用户名: 密码: 验证码:
基于视频检测和元胞自动机的人群疏散机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在各种交通方式中,步行可以独立的成为一种交通方式,并且构成各类交通出行两端的环节。在大型活动的场所里,人们采用步行的方式参与活动,各类设施都需要满足行走的需要,行走的服务水平直接关系到了活动的质量。因此,通过基于行人微观特征的宏观疏散行人流的研究,建立微观特征与宏观特征之间的联系,探索不同环境下不同宏观行人流特征和现象,是行人疏散研究的重点和热点,同时具有重要的理论意义,为行人的安全疏散和建筑物的整体结构合理化设计提出宝贵的方案。因此,本文从行人视频检测方法的研究、正常情况下的人群疏散模型研究和紧急情况下的人群疏散模型研究三个方面进行阐述:
     (1)根据不同的交通状态,提出了低密度情况下基于运动的行人检测方法和高密度情况下基于人头的行人检测方法。在低密度状态下提出了基于行人运动的检测方法:从改进权值参数和控制方差两个方面对传统的高斯模型(GMM)进行了改进,有效的减少了由于交通冲突使得运动前景融入背景模型的可能;建立了基于Kalman滤波和Mean-Shift算法的目标跟踪方法,改进了多个运动目标相互合并或分离时的处理方法;通过BP神经网络对运动个体进行分类,进而得到行人的运动信息;在高密度状态下提出了基于人头的改进的行人检测方法:提出了基于头发颜色在RGB和HSV颜色空间、脸部颜色在YUV颜色空间的混合颜色模型进行头部区域检测;建立了基于Canny算法与小波变换的人头轮廓提耳取方法,实现对人头轮廓的提取;根据Hough变换提出了基于人头图像的圆环检测方法,对人头进行精确定位并统计行人流量。最后,通过实际的实验分析,验证了所提出的高、低密度状态下行人视频的检测方法有效性和先进性。
     (2)在正正常情况下的人群疏散模型研究中,本文建立了基于元胞自动机的动态参数模型,在传统的动态参数模型的基础上引入了感知参数,用以描述出口附近的行人密度对行人疏散路径和出口选择的影响,通过不同的行人分布状态来与以往模型比较,模拟结果证明这种改进是有效的,因为在对于门的选择上,除了对空间距离的要求以外,密度也是一个很重要的影响因素;分别对无阻碍和有阻碍情况下的人群疏散进行了研究:对于无阻碍情况下的人群疏散,本文分别研究了安全出口的最佳位置,以及单个门和多个门的布局对疏散时间的影响,并对模型参数进行了最优的选取,描述了疏散时间、系统规模、行人密度、出口宽度之间的关系;对于有阻碍的人群疏散,本文考虑了障碍物布局对疏散时间的影响,同时考虑当障碍物发生位置移动时对疏散时间的影响,刻画了障碍物移动时间、疏散时间、行人密度之间的相互关系。与此同时,为了验证所建模型的可靠性和实用性,本文进行了相应的实际疏散实验,通过本文所提出的视频检测方法和模型模拟的比较分析,发现模型的模拟过程与实际疏散过程基本相符。
     (3)在紧急情况下的人群疏散模型研究中,本文从视线受影响情况下的人群疏散、存在挤压情况下的人群疏散以及发生火灾情况下的人群疏散三个方面来对紧急情况下的人群疏散模型进行研究。在视线受影响的情况下,从无疏散标志的从众疏散和有疏散标志的沿墙疏散两个角度进行了研究,引入了行人视野半径的概念,并分析了行人视野半径、行人密度、出口宽度对疏散时间的影响;在发生挤压情况下,构建了元胞容量可变的CA模型,模型从方向参数和从众参数两个方面进行了考虑,分析了出口宽度、系统规模、行人密度与疏散时间的关系;在发生火灾情况下,建立了火灾发生情况下存在挤压的人群疏散模型,模型考虑了火灾的发生对系统的领域值和行人疏散行为的影响,分析了火灾蔓延时间、出口宽度、行人密度、系统规模与死亡人数的关系。最后,仿真了三种情况下的行人疏散过程,从疏散模拟图来看,模型和更新规则较为合理并符合实际。
Walking is regarded as an independent mode of transportation, and whatever the vehicle adopted, walking cannot be spared at the trip origin and destination. In the large stadium, people participate in activities on feet, various types of facilities must meet the needs of walking, and the level of service of walking is directly related to the quality of the activities. Through study on group behavior of pedestrian flow caused by the interaction of individual pedestrian micro-behaviors, the relationship between micro-characteristics and macro-characteristics of pedestrian flow behavior is established. The characteristics and phenomena of group behavior under different environments are considered to be the focus of the study and hot topics of pedestrian evacuation. It has important theoretical significance, can provide valuable advice for pedestrian safety evacuation and reasonable suggestions for overall structure of buildings. In the dissertation, pedestrian video detection methods, pedestrian evacuation model under normal circumstances and emergency situations are analyzed, the main content of this dissertation is summarized as follows:
     (1) According to the different traffic states, a moving-based pedestrian flow detection method is provided based on pedestrian traffic characteristics for un-crowded scenes and a head-based pedestrian flow detection method is proposed based on pedestrian movement characteristics of crowded scenes. At the low-density state:the traditional Gaussian model (GMM) is improved by controling weighting parameter and variance, the possibility of moving foreground into the background model due to traffic conflict is effectively reduced; the target tracking approach of multiple moving targets merger or separation is improved by Kalman filter and Mean-Shift algorithm; BP neural network is utilized to classify movement individual, thus get the motion information of the pedestrian; at the high-density state:a head-based pedestrian flow detection method is proposed based on mixed-color model (RGB, HSV, YUV color space), head contours is extracted by Canny Algorithm and Wavelet transform, Hough transform is used to locate head by head shape features and statistics the number of pedestrian. At last, the validity and advantage of pedestrian video detection in this dissertation are verified through actual experiment.
     (2) Study on the pedestrian evacuation model under normal circumstances, a dynamic parameters model is established based on cellular automata (CA) in this paper, the Cognition-parameter is introduced to the traditional dynamic parameter model to simplify tactically the decision-making process of pedestrians, which can reflect the pedestrian judgment on the surrounding conditions and decide the pedestrian's choice of action, compared with the previous model through different pedestrian distribution, the simulation results prove that this improvement makes sense, because for the choice of exit, in addition to the requirements of the spatial distance, the density around exit is also a very important influencing factor; pedestrian evacuation with and without obstacle are studied: if there is no obstacle, the optimal exit layout is given in this paper, and the effect of exit width, pedestrian density, and system size on evacuation time in the evacuation system are discussed with single exit and multiple exits; in the pedestrian evacuation model with obstacle, the effect of different obstacles layouts on evacuation time is studied, then the relationship between obstacle moving time and evacuation time are simulated at different time step. At the same time, in order to verify the reliability and practicality of the model, the actual evacuation experiments are proposed by video detection method and model simulation, the process of simulation is consistent with the actual evacuation process.
