用户名: 密码: 验证码:
单组份聚氨酯/重质碳酸钙复合弹性体建筑密封胶的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑密封胶作为一类重要的建筑功能材料,在确保建筑物的结构完整性、延长建筑物使用寿命、改善建筑物表观性方面,发挥不可替代的作用。墙体浇注接口部位、装修构件接口部位,不可避免留有缝隙,水等介质和微生物的侵入会很快造成构件的腐蚀及老化,直至结构应力失效,严重影响建筑物的寿命及功能。采用建筑密封胶对各类接口缝隙和建筑裂纹进行粘结和密封,是解决这一问题的必由之路。聚氨酯密封胶是集粘结性与密封性于一体的产品,它具有一定的弹性,能用于填充须经受震动或热胀冷缩等所致具有伸缩性问题的间隙。聚氨酯还具有耐磨、耐候、耐老化、弹性好、粘结力强等特点。但是现有聚氨酯密封胶产品,普遍存在成本较高,体积收缩率较大的缺点。本研究旨在开发一种有机/无机复合、性能优良且成本较低的聚氨酯建筑密封胶产品。
     根据高分子材料结构与性能相关性原理,提出了新型单组份聚氨酯/重质碳酸钙复合弹性体建筑密封胶的设计方案。首先,设计合成了一系列聚氨酯密封胶,优选了密封胶所需原料。其次,对密封胶合成工艺进行了探索,确定了合成预聚体的最佳反应时间,考察了异氰酸酯值对性能的影响,考察了碳酸钙性质、目数、用量等对力学性能的影响,并通过正交实验确定了聚氨酯的较优配方。再者,建立模型考察了聚氨酯密封胶固化交联情况,研究了环境湿度对聚氨酯固化物交联网络结构的影响。最后,考察了密封胶耐候性能,并与硅酮密封胶进行了全面对比。
     研究表明合成预聚体的最佳反应时间为4-5h:随着预聚体异氰酸酯值的增大,预聚体粘度减小,固化物拉伸强度增大,断裂伸长率减小。固定基体配方,随着碳酸钙用量的增加,拉伸强度和断裂伸长率均减小,确定用量为50%;随着碳酸钙目数的增加,拉伸强度和断裂伸长率均增大,确定目数为1500目;有机改性碳酸钙优于未改性碳酸钙。正交实验以拉伸强度为指标的较优配方为:PU1采用的预聚体为聚醚220:TDI=1:2.0,聚醚220预聚体与聚醚330预聚体的质量比为3:1,增塑剂DOP的百分含量为15%;以断裂伸长率为指标的较优配方为PU1采用的预聚体为聚醚220:TDI=1:1.5,聚醚220预聚体与聚醚330预聚体的质量比为3:1,增塑剂DOP的百分含量为20%。固化模型显示脲基与—NCO的反应能进行,能形成交联密度较高的交联网络;环境湿度对表干时间影响很大,但对交联网络结构影响不明显;胶片具有很好的耐水、热性能,且成本低于12元/公斤,可以替代市售的硅酮密封胶。
Building sealants, as an important class of building functional materials, play an irreplaceable role in ensuring the structural integrity of the building to extend the building life. Water and other media will soon result in corrosion and aging in the interface parts of the wall casting, until the structure of the stress failure, which will seriously affect the life and functions of buildings. The use of construction sealants for bonding and sealing cracks is the only way to solve this problem. Polyurethane(PU) sealant, which has a certain degree of flexibility, is a product with bonding and sealing performance. It can be used to fill gaps that shall be subjected to vibration or thermal expansion and cold contraction. PU also has other properties such as wear-proof, anti-aging, good elasticity, and strong bonding performance. However, most of the commercial polyurethane sealants face the problems such as high cost and the volume shrinkage. In this thesis, an organic/inorganic composite polyurethane sealant has been designed to obtain excellent performance and lower cost.
     According to the polymer theory, a novel series of one-component polyurethane/heavy calcium carbonate compound elastomer construction sealants were proposed. A series of polyurethane sealants were prepared and the list of raw materials was obtained. The effect of the contents of Isocyanate group on the performance of the final product was studied and the optimal reaction time was determined. The polyurethane formulations with high performance were determined by orthogonal experiments. The effect of calcium carbonate on the mechanical properties was investigated and the effect of the ambient humidity on the crossing linking network of the PU solidification was studied. The curing process was studied by a model and the effect of water and thermal on the properties was analyzed. The cost of the polyurethane sealant was calculate and a comprehensive comparison with silicone sealant was carried on.
