, OH mole fraction along the axis of a partially premixed flame is determined and contrasted with the data from Yale University, which shows that OH mole fraction determined in this presented method has the same quantitative level with the real one. This precision is acceptable for species which are very reactive and of small quantities such as OH.
引文
[1]李麦亮等.基于光谱测量的燃烧诊断技术[J].装备指挥技术学院学报, 2002, 13
    [2] G.Kychakoff, R.D.Howe, R.K.Hanson, Use of Planar Laser-Induced Fluorescence for the Study of Combustion Flowfields,AIAA 83-1361,1983
    [3]赵建荣,陈立红,俞刚,张新宇.显示OH浓度分布图像的平面激光诱导荧光技术[J].光学技术,2000,26(5)
    [4]赵建荣,杨仕润,俞刚,张新宇.火焰结构的平面激光诱导荧光技术观测[J].分析测试学报, 2003, 22(2)
    [5]杨仕润,赵建荣,俞刚,张新宇.超音速燃烧室氢氧基平面激光诱导荧光测量[J].激光技术, 2004, 28(1)
    [6]王岳,雷宇,张培元,张孝谦.用OH-PLIF研究浮力对预混V形火焰的作用[J].工程热物理学报, 2001, 22(3)
    [7]王岳,唐延东,张哲巅,聂超群,肖云汉.利用主动轮廓算法提取火焰前锋[J].燃烧科学与技术, 2005, 11(6)
    [8]穆克进,张彦,惠鑫,王岳,肖云汉.运用OH-PLIF方法探测预混火焰前锋结构[J].工程热物理学报, 2008, 29(4)
    [9]李麦亮,周进,耿辉,王振国.测量火焰中氢氧基分布的激光诱导荧光技术[J].国防科技大学学报, 2003, 25(3)
    [10]耿辉,翟振辰,桑艳,林志勇,周进.利用OH-PLIF技术显示超声速燃烧的火焰结构[J].国防科技大学学报, 2006, 28(2)
    [11]李麦亮,周进,耿辉,翟振辰.平面激光诱导荧光技术在超声速燃烧中的应用[J].推进技术, 2004, 25(4)
    [12]李麦亮,周进,耿辉,翟振辰,姜春林.氢气引燃的酒精超燃火焰结构分析[J].推进技术, 2005, 26(3)
    [13]王昌建,徐胜利,费立森.气相爆轰波反应区结构的平面激光诱导荧光测量[J].力学学报, 2007, 39(5)
    [14] J.M.Seitzman,P.Paul,R.K.Hanson. PLIF Imaging Analysis of OH Structures in a Turbulent Nonpremixed H2-Air Flames,AIAA 90-0160,28th Aerospace Sciences Meeting,Reno,NV,1990
    [15] Ben-Yaker,M.R.Kamel,C.I.Morris,R.K.Hanson. Hypersonic Combustion and Mixing Studies Using Simultaneous OH-PLIF and Schlieren Imaging, AIAA 98-0940,36th Aerospace Sciences Meeting,Reno,NV,1998
    [16] Ben-Yaker and R.K.Hanson,GTTC Student Design Winner. HypevelocityCombustion Studies Using Simultaneous OH-PLIF and Schilieren Imaging in an Expansion Tube. AIAA 99-2453, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,Los Angeles,California,1999.
    [17] C.I.Morris,M.R.Kamei,A.Ben-Yabkar and R.K.Hanson, Combined Schilieren and OH PLIF Imaging Study of Ram Accelerator Flowfields, 36th Aerospace Sciences Meeting,Reno,NV,1998
    [18] B.Yip, M.F.Miller, A.Lozano ,R.K.Hanson. A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows [J]. Experiments in Fluids, 1994, 17: 330-336
    [19] E.Gutmark, et al. Simultaneous OH and Schlieren visualization of premixed flames at the lean blow-out limit [J]. Experiments in Fluids, 1991, 12(10-16)
    [20] C.I.Morris, M.Kamel, M.C.Thurber,S.D.Wehe,R.K.Hanson, Development of an expansion tube for investigation of combustion in supersonic projectile flowfields, in 31th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 1995.
    [21] M.R.Kamel, C.I.Morris, I.G.Stouklov,R.K.Hanson, PLIF Imaging of Hypersonic Reactive Flow Around Blunt Bodies, in Twenty-Sixth Symposium (International) on Combustion. 1996.
    [22] C.I.Morris, M.R.Kamel, and R.K.Hanson, Shock-Induced Combustion in High-Speed Wedge Flows, in Twenty-Seventh Symposium (International) on Combustion. 1998
    [23] Ben-Yakar and R.K.Hanson, Experimental Investigation of Flame-Holding Capability of Hydrogen Transverse Jet in Supersonic Cross-Flow, in Twenty-Seventh Symposium (International) on Combustion. 1998
    [24] Ben-Yakar. Experimental investigation of mixing and ignition of transverse jets in supersonic crossflows. PH.D. Thesis, Department of Mechanical Eng., Stanford University,December 2000.