     (3) Study on the pedestrian evacuation model under emergency circumstances, the pedestrian's visual field affected, pedestrian evacuation with Extrusion, pedestrian evacuation with fire is considered in this paper. If the pedestrian's visual field affected, the pedestrian evacuation characteristics are discussed considering the cases in which pedestrians herd evacuation without evacuation sign or pedestrians move along the wall with evacuation sign available, the effect of pedestrian sight radius is introduced, and the effect of pedestrian sight radius, pedestrian density, exit width on evacuation time are discussed; if pedestrian evacuation with Extrusion, the pedestrian evacuation model with cellular capacity variable under extrusion is constructed based on CA model, Direction-parameter and Herd-parameter are proposed, the effect of exit width, system size and pedestrian density on evacuation time are analyzed; if pedestrian evacuation with fire, the pedestrian evacuation model with fire based on Extrusion is established, the model takes into account the impact of fire on the field value of system and pedestrian evacuation behavior, the effect of spread time of fire, exit width, system size and pedestrian density on the number of deaths is discussed. At last, pedestrian evacuation process of three cases is simulated, the model and update rules are reasonable and conform to reality.
引文
[1]Abdelghany, A., Abdelghany, K., Mahmassani, H.S., Al-Gadhi, S.A.,2005. A micro-simulation assignment model for multidirectional pedestrian movement in congested facilities[J]. Transportation Research Record,1939:123-132.
    [2]Ali, A.T., Dagless, E.L.,1990. Vehicle and pedestrian detection and tracking [C]. Proceedings of IEEE Colloquium on Image Analysis for Transport Applications, London, pp.12-19.
    [3]Alizadeh, R.,2011. A dynamic cellular automaton model for evacuation process with obstacles [J]. Safety Science,49(2):315-323.
    [4]Ando, K., Oto, H., Aoki, T.,1988. Forecasting the flow of people [J] Railway Research Review, 45(8):8-13.
    [5]Beleznai C, Fruhstuck B, Bischof H.2004.Hurnan detection in Groups Using a Fast Mean Shift Procedure. IEEE International Conference on Image Processing. Singapore,349-352.
    [6]Biham, O., Middelton, A.A., Levine, D.A..1992. Self-organization and dynamical transition in traffic-flow models[J]. Physical Review A 1992,46(10):R6124-R6127.
    [7]Blue, V. J. Adler, J.L.,1999. Using cellular automata microsimulation to model pedestrian Movements[C], Proceedings of the 14th International Symposium on Transportation and traffic Theory A. Oxford: Elsevier Science Ltd., pp.235-254.
    [8]Blue, V. J. Adler, J.L.,2000, Cellular automata microsimulafion of bidirectional pedestrian Flows [J]. Transportation Research Record,1678:135-141.
    [9]Blue, V.J., Adler, J.L.,2001a. Cellular automata microsimulation for modeling bi-directional pedestrian walkways [J]. Transportation Research Part B,35(3):293-312.
    [10]Blue, V.J., Adler, J.F.,2001b. Emergent pedestrian streams and cellular automata microsimulation[C]. Transportation Research Record 80th Annual Meeting, Washington D.C.
    [11]Braun, A., Bodmann, B.E.J, Musse, S.R., Simulating virtual crowds in emergency situations [C]. Proceedings of the ACM symposium on Virtual reality software and technology. New York: ACM Press, pp.244-252.
    [12]Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.,2001. Simulation of pedestrian dynamics using a two-dimensional cellular automaton[J]. Physica A,295(3-4):507-525.
    [13]Cheah, J.,1990. State dependent queuing models [D]. Department of Industrial Engineering and Operations Research, University of Massachusetts, Amherst, MA 01003.
    [14]Chen, X.M., Shao, C.F., Yue, H.,2008. Influence of pedestrian traffic on capacity of right-turn movements at signalized intersections[C]. Transportation Research Record,2073:114-124.
    [15]Cheung, C.Y., Lam, W.H.K.,1998. Pedestrian route choice between escalator and stairway in MTR stations [J]. Journal of Transportation Engineering,124(3):277-285.
    [16]Chopard,B.,Droz,M.,著,祝玉学,赵学龙译,2003.物理系统的元胞自动机模拟[M].北京:清华大学出版社.
    [17]Chung, K.H. Hui, P.M., Gu, G.Q.,1995. Two-dimensional traffic flow problems with faulty traffic lights[J]. Physical Review E,51(1):772-774.
    [18]Codd, E.F.,1968.Cellular Automata [M]. New York:Academic Press.
    [19]Colombo.R.M, Rosini, M.D.,2005. Pedestrian flows and non-classical shocks [J]. Mathematical Methods in the Applied Sciences,28(13):1553-1567.
    [20]Comaniciu D, Meer P.2002. Mean shift:A robust approach toward feature space analysis. IEEE Trans. Pattern Anal.Machine Intell,24(5):603-619.
    [21]Comaniciu D, Ramesh V, Meer P.2000. Real-time tracking of non-rigid objects using mean shift.Computer Vision and Pattern Recognition.2:13-15.
    [22]Cremer, M., Ludwig, J.,1986. A fast simulation model for traffic flow on the basis of boolean operations [J]. Mathematics and Computers in Simulation,28(4):297-303.
    [23]Cuesta, J.A., Matinez, F.C., Molera, J.M., Sanchez, A.,1993. Phase transitions in two-dimensional traffic-flow models [J]. Physical Review E,48(6):R4175-R4178.
    [24]Dalal, N., Triggs, B.,2005. Histograms of oriented gradients for human detection[C]. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 1:886-893.
    [25]Daamen, W., Hoogendoorn, S.P.,2003. Experimental research of pedestrian walking behavior [J]. Transportation Research Record,1828,20-30.
    [26]Daamen, W., Hoogendoorn, S.P.,2004. Level difference impacts in passenger route choice modeling[C]. TRAIL conference proceedings, A world of transport, infrastructure and logistics, pp:103-127.
    [27]Daamen, W., Bovy, P.H.L., Hoogendoorn, S.P., Reijt, A.,2005a. Influence of changes in level on passenger route choice in railway stations[C]. Transportation Research Record,1930:12-20.
    [28]Daamen, W., Hoogendoorn, S.P., Bovy, P.H.L.,2005b. First-order pedestrian traffic flow theory[J] Transportation Research Record,1934:43-52/
    [29]Daamen, W., Hoogendoorn, S.P.,2007. Free speed distributions-Based on empirical data in different traffic conditions[C]. Pedestrian and evacuation dynamics 2005, Berlin, Heidelberg, New York:Springer, Partl:13-25.