     The result showed that the best time of synthetic prepolymer was 4~5h; As the isocyanate value of prepolymer increasing, viscosity of prepolymer decreased, cured tensile strength increased, elongation at break decreased. Along with amount of calcium carbonate increasing, the longitudinal strength and the elongation ratio at break reduced. Along with particle size of calcium carbonate decreasing, the longitudinal strength and the elongation ratio at break increased. The organic modified calcium carbonate was better than calcium carbonate; Ambient humidity had a great influence on the dry time of surface but has little influence on the crossing linking network. The Curing models showed that PU can form high density cross—linked network through the reaction between ureido and-NCO. The PU sealant not only showed several good properties but also cost lower than 12 Yuan/kilograms, so which may substitute silane sealant.
引文
[1]马启元.我国建筑密封剂发展历程与展望.化学建材,1999,(10):7—10.
    [2]刘益军.聚氨酯密封嵌缝材料的发展近况. 聚氨酯,2005,(7):77—84.
    [3]李伟,郑策.聚氨酯密封胶在建筑工程中的应用特点.聚氨酯,2005, (2):30—31.
    [4]陆冬贞,孙杰.我国聚氨酯胶粘剂的发展现状及趋势.聚氨酯工业,2006,21(4):1—6.
    [5]马启元.建筑硅酮结构密封胶技术发展.建设科技(建设部),2004, (2):26—27.
    [6]马启元.硅酮结构密封胶技术与市场的现状和发展.中国建筑防水,2004, (8):6—9.
    [7]Lawrence D. Carbary.硅酮胶在建筑上的应用与发展趋势.中国建筑防水,1998,(3):33—34.
    [8]王绍良.聚硫建筑密封胶及其应用.新型建筑材料,2005,(10):54—56.
    [9]阎家宾.建筑用聚硫密封胶.世界橡胶工业,2001,(1):24—26.
    [10]张启跃.聚硫建筑密封胶.中国橡胶,2003, (7):25—26.
    [11]王东红,齐暑华,李春华等.国内建筑用密封胶的研究进展.中国胶粘剂,2006,11(15):46—49.
    [12]安孟学等.聚氨酯弹性体手册.北京:化学工业出版社,2000.
    [13]李绍雄,刘益军.聚氨酯胶粘剂.北京:化学工业出版社,1998,342—343.
    [14]De Santis, G.William, Phoenix, Maryland. Moisture-curable polyurethane sealant. CA968487A,1970.
    [15]Huide D. Zhu, Daniel P. Heberer. Polyurethane sealant compositions having primerless to paint and glass properties. US2006270807A1,2006.
    [16]Huide D. Zhu, Jeffrey W. Saracsan. Frank V. billotto, Michael A. Frishcosy. Polyurethane sealant compositions having high filler level. US2009114336A1,2009.
    [17]M. Y. L. Chew. The effects of some chemical components of polyurethane sealants on their resistance against hot water. Building and Environment,2003,38 (12):1381 —1384.
    [18]Nakata Yoshihiro, Ochi Shinj i. Moistore-curable one-packtype urethane adhesive composions for automobile. WO0153423,2001.
    [19]Yamatomo Masahiro, Yamauchi Maskazu. One-component moisture-curable polyurethane compositions for cured products with excellent moisture impermeability. JP2000264947,2000.
    [20]M. Y. L. Chew, X. Zhou. Enhanced resistance of polyurethane sealants against cohesive failure under prolonged combination of water and heat. Polymer Testing,2002,21(2): 187—193.
    [21]Madaj, Demund J. Two part polyurethane composition with low modulus and good paintability. CA2461633A,2003.
    [22]Itoh, Shyogo, Yokohama-shi. Polyurethane resin forming composition, process for production of sealant,and process for production of hollow fiber membrane modules. EP1803756A1,2007.
    [23]John Young Lewis. Improvement in polyurethane sealant compositions. GB1190446A,1967.