    [25] J.E.Rehm and N.T.Clemens. A PIV/PLIF Investigation of Turbulent Plannar Non-Premixed Flames [J]. 1997
    [26] A.M.Kalt, Peter, Jonathan H.Frank, and Robert W.Bilger, Laser imaging of Conditional Velocities in Premixed Propane-Air Flames By Simultaneous OH PLIF and PIV, in Twenty-Seventh Symposium (International) on Combustion. 1998.
    [27] J.Kiefer, et al. Investigation of local flame structures and statistics in partially premixed turbulent jet flames using simultaneous single-shot CH and OH planarlaser-induced fluorescence imaging [J]. Combustion and Flame, 2008, 154: 802-818
    [28] J.M.Donbar and J.F.Driscoll. Reaction Zone Structure in Turbulent Nonpremixed Jet Flames—From CH-OH PLIF Images [J]. Combustion and Flame, 2000, 122: 1-19
    [29] J.Lee, et al. Lifted flames in laminar jets of propane in coflow air [J]. Combustion and Flame, 2003, 135: 449-462
    [30] Lemaire, et al. PIV/PLIF investigation of two-phase vortex-flame interactions:effects of vortex size and strength [J]. Experiments in Fluids, 2004, 36: 36-42
    [31] Bohm, et al. Simultaneous PIV/PTV/OH PLIF imaging:Conditional flow field statistics in partially premixed turbulent opposed jet flames [J]. Proceedings of the Combustion Institute, 2007, 31: 709-717
    [32] M.Sto¨hr, R.Sadanandan, and W.Meier. Experimental study of unsteady flame structures of an oscillating swirl flame in a gas turbine model combustor [J]. Proceedings of the Combustion Institute, 2009
    [33] Bohm, et al. Simultaneous PIV/PTV/OH PLIF imaging:Conditional flow field statistics in partially premixed turbulent opposed jet flames [J]. Proceedings of the Combustion Institute, 2007, 31: 709-717
    [34] Boxx, et al. Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-Argon jet diffusion flame at 1.5 kHz repetition-rate [J]. Proceedings of the Combustion Institute, 2009
    [35] C.F.Kaminski, et al. Flame growth and wrinkling in a turbulent flow [J]. Applied Physics B, 2000, 71: 711-716
    [36] R.A.Gharbieh, et al. Level Set Curve Matching and Particle Image Velocimetry for Resolving Chemistry and Turbulence Interactions in Propagating Flames [J]. Journal of Mathematical Imaging and Vision, 2003, 19: 199-218
    [37] Gashi, Sara, et al. Curvature and wrinkling of premixed flamekernels—comparisons of OH PLIF and DNS data [J]. Proceedings of the Combustion Institute, 2005, 30: 809-817
    [38] R.Balachandran, A.P.Dowling, and E.Mastorakos. Non-linear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations of Two Frequencies [J]. Flow Turbulence Combustion, 2008, 80: 455-487
    [39] K.A.Watson, et al. Scalar and Velocity Field Measurements in a Lifted CH4–Air Diffusion Flame [J]. Combustion and Flame, 1999, 117: 257-271
    [40] K.A.Watson, et al. Simultaneous Rayleigh Imaging and CH-PLIF Measurements in a Lifted Jet Diffusion Flame [J]. Combustion and Flame, 2000, 123: 252-265
    [41] K.A.Watson, et al. Simultaneous Two-Shot CH Planar Laser-Induced Fluorescence and Particle Image Velocimetry Measurements in Lifted CH4/Air Diffusion Flames [J]. Proceedings of the Combustion Institute, 2002, 29
    [42] K.M.Lyons, et al. On Flame-Edge Propagation [J]. Flow Turbulence Combust, 2008, 80: 405-410
    [43] S.K.Marley, K.M.Lyons, and K.A.Watson. Leading-Edge Reaction Zones in Lifted-Jet Gas and Spray Flames [J]. Flow, Turbulence and Combustion, 2004, 72: 29-47
    [44] R.K.Hanson and M.G.Mungal. Simultaneous measurements of velocity and CH distribution. Part II: deflected jet flames [J]. Combustion and Flame, 2003, 133: 1-17
    [45] Habib.N.Najm, Phillip H.Paul, and Andrew Mcilroy. A Numerical and Experimental Investigation of Premixed Methane-Air Flame Transient Response [J]. Combustion and Flame, 2001, 125: 879-892
    [46] C.D.Carter, J.M.Donbar, and J.F.Driscoll. Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames [J]. Applied Physics B, 1998, 66: 129-132
    [47] Tanahashi, Mamoru, et al. Simultaneous CH-OH PLIF and stereoscopic PIV measurements of turbulent premixed flames [J]. Proceedings of the Combustion Institute, 2005, 30: 1665-1672
    [48] M.Tanahashi, S.Taka, and M.Shimura. CH double-pulsed PLIF measurement in turbulent premixed flame [J]. Exp Fluids, 2008, 45: 323-332
    [49] Tanahashi, Mamoru, et al. Simultaneous CH DPPLIF/OH PLIF and Stereoscopic PIV in Turbulent Premixed Flames [J]. 21st ICDERS, 2007, 7: 23-27
    [50] Z.S.Li, et al. Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames [J]. Proceedings of the Combustion Institute, 2007, 31: 727-735
    [51] J.Kiefer, et al. Investigation of local flame structures and statistics in partially premixed turbulent jet flames using simultaneous single-shot CH and OH planar laser-induced fluorescence imaging [J]. Combustion and Flame, 2008, 154: 802-818
    [52] B.K.Mcmillin, J.M.Seitzman and R.K.Hanson, Combustion of NO and OH PLIF Temperature Measurements in a Scramjet Model Flowfield, AIAA 93-2035,AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit,Monterey,CA,1993.