    [30]Dijkstra, J., Jessurun, J., Timmermans, H.,2001. A multi-agent Cellular Automata Model of pedestrian movement[C]. Pedestrian and Evacuation Dynamics. Verlag, Berlin:Springer,2001, pp.173-181.
    [31]Dong, L.Y., Xue, Y.,2002. One-dimensional cellular automation model of traffic flow based on car following idea [J]. Applied Mathematical and Mechanics.23(4):331-337.
    [32]Fang W.F., Yang, L.Z., Fan, W.C.,2003. Simulation of bi-direction pedestrian movement using a cellular automata model[J]. Physica A,321 (3-4):633-640.
    [33]Federal Emergency Management Agency (FEMA),2002. Special events contingency planning[R].
    [34]Florian, M., Mahut, M., Tramblay, N.,2001. A hybrid optimization-mesoscopic simulation dynamic traffic assignment model[C]. Proceedings of the 2001 IEEE Intelligent Transport Systems Conference. USA:IEEE, pp.120-123.
    [35]Frisch, U., Hasslacher, B., Pomeau, Y.,1986. Lattice-gas automata for the Navier-Stokes equation [J], Physical Review Letters,56:1505-1508.
    [36]Fruin, J.J.,1971a. Designing for pedestrians: A level of service concept [J]. Highway Research Record,355(12):1-15.
    [37]Fruin, J.J.,1971b. Pedestrian planning and design, metropolitan association of urban designers and environmental planners [M]. New York: Now York, Inc.
    [38]Fugger, T.F., Randles, B.C., Stein, A.C., Whiting, W.C., Gallagher, B.,2000. Analysis of pedestrian gait and perception/reaction at signal-controlled crosswalk intersections [J]. Transportation Research Record,1705:20-25.
    [39]Fukamachi, M., Nagatani, T.,2007. Sidle effect on pedestrian counter flow[J]. Physica A, 377(1):269-278.
    [40]Fukui, M, Ishibashi, Y,1996.Traffic flow in 1D cellular automaton model including cars moving with high speed [J]. Journal of the Physical Society of Japan,65(6):1868-1870.
    [41]Gardner. M.,1970. The fantastic combination of John Conway's solitaire game life[M]. Scientific American,223(4):120-123.
    [42]Gates, T.J, Noyce, D.A., Bill, A.R., Ee, N.V,2006. Recommended walking speeds of pedestrian clearance timing based on pedestrian characteristics [J]. Transportation Research Record, 1982:38-47.
    [43]Gilbert, W.J.,1976. Modern algebra with applications [M]. New York:John Wiley & Sons.
    [44]Gipps, P.G., Marksjo, B.,1985. A micro-simulation model for pedestrian Flows[J]. Mathematics and Computers in Simulation,27(2):95-105.
    [45]Glazer, L.J., Cruz, R.,2003. Intelligent transportation system at the 2002 Salt Lake City Winter Olympic Games: Event study: Traffic management and travel information[R], Iteris, Ine., inAnaheim, California.
    [46]Grewal, M.S., Andrews, A.P.,2001. Kalman filtering theory and practice using Matlab [M]. New York:John Wiley & Sons, Inc.
    [47]Guo, R.Y., Huang, H.J.,2008. A mobile lattice gas model for simulating pedestrian evacuation[J]. Physica A,387(2-3):580-586.
    [48]Guo, R.Y., Huang, H.J.,2012. Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results[J].Transportation Research Part B, 2012 (in press),doi:10.1016/j.trb.2012.01.002
    [49]Haritaoglu, I., Harwood, D., Davis, L.S.,1998, Ghost: A human body part labeling system using silhouettes [J]. Proceedings of 14th International Conference on Pattern Recognition,1: 77-82.
    [50]Haritaoglu, I., Harwood, D., Davis, L.S.,1999. Hydra: multiple people detection and tracking using silhouettes [C]. Proceedings of the 2nd IEEE Workshop on Visual Surveillance,pp. 210-217.
    [51]Heikkila, J., Silven, O.,2004. A real-time system for monitoring of cyclists and pedestrians [J]. Image and Vision Computing,22(7):563-570.
    [52]Helbing, D.,1991. A mathematical model for the behavior of pedestrians [J].Behavioral Science,36(3):298-310.
    [53]Helbing, D., Molnar, P.,1995. Social force model for pedestrian dynamics [J].Physical Review E,51 (4):4282-4286.
    [54]Helbing, D., Vicsek T.,1999. Optimal Self-Organization [J]. New Journal of Physics,1(13): 1-13.
    [55]Helbing, D., Farkas, I., Vicsek, T.,2000.Simulating dynamical features of escape panic [J], Nature,407:487-490.
    [56]Helbing, D., Isobe, M., Nagatani T, Takimoto, K.,2003. Lattice gas simulation of experimentally studied evacuation dynamics [J]. Physical Review E,67:067101.
    [57]Helbing, D., Buzna, L., Johansson, A., Werner, T.,2005. Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions [J] Transportation Science, 39(1):1-24.
    [58]Henein, C.M., White, T.,2007. Macroscopic effects of microscopic forces between agents in crowd models[J]. Physica A,373:694-712.
    [59]Hoogendoorn, S.P., Bovy, P.H.L.,2000.Gas-kinetic modeling and simulation of pedestrian flow [J]. Transportation Research Record,1710:28-36.
    [60]Hoogendoorn, S.P.,2001. Normative pedestrian flow behaviors. Report VK2001.002 [R]. Transportation and Traffic Engineering Section, Delft University of Technology.
    [61]Hoogendoorn, S.P.,2002a. Walker behavior modeling by differential games [R]. Delft University of technology.
    [62]Hoogendoor, S.P., Bovy, P.H.L.,2002b. Normative pedestrian behavior theory and modeling[C]. Proceedings of the 15th international Symposium on Transportation and Traffic Theory.
    [63]Hoogendoorn, S.P.,2002c. Pedestrian travel behavior in walking areas by subjective utility optimization [C]. Proceedings of the 81th Annual Meeting of the Transportation Research Board(CD-ROM),Washington,D.C.
    [64]Hoogendoorn, S.C.,2003. Microscopic simulation of pedestrian flows[C]. Transportation Research Board annual meeting, Washington, D.C., National Academy Press, pp.1-11.
    [65]Hoogendoorn, S.P., Bovy, P.H.L.,2004. Pedestrian route-choice and activity scheduling theory and models [J]. Transportation Research Part B,38(2):169-190.
    [66]Hoogendoorn, S.P., Daamen, W.,2005. Pedestrian behavior at bottlenecks [J] Transportation Science,2005,39(2):147-159.
    [67]Huang, X.F., Wang, K.J., Guo, L.Y.,2007. Modeling of pedestrian evacuation safety control system based on agent[C]. Proceedings of the IEEE International Conference on Mechatronics and Automation, pp.3582-3586.
    [68]Hughes, R.L.,2000. The flow of large crowds of pedestrians [J]. Mathematics and Computers in Simulation,53(4-6):367-370.