    [24]Edmund J. Madaj, Manchester. Paintable two-component polyurethane sealant. US2007043198A1,2007.
    [25]Krause Arthur. H. Polyurethane, polyepoxy and aromatic amine sealant composition. CA694289A,1964.
    [26]曹锋,韦亚兵.单组份聚氨酯密封胶贮存稳定性的影响因素.聚氨酯工业,2007,22(6):35—38.
    [27]白金,赵国峥,张洪林等.单组份湿固化聚氨酯密封胶的表干时间研究.化学与黏合,2007,29(6):387—389.
    [28]白金,丛茂生,张洪林等.单组份湿固化聚氨酯密封胶的力学性能的研究.化学与黏合,2007,29(6):384—386.
    [29]杨足明,罗纪明,马德军等.单组份湿固化聚氨酯系列密封胶的研制.粘接,2006,27(4):19—21.
    [30]姚其胜,陆企亭,侯一斌等.车用双组份快速固化聚氨酯密封胶.粘结,2007,28(4):47—49.
    [31]张斌,孙明明,张绪刚等.室温固化无溶剂双组份聚氨酯结构胶的研究.湖南大学学报(自然科学版),2007,34(11):61—64.
    [32]李子东.双组份快固型聚氨酯密封胶.粘接,2007,28(4):9.
    [33]钟汉荣,王刚.单组份硅烷端基聚氨酯密封胶的研制.粘接,2008,29(4):23—24.
    [34]曹云来,方珏,张祖宣等.单组份硅烷封端聚氨酯密封胶的研制.粘接,2007,28(1):24—25.
    [35]胡勤斌,陈世龙,聂华英.单组份硅烷化聚氨酯密封胶的研制.中国胶粘剂.2005,14(8):31—34.
    [36]高明志,许戈文.端硅烷化聚丁二烯改性单组份聚氨酯密封胶的制备和性能探讨.中国胶粘剂,2006,15(6):22—24.
    [37]蒋燕波.重质碳酸钙的发展及其在造纸工业中的应用.黑龙江造纸,2004,(1)16.
    [38]靳涛,吕宪俊,王灿明.改性碳酸钙的应用和发展.山东科技大学学报:自然科学版,2006,25(2):39—42.
    [39]周铭,侯翠红.碳酸钙在涂料中的研究现状与发展趋势.中国非金属矿工业导刊,2006,(2):3-6.
    [40]萧定方,左敏,乔悦等.聚氨酯预聚体中异氰酸酯基含量的测定.中华人民共和国化工行业标准:HG/T 2409—92,1993—07—01.
    [41]张泽义,李笑江,王晗等.PEG/IPDI与PEG/TDI固化反应动力学研究.含能材料,2007,15(4):320—324.
    [42]韩洪武,余红梅,张洪林等.单组分湿固化聚氨酯密封胶储存稳定性的研究.化学与黏合,2006,28(3):137—139.
    [43]刘宇光,黄玉东,侯静等.聚丁二烯胶乳的辐射硫化.辐射研究与辐射工艺学报,2007,25(6):350—354.
    [44]芦明,黄志萍,宋永莱.丁羟基弹性体的交联密度.固体火箭技术,1994,17(3):54—60.
    [45]芦明,黄志、萍,宋永莱.现代仪器分析在聚氨酯中的应用.聚氨酯工业,1998,13(3):45—50.
    [46]史小萌,戴海林.填料对硅酮改性聚氨酯密封胶性能影响的研究.石油化工,2003,32(4):294—296.
    [47]岳林海,蔡菊香,景南屏.新型无机补强填料.浙江化工,1994,25(2):7—9.
    [48]金叶玲,赵宇培,姚虎卿.超细重质碳酸钙填充聚氨酯合成革研究.非金属矿,2003, 26(6):21—22.
    [49]唐果东,蒋正静,陈苏.单组份聚氨酯密封剂的制备.淮阴师范学院学报(自然科学版),2003,2(2):138—141.
    [50]阳建军,陈建勇.滑石粉增强聚氨酯的力学性能研究.浙江理工大学学报,2008,25(6):640—643.
    [51]沈钟,王果庭.胶体与表面化学.北京:化学工业出版社,1991,177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700