    [53]关小伟,刘晶儒,黄梅生,胡志云,张振荣,叶锡生. PLIF法定量测量甲烷-空气火焰二维温度场分布[J].强激光与粒子束, 2005, 17(2)
    [54] Arnold, et al. Quantitative measurements of OH concentration fields by two-dimensional laser-induced fluorescence [J]. Applied Physics B, 1997, 64: 579-583
    [55] R.V.Ravikrishna, Normand M.Laurendeau. Laser-Induced Fluorescence Measurement and Modeling of Nitric Oxide in Methane-Air and Ethane-Air Counterflow Diffusion Flames [J]. Combustion and Flame, 1999, 120: 372-382
    [56] Clayton S.Cooper, Normand M.Laurendeau, Quantitative Laser-Saturated Fluorescence Measurements of Nitric Oxide In A Heptane-Fueled Lean Direct-Injection Spray Flame At Varying Global Equivalence Ratios, in Twenty-Seventh Symposium (International) on Combustion. 1998. p. 1993-2000.
    [57] Sebastian A. Kaiser, Marshall B. Long. Quantitative planar laser-induced fluorescence of naphthalenes as fuel tracers [J]. Proceedings of the Combustion Institute, 2005, 30: 1555-1563
    [58] Tonghun Lee, Jay B. Jeffries, Ronald K. Hanson. Experimental evaluation of strategies for quantitative laser-induced-fluorescence imaging of nitric oxide in high-pressure flames(1-60bar) [J]. Proceedings of the Combustion Institute, 2007: 757-764
    [59]姚启钧.光学教程,[M].高等教育出版社,1989.482-487
    [60]耿辉.超声速燃烧室中凹腔上游横向喷注燃料的流动、混合与燃烧特性研究. [D].国防科技大学研究所院,2007,4.
    [61] M.R.Kamel, C.I.Morris, I.G.Stouklov,R.K.Hanson, PLIF Imaging of Hypersonic Reactive Flow Around Blunt Bodies, in Twenty-Sixth Symposium (International) on Combustion. 1996
    [62]赵建荣,陈立红,俞刚,杨仕润,韩百.平面激光诱导荧光显示火焰中OH的分布图像[J].流体力学实验与测量, 2000, 14(2)
    [63] Westbrook CK, Dryer FL. Chemical kinetic modeling of hydrocarbon combustion Pro. [J]. Energy Combus Science, 1984, 10: 1-57
    [64] Glarborg P, Miller JA, Kee RJ. Kinetic modeling and sensitivity analysis ofnitrogen oxider formation in well-stirred reactors. [J]. Combustion and Flame, 1986, 65: 177-202
    [65] Miller JA, Bowman CT. Mechanism and modeling of nitrogen chemistry in combustion [J]. Pro Energy Combust Science, 1989, 15: 287-338
    [66] http://www.me.berkeley.edu./gri_mech/
    [67] http://chem.Leeds.ac.uk/combustion/combustion.html
    [68] http://homepages.vub.ac.be/akonnov
    [69] Frank, P.M. Introduction to System Sensitivity Theory. New York: Academic Press, 1978,20p.
    [70] Norbert Peters, Bernd Rogg. Reduced Kinetic Mechanisms for Applications in combustion Systems. Berlin: Springer Verlag, 1989
    [71] Beth Anne V. Bennett, Charles S. Mcenally, Lisa D. Pfefferle, Mitchell D. Smooke. Computational and Experimental Study of Axisymmetric Coflow Partially Premixed Methane/Air Flames [J]. Combustion and Flame, 2000, 123: 522-546

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700