    [69]Hughes, R.L.,2002. A continuum theory for the flow of pedestrians [J]. Transportation Research Part B,2002,36(6):507-535.
    [70]Hughes, R.L.,2003. The flow of human crowds [J]. Annual Review of Fluid Mechanics, 35(35):169-182.
    [71]Imanishi,Y., Kuwajima, R., Nagatani, T.,2008. Transition from homogeneous to inhomogeneous flows in a lattice-gas binary mixture of slender particles[J]. Physica A,387(10): 2337-2352.
    [72]Institute of transportation engineers,2003. Trip generation handbook,2nd version [M]. ITE, Institute of Transportation Engineer, Washington, D.C.
    [73]Isobe, M., Helbing, D., Nagatani, T.,2004a. Experiment, theory, and simulation of the evacuation of a room without visibility [J]. Physical Review E,69:066132.
    [74]Isobe, M., Adachi, T., Nagatani, T.,2004b. Experiment and simulation of pedestrian counter flow[J]. Physica A,336(3-4):638-650.
    [75]Itami, R.M.,2002. Estimating capacities for pedestrian walkways and viewing platforms-A Report to Parks Victoria [R]. Australia: GeoDimensions Pty Ltd.
    [76]Itoh, T., Nagatani, T.,2002. Optimal admission time for shifting the audience[J]. Physica A, 313(3-4):695-708.
    [77]Ito, S., Nagatani, T., Nagatani, T., Saegusa,T.,2007. Volatile jam and flow fluctuation in counter flow of slender particles[J]. Physica A,2007,373:672-682
    [78]Jiang, R., Helbing, D.,2005. Avoiding inefficient oscillations in intersecting vehicle and pedestrian flows by a speed limit avoiding inefficient oscillations in intersecting vehicle and pedestrian flows by a speed limit[C]. Traffic and Granular Flow,2007, Part III, pp.323-328.
    [79]Jiang, R., Wu, Q.S.,2006a. The moving behavior of a large object in the crowds in a narrow channel[J]. Physica A,364:457-463.
    [80]Jiang, R., Wu, Q.S.,2006b. Interaction between vehicle and pedestrians in a narrow channel[J]. Physica A,368(1):239-246.
    [81]Jiang, R., Wu, Q.S.,2007. Pedestrian behaviors in a lattice gas model with large maximum velocity[J]. Physica A,2007,373:683-693.
    [82]KaewTraKulPong, P., Bowden, R.,2001. An improved adaptive background mixture model for real-time tracking with shadow detection [C]. Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems, pp.149-158.
    [83]Kardi, T., Takeyama, Y., Inamura,H.,2000. Determination of Pedestrian Flow Performance Based on Video Tracking and Microscopic Simulations[C], Proceedings of Infrastructure Planning Conference Ashikaga, Japan,23(1):639-642
    [84]Kardi, T., Takeyama, Y., Inamura, H.,2001.Tracking system to automate data collection of microscopic pedestrian traffic flow [C]. Proceeding of the 4th Eastern Asia Society for Transportation Studies,3(1):11-25.
    [85]Kirchner, A., Schadschneider, A.,2002. Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics [J]. Physica A,2002 312(1-2):260-276.
    [86]Kirchner, A., Klupfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.,2003a. Simulation of competitive egress behavior: Comparison with aircraft evacuation data [J]. Physica A,324(3-4):689-697.
    [87]Kirchner, A., Nishinari, K., Schadschneider, A.,2003b. Friction effect s and clogging in a cellular automaton model for pedestrian dynamics [J]. Physical Review E,67:056122.
    [88]Klupfel, H.,2005a. The simulation of crowd dynamics at very large events-Calibration, empirical data, and validation[C]. Pedestrian and Evacuation Dynamics,2007, Part 3, pp.285-296.
    [89]Klupfel, H.,2005b. The simulation of crowds at very large events. Traffic and Granular Flow[C],2007, pp.341-346.
    [90]Lam, W.H.K, Cheung, Y.U.,2000. Pedestrian speed/flow relationships for walking facilities in Hong Kong [J], Journal of Transportation Engineering,2000,126(4):277-285.
    [91]Lam, W.H.K., Cheung, C.Y., Lam, C.F.,2003. A study of crowding effects at the Hong Kong light rail transit stations [J]. Transportation Research Part A,1999,33(5):401-415.
    [92]Lee, J.Y.S., Lam, W.H.K., Wong, S.C.,2001. Pedestrian simulation model for Hong Kong underground stations [C]. IEEE Intelligent Transportation Systems Proceedings, Oakland, USA, pp.554-558.
    [93]Lee, J.Y.S., Lam, W.H.K., ASCE, Y.,2003. Levels of service for stairway in Hong Kong underground stations [J]. Journal of Transportation Engineering,2003,129(2):196-202.
    [94]Lefevre, S., Fluek, C., Maillard, B.,2000. A fast snake-based method to track football players [C]. Proceedings of IAPR International Workshop on Machine Vision Applications, Tokyo, Japan, pp.501-504.
    [95]Lezoray, O., Fournier, D., Cardot, H.,2004. Neural Network Induction Graph for Pattern recognition [J], Neuroeomputing,57,2004:257-274.
    [96]Li, J., Shao, C.F., Xu, W.T., Dong, C.J.,2009a. Real-time pedestrian detection based on improved Gaussian mixture model [C]. Proceedings of IEEE International Conference on improved Measuring Technology and Mechatronies Automation, pp.269-272.
    [97]Li, J., Shao, C.F., Xu, W.T., Yue, H.,2009b. Real time tracking of moving pedestrian. [C]. Proceedings of IEEE International Conference on Measuring Technology and Meehatronies Automation, pp.811-815.
    [98]Li, J., Shao, C.F., Zhang, X.,2009c. Pedestrian detection & tracking from a moving vehicle [C]. Proceedings of International Conference on Image Processing: Computer Vision and Pattern Recognition, pp.227-232.
    [99]Li, J., Shao, C.F., Xu, W.T., Li, J.,2010a. Real-time system for tracking and classification of pedestrian and bicycle [J]. Transportation Research Record: Journal of the Transportation Research Board,2198:83-92.
    [100]Li, J., Shao, C.F., Xu, W.T., Dong, C.J., Zhao, D., Liu, Y.H.,2010b. A video-based algorithm for moving objects detection at signalized intersection [C]. Proceedings of international Conference on Sustainable Urban Transport and Environment, pp.1138-1143.
    [101]Li, J., Yang, L.Z., Zhao, D.L.,2005. Simulation of bi-direction pedestrian movement in corridor[J]. Physica A,354:619-628.
    [102]Li, K.P., GAO Z.Y.,2004. Cellular automata model of traffic flow based on car-following model [J]. Chinese Physics Letters,21(11) 2120-2123.
    [103]Lipton, A.J., Fujiyoshi, H., Patil, R.S.,1998. Moving target classification and tracking from real-time video [C]. Proceedings of Applications of Computer Vision, pp.8-14.
    [104]Li, X.B., Wu, Q.S., Jiang, R.,2001.Celluar automaton model considering the velocity effect of a car on the successive car [J]. Physical Review E,64:066128.
    [105]Lo, S.M., Fang, Z., Lin, P., Zhi, G.S.,2004. An evacuation model:the SGEM package [J]. Fire Safety Journal,39(3):169-190.
    [106]Lo, S.M., Huang, H.C., Wang, P., Yuen, K.K.,2006. A game theory based exit selection model for evacuation [J]. Fire Safety Journal,41(5):364-369.
    [107]Lovas, G.G.,1994. Modeling and simulation of pedestrian traffic flow [J]. Transport Research B,28(3):429-443.
    [108]Maerivoet, S., Moor, B.D.,2005. Cellular automata models of road traffic [J]. Physics Reports,419(1):1-64.
    [109]Maniccam, S.,2005. Effects of back step and update rule on the congestion of mobile object[J]. Physica A,2005,346(3-4):631-650.
    [110]May, A.D,1990. Traffic flow fundamental [M]. New Jersey:Prentice Hall.
    [111]Mauron, L.,2002. Pedestrian simulation methods [D].Swiss, Eidgenossische Technische Hochschule Zurich.
    [112]Mitchell, D.H., MacGregor, S.J.,2001. Smith Topological network design of pedestrian networks [J] Transportation Research Part B 2001,35(2):107-135.
    [113]Mnramatsu, M., Irie, T., Nagatani, T.,1999. Jamming transition in pedestrian counter flow [J]. Physica A,267(3):487-498.
    [114]Muramatsu, M., Nagatani, T.,2000a. Jamming transition in two-dimensional pedestrian traffic[J]. Physica A,275(1-2):281-291.
    [115]Muramatsu, M., Nagatani, T.,2000b. Jamming transition of pedestrian traffic at a crossing with open boundaries[J]. Physica A,286(1-2):377-390.
    [116]Muraleetharant, T., Adachit, T., Uchida, K.E., Hagiwara, U., Kagayas, S.,2003. A study on evaluation of pedestrian level of service along sidewalks and at intersections using conjoint analysis[J]. Proceedings of Infrastructure Planning,28:290-294.
    [117]Muraleetharan, T., Hagiwara.T,2007. Overall Level-of-Service of the Urban Walking Environment and Its Influence on Pedestrian Route Choice Behavior:Analysis of Pedestrian Travel in Sapporo Japan[C]. Transportation Research Record,2002:7-17.
    [118]Nagai, R., Nagatani, T., Isobe M., Adachi T.,2004. Effect of exit configuration on evacuation of a room without visibility[J]. Physica A,343:712-724.
    [119]Nagai, R., Fukamachi, M., Nagatani, T.,2005. Experiment and simulation for counter flow of people going on all fours[J]. Physica A,358(2-4):516-528.
    [120]Nagai, R., Fukamachi, M., Nagatani, T.,2006a. Evacuation of crawlers and walkers from corridor through an exit [J]. Physica A,367:449-460.
    [121]Nagai, R., Nagatani, T.,2006b. Jamming transition in counter flow of slender particles on square lattice [J]. Physica A,366:503-512.
    [122]Nagel, K., Schreckenberg, M.,1992. A cellular automaton model for freeway traffic [J]. Journal of Physics I France,2(12):2221-2229.
    [123]Nagatani, T.,1993. Jamming transition in the traffic-flow model with two-level crossings [J]. Physical Review E,1993,48(5):3290-3294.
    [124]Nagatani, T.,2001. Dynamical transition and scaling in a mean-field model of pedestrian flow at a bottleneck [J]. Physica A,300(3-4):558-566.
    [125]Nakamura, E., Kehtarnavaz,N., Chang, E., Urbanik., T.,1996. Quantification of pedestrian flow parameters along crosswalks [C]. Proceedings of the Intelligent Transportation Systems Meeting, Houston, TX, pp.396-401.
    [126]Nishinari, K., Sugawara, K., Kazama, T.,2006. Modeling of self-driven particles:Foraging ants and pedestrians [J]. Physica A,372(1):132-141.
    [127]Niyogi, S.A., Adelson, E.H.,1994. Analyzing and recognizing walking figures in XYT [C] Proceedings of IEEE Computer Society Conf on Computer Vision and Pattern Recognition, pp.469-474.
    [128]Okazaki, S.,1979a. A study of pedestrian movement in architectural space, Part 1: Pedestrian movement by the application on of magnetic models [J]. Transactions of the Architectural Institute of Japan,283(3):111-119.
    [129]Okazaki, S.,1979b. A study of pedestrian movement in architectural space, Part 2: Concentrated pedestrian movement [J]. Transactions of the Architectural Institute of Japan, 284(2):101-110.
    [130]Okazaki, S.,1979c. A study of pedestrian movement in architectural space, Part 3:Along the shortest path, taking fire, congestion and unrecognized space into account [J]. Transactions of the Architectural Institute of Japan,285(2):137-147.
    [131]Okazaki, S., Yamamoto, C.,198la. A study of pedestrian movement in architectural space, Part 4:Pedestrian movement represented in perspective [J]. Transactions of the Architectural Institute of Japan,299(4):105-113.
    [132]Okazaki, S., Matsushita, S.,1981b. A study of pedestrian movement in architectural space, Part 5:AProubing walk and a guide walk by a guideboard [J]. Transactions of the Architectural Institute of Japan,302(3):87-93.
    [133]Okazaki, S., Matsushita, S.,1991. A study of simulation model for way finding behavior by experiments in Mazes [J]. Journal of Architecture, Planning and Environmental Engineering. Transactions of AIJ,429(5):51-59.
    [134]Okazaki, S., Matsushita, S.,1993. A study of simulation model for pedestrian movement with evacuation and queuing [C]. Proceeding of the International Conference on Engineering for Crowd Safety, London:Elsevier, pp.271-280.
    [135]Older, S.J.,1968. Movement of Pedestrians on Footways in Shopping Streets [J]. Traffic Engineering and Control,10(4):160-163.
    [136]Oswald, M., Lebeda, C., Schneider, U., Kirchberger, H.,2005. Full-Scale Evacuation Experiments in a smoke filled Rail Carriage—a detailed study of passenger behavior under reduced visibility[C]. Pedestrian and Evacuation Dynamics, Part 1:41-55.
    [137]Parisi, D.R., Dorso, C.O.,2005. Microscopic dynamics of pedestrian evacuation [J]. Physica A,354:606-618.
    [138]Parisi, D.R., Dorso, C.O.,2007. Morphological and dynamical aspects of the room evacuation process [J]. Physica A,385(1):343-355.
    [139]Park, J.H., Kim, H., Whang, H., Park, J., Lee, D.,2005. Development of an agent-based behavior module for evacuation models-focused on the behaviors in the dark[C]. Pedestrian and Evacuation Dynamics,2007, Part 3, pp.347-356.
    [140]Pelechano, N., Allbeck, J.M., Badler, N.I.,2007. Controlling individual agent s in high-density crowd simulation [C]. Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. San Diego, California:ACM Press, pp.99-108.
    [141]Perez, G.J., Tapang, G., Lim, M., Saloma, C.,2002. Streaming disruptive interference and power-law behavior in the exit dynamics of confined pedestrians[J]. Physica A, 312(3-4):609-618.
    [142]Pesavento. U.,1995. An implementation of von Neumann's self-reproducing machine [J]. Artificial Life,2(4):337-354.
    [143]Qiu B., Tan, H.L., Kong, L.J., Liu, M.R.,2004. Lattice-gas simulation of escaping pedestrian flow in corridor[J]. Chinese Physics B,2004,13(7):990-995.
    [144]Robert, R., Helge, J.R.,1998. Recognition of human head orientation based on artificial neural networks [J], IEEE Transaction on Neural Networks,9(2):257-265.
    [145]Rohr, K.,1994. Towards model-based recognition of human movements in sequences [J].CVGIP:Image and Understanding,59(1):94-115.
    [146]Saegusa, T., Mashiko,T., Nagatani, T.,2008. Flow overshooting in crossing flow of lattice gas[J]. Physica A,387(16-17):4119-4132.
    [147]Sarkar, A.K., Janardhan, K.S.V.S.,1997. A study on pedestrian flow characteristics[C]. Transportation Research Board proceedings on CD-ROM, Washington.
    [148]Schadschneider, A.,2002.Traffic flow: a statistical physics point of view [J]. Physica A 2002,313(1-2):153-187.
    [149]Schultz, M., Lehmann, S., Fricke.H,2007. A discrete microscopic model for pedestrian dynamics to manage emergency situations in airport terminals. Pedestrian and Evacuation Dynamics,2007, Part 3, pp.369-375.
    [150]Segen, J., Pingali, S.,1996. A camera-based system for tracking people in real time[C]. Proceedings of International Conference on Pattern Recognition,3(3):63-67.
    [151]Seyfried, A., Steffen, B., Lippert, T.,2006. Basics of modeling the pedestrian flow [J]. Physica A,368(1):232-238.
    [152]Shi, J.G., Chen, Y.Y., Rong, J., Liu, X.M.,2004. Pedestrian traffic analysis and relevant operation for arrival and leaving in Olympic park of Beijing Olympic games [Z]. TRANSEC ATHENS 2004. Athens, Greece.
    [153]Shi, J.G, Chen, Y.Y, Rong, J., Ren, F.T,2005. Research on pedestrian crowd characteristics and behaviors in peak-time on Chinese campus [C]. Proceeding of 3rd Conference on Pedestrian and Evacuation Dynamics, PED 2005 Springer, Vienna Austria, pp.79-90.
    [154]Shi, J.G., Chen, Y.Y, Ren, F.T., Rong, J.,2007. Research on pedestrian behaviors and traffic characteristics at unsignalized midblock crosswalk: Case study in Beijing [J]. Transportation Research Record,2038:23-33.
    [155]Sisiopiku, V.P., Akin, D.,2003. Pedestrian behaviors at and perceptions towards various pedestrian facilities:an examination based on observation and survey data [J] Transportation Research Part F,6(4):249-274.
    [156]Sisiopiku, V.P., Byrd, J., Chittoor, A.,2007. Application of level of service methods for the evaluation of operations at pedestrian facilities[C]. Transportation Research Record,2002, 11-124.
    [157]Sllafique, K., Shah.M,2005. A noniterative greedy algorithm for multiframe point correspondence [J]. IEEE Transactions on pattern Analysis and Machine Intelligence, 27(1):51-65.
    [158]Song, W.G., Xu, X., Wang, B.H., Ni S.J.,2006a. Simulation of evacuation processes using a multi-grid model for pedestrian dynamics [J]. Physica A,363:492-500.
    [159]Song, W.G., Yu, Y.F., Wang, B.H., Fan, W.C.,2006b. Evacuation behaviors at exit in CA model with force essentials:A comparison with social force model [J]. Physica A, 371(2):658-666.
    [160]SRF, Consulting 2000. Adaptive urban signal control and integration [R], Group Minnesota Department of Transportation.
    [161]Stauffer, C., Grimson, W.E.L.,1999. Adaptive background mixture models for real-time tracking, In Proceedings[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2:246-252.
    [162]Still, G.K.,2000. Crowd Dynamics [D]. Warwick:University of Warwick.
    [163]Tabak, V., Vries, B. de, Dijkstra, J.,2005. Model for office building usage simulation[C]. Pedestrian and Evacuation Dynamics,2007, Part 3, pp.391-403.
    [164]Tajima, Y., Nagatani, T.,2001. Scaling behavior of crowd flow out side a hall [J]. Physica A,292(1-4):545-554.
    [165]Tajima, Y., Takimoto, K.,, Nagatani,T.,2001a. Scaling of pedestrian channel flow with a bottleneck[J]. Physica A,294(1-2):257-268.
    [166]Tajima, Y, Nagatani, T.,2001b. Scaling behavior of crowd flow outside a hall[J]. Physica A,292(1-4):545-554.
    [167]Tajima, Y, Nagatani, T.,2002a. Clogging transition of pedestrian flow in T-shaped channel [J]. Physica A,303(1-2):239-250.
    [168]Tajima, Y, Takimoto, K., Nagatani,T.,2002b. Pattern formation and jamming transition in pedestrian counter flow[J]. Physica A,313(3-4):709-723.
    [169]Takimoto, K., Tajima, Y., Nagatani, T.,2002. Effect of partition line on jamming transition in pedestrian counter flow[J]. Physica A,308(1-4):460-470
    [170]Takimoto, K., Nagatani, T.,2003. Spatio-temporal distribution of escape time in evacuation process [J]. Physica A,320:611-621.
    [171]Tanariboon, Y., Hwa, S.S., Chor, C.H.,1986. Pedestrian characteristics study in Singapore [J]. Journal of Transportation Engineering, ASCE,112(3):229-235.
    [172]Teknomo, K.,2002. Microscopic pedestrian flow characteristics:Development of an image processing data collection and simulation model [D]. Sendai, Japan:Toholm University.
    [173]Teknomo, K.,2006. Application of microscopic pedestrian simulation model[J]. Transportation Research Part F,9(1):15-27.
    [174]Thompson, P.A., Marchant, E.W.,1995a. A computer model the evacuation of large building populations [J]. Fire Safety Journal,24(1):131-148.
    [175]Thompson, P.A., Marchant, E.W.,1995b. Testing and application of the computer model. SIMULEX [J]. Fire Safety Journal,24(3):149-166.
    [176]Toyama, M.C., Bazzan, A.L.C., Silva R.D.,2006. An agent-based simulation of pedestrian dynamics:from lane formation to auditorium evacuation [C]. Proceedings of the fifth international joint conference on Autonomous agent s and multiagent systems. New York: ACM Press, pp.108-110.
    [177]Transportation Research Board,2000, Highway Capacity Manual [R], Washington, D.C.
    [178]Tregenza, P.R.,1976. The design of interior circulation:People and building [M]. Van Nostrand Reinhold Company, New York.
    [179]Varas, A., Cornejo, M.D., Mainemer, D., Toledo, B., Rogan, J., Munoz, V, Valdivia, J.A., 2007 Cellular automaton model for evacuation process with obstacles [J]. Physica A,382(2): 631-642.
    [180]Viola, P., Jones, M.J., Snow, D.,2005. Detecting pedestrians using patterns of motion and appearance [J]. Proceedings of International Conference on Computer Vision,63(2):153-161.
    [181]Virkler, M.R., Elayadath, S.,1994. Pedestrian speed-flow-density relationships[J] Transportation Research Record,1994,1438:51-58.
    [182]Wang, L., Ning, H., Tan, T., Hu, W.,2004. Fusion of static and dynamic body biometrics for gait recognition [J]. IEEE, Transactions on Circuits and Systems for Video Technology, 14(2):149-158.
    [183]Was, J.,2005. Cellular automata model of pedestrian dynamics for normal and evacuation conditions[C]. Proceedings of the 5th International Conference on Intelligent Systems Design and Applications(ISDA'05), pp.154-159
    [184]Watts, J.M.,1987. Computer models for evacuation analysis [J]. Fire Safety Journal, 12(3):237-245.
    [185]Welch, G., Bishop, G.,2004. An introduction to the Kalman filters [R]. Department of Computer Science University of North Carolina at Chapel Hill.
    [186]Weidmann U.,1993. Transporttechnik Der Fussgaenger [J], ETH-Zurich, Schriftenreihe Ivt-Beriehte 90.
    [187]Weng, W.G., Chen, T., Yuan, H.Y., Fan, W.C.,2006. Cellular automaton simulation of pedestrian counter flow with different walk velocities [J]. Physical Review E,74:036102.
    [188]Weng, W.G, Shen, S.F., Yuan, H.Y., Fan, W.C.,2007. A behavior-based model for pedestrian counter flow[J]. Physica A,375(2):668-678.
    [189]Wolfram, S.,2002. A new kind of science [M]. Champaign Illinois: Wolfram Media.
    [190]Wolki, M., Schadschneider, A., Schreckenberg, M.,2005. Fundamental diagram of a one-dimensional cellular automaton model for pedestrian flow-the ASEP with shuffled update. Pedestrian and Evacuation Dynamics,2007, Part3, pp.423-428.
    [191]Wren, C.R., Azarbayejani,A., Darrell, T., Pentland, A.P.,1997.Pfinder:Real-time tracking of the human body [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):780-785.
    [192]Wu, Y., Yu, T., Hua, G.,2005. A statistical field model for pedestrian detection[C]. Proceedings of IEEE International Conference on Computer Vision,1:1023-1030.
    [193]Yamamoto, K., Kokubo, S., Nishinari, K.,2007. Simulation for pedestrian dynamics by real-coded cellular automata (RCA) [J]. Physica A,379(2):654-660.
    [194]Yang, L.Z., Fang W.F., Li, J., Huang, R., Fan, W.C.,2003. Cellular automata pedestrian movement model considering human behavior[J]. Chinese Science Bulletin,48(16):1695-1699.
    [195]Yang, L.Z., Zhao, D.L., Li J, Fang, T.Y.,2005. Simulation of the kin behavior in building occupant evacuation based on cellular automaton [J]. Building and Environment, 40(3):411-415.
    [196]Yang, L.Z., Li, J., Liu, S.B.,2008. Simulation of pedestrian counter-flow with right-moving preference [J]. Physica A,387(13):3281-3289.
    [197]Yang, J.S.,2003. Duluth Entertainment Convention Center (DECC) special events traffic flow study [R], Department of Electrical and Computer Engineering University of Minnesota.
    [198]Ying Zheng, Bin Jia, Xin-Gang Li, Nuo Zhu,2011, Evacuation dynamics with fire spreading based on cellular automaton[J]. Physica A,390(18-19):3147-3156.
    [199]Yu, Y.F., Song, W.G,2007. Cellular automaton simulation of pedestrian counter flow considering the surrounding environment [J]. Physical Review E,2007,75:046112.
    [200]Yuan, W. F., Tan, K.H.,2007. An evacuation model using cellular automata [J]. Physica A, 384(2):549-566.
    [201]Yue, H., Hao, H.R., Chen, X.M., Shao, C.F.,2007. Simulation of pedestrian flow on square lattice based on cellular automata model[J]. Physica A,384(2):567-588.
    [202]Yuhaski, S.J., Smith, J.M.,1989. Modeling circulation systems in buildings using state dependent models [J] Queuing Systems,4(4):319-338.
    [203]Zhao, D.L., Yang, L.Z., Li J.,2006. Exit dynamics of occupant evacuation in an emergency [J]. Physica A,2006,363(2):501-511.
    [204]Zhao, J.L., Wu, J.P.,2003. Analysis of pedestrian behavior with mixed traffic flow at intersection Intelligent Transportation Systems[C] IEEE Intelligent Transportation Systems Proceedings, 1(1):323-327.
    [205]Zhao, M., Li, S.Z., Bu, J.J.,2004. Shape evaluation for weighted Active Shape Models [C]. Proceedings of the Asian Conference Computer Vision,2004(2):1074-1079.
    [206]陈宽民,2003.道路通行能力分析[M].北京:人民交通出版社.
    [207]陈鹏,2006.基于多智能主体的人群流动形态动态模拟研究[D].上海:同济大学.
    [208]陈然,董力耘,2005.中国大都市行人交通特征的实测和初步分析[J].上海大学学报(自然科学版),11(1):93-97.
    [209]陈晓明,2008.混合交通条件下城市道路信号交叉口通行能力理论研究[D].北京:北京交通大学,2008.
    [210]戴世强,冯苏苇,顾国庆,1997.交通流动力学:它的内容、方法和意义[J].自然杂志,19(4):196-201.
    [211]冯苏苇,1997.交通流的动力学模型与数值模拟[J].上海大学学报(自然科学版),3(4):443-453.
    [212]顾炯,2012.基于头肩轮廓特征的人头检测系统的研究[D].上海:东华大学
    [213]郭立大,1998.运筹学[M].长春:吉林科学技术出版社,1998:121-122.
    [214]韩宇,韩宝明,李得伟,2007.地铁站乘客上下车效率因素影响分析[J].城市轨道交通研究,10(7):43-46.
    [215]何宇强,毛保华,J‘勇,张好智,杨静,2006.铁路客运站最高聚集人数模拟计算研究[J].系统仿真学报,18(1):213-224.
    [216]胡青梅,2006.大型公共建筑环境中人群拥挤机理及群集行为特性的研究[D].北京:北京交通大学,2006.
    [217]黄乒花,孔令江,刘慕仁,2001.二维主干道CA交通流模型的研究[J].广西师范大学学报:自然科学版,19(2):8-12.
    [218]贾斌,2003.交通瓶颈处车辆复杂动态特性的元胞自动机模拟[D].合肥:中国科学技术大学.
    [219]贾斌,高自友,李克平,李新刚,2007.基于元胞自动机的交通系统建模与模拟[M].北京:科学出版社.
    [220]李才伟,1997.元胞自动机及复杂系统的时空演化模拟[D].武汉:华中理工大学.
    [221]李得伟,韩宝明,鲁放,2006.基于多智能体的交通枢纽微观仿真研究[J].都市快轨交通,19(5):48-51.
    [222]李得伟,2007a.城市轨道交通枢纽乘客集散模型及微观仿真理论[D].北京:北京交通大学.
    [223]李得伟,韩宝明,韩宇,2007b.一种逆向改进型A+路径搜索算法[J].系统仿真学报, 19(22):5175-5177.
    [224]李得伟,韩宝明,张琦,2007c.基于动态博弈的行人交通微观仿真模型[J].系统仿真学报,19(11):2590-2593.
    [225]李娟,邵春福,杨丽雅,李琦,2009.基于Kalman滤波的行人跟踪方法[J].交通运输系统工程与信息,9(6):145-153.
    [226]李俊山,马颖,赵方舟,郭莉莎,2011.改进的Canny图像边缘检测算法[J].光子学报,40(增刊):50-54.
    [227]李琦,邵春福,2011.基于HSV空间中密码本模型的行人视频检测[J].交通运输系统工程与信息,11(4):46-50.
    [228]李琦,邵春福,岳昊,赵丹,孙轶轩,2011.基于改进密码本模型的视频对象检测[J].交通信息与安全,5(29):140-144.
    [229]李志慧,张长海,曲昭伟,2006.交通流视频检测中背景模型与阴影检测算法[J].吉林大学学报(工学版),36(6):993-997.
    [230]刘轩,2009.基于图像处理的行人运动微观行为特征实验研究[D].合肥:中国科学技术大学.
    [231]刘智丽,陈金川,郭继孚,2006.城市交通宏观仿真建模及开发实例研究[J].交通运输系统工二程与信息,6(4):100-107.
    [232]倪桂明,杨东援,2002.机场航站楼客流计算机仿真研究[J].系统仿真学报,14(2):229-233.
    [233]邱冰,2004.楼房内人员逃生流的自动机模拟研究[D].桂林:广西师范大学.
    [234]阮秋琦,阮宇智译,2007..数字图像处理(第二版)[M].北京:电子工业出版社.
    [235]宋卫国,于彦飞,张和平,2005a.某大型商贸中心的人员疏散性能化分析[J].中国工程科学,7(10):78-83.
    [236]宋卫国,于彦飞,范维澄,张和平,2005b.一种考虑摩擦与排斥的人员疏散元胞自动机模型[J].中国科学E辑,35(7):725-736.
    [237]孙智勇,2004.信号交义口人行横道的行人交通特征研究[D]北京:北京工业大学.
    [238]谭惠丽,刘慕仁,孔令江,2003.边界部分开放条件下改进N-S交通流模型的研究[J].广西师范大学学报:自然科学版,21(2)“16-19.
    [239]谭惠丽,邱冰,刘慕仁,孔令江,2004.房间内人群疏散过程的元胞自动机研究[J].广西师范大学学报:自然科学版,22(4):14.
    [240]唐孝威,张训生,陆坤,2004.交通流与颗粒流[M].杭州:浙江大学出版社,pp.66-125.
    [241]田广,2007.基于视觉的行人检测和跟踪技术的研究[D].上海:上海交通大学.
    [242]王殿海,曲昭伟,2001.对交通流理论的再认识[J].交通运输工程学报,1(4):55-59.
    [243]王殿海,2002.交通流理论[M].北京:人民交通出版社.
    [244]王建聪,高利平,陈绍宽,何宇强,2006.城市公共交通枢纽换乘组织仿真研究[J].交通运输系统工程与信息,6(6):96-102.
    [245]王亮,胡卫明,谭铁牛,2002.人运动的视觉分析综述[J].计算机学报,25(3):225-237.
    [246]于亮,2004.步态分析与识别[D].北京:中国科学院.
    [247]王蓉,高立群,柴玉华,田磊.2005.综合Canny法与小波变换的边缘检测方法[J].东北大学学报(自然科学版),26(12):1131-1133
    [248]王志,2004.城市道路行人过街立交设施服务性能综合评级体系研究[D].西安:长安大学.
    [249]魏明,杨方廷,曹正清,2003.交通仿真的发展及研究现状[J].系统仿真学报,15(8):1179-1184.
    [250]吴建平,黄岭,赵坚利,2004.北京市道路信号交叉口自行车和行人的行为研究[J].交通运输系统工程与信息,4(2):105-114.
    [251]吴娇蓉,叶建红,陈小鸿,2007.大型活动场馆参观人流服务水平分级研究[J].同济大学学报(自然科学版),35(6):850-855.
    [252]吴正,王昀,沈俊彦.地铁候车厅客流疏散时间的数学模型研究[J].复旦学报:自然科学版,2006,45(5):594-598.
    [253]杨立中,方伟峰,黄锐,邓志华,2002.基于元胞自动机的火灾中人员逃生的模型[J].科学通报,2002,47(12):896-901.
    [254]杨兆升,2000.城市交通流诱导系统理论与模型[M].北京:人民交通出版社.
    [255]肖华,张文俊,2005.一种考虑内在状态的紧急撤退模型[J].计算机仿真,22(12):49-51.
    [256]谢惠民,1994.非线性科学丛书:复杂性与动力系统[M].上海:上海科技教育出版社.
    [257]谢灼利,张建文,魏利军,刘骥.地铁车站站台火灾中人员的安全疏散[J].中国安全科学学报,2004,14(7):21-25.
    [258]徐尉南,吴正,2005.地铁候车厅客流运动的数学模型[J].铁道科学与工程学报,2(2):70-75.
    [259]薛郁,董力耘,戴世强,2001.一种改进的一维元胞自动机交通流模型及减速概率影响[J].物理学报,50(3):445-449.
    [260]姚鸿勋,刘明宝,高文,2003.基于彩色图像的色系坐标变换的而部定位于跟踪法[J].计算机学报,23(2):155-165.
    [261]姚智胜,2007.基于实时数据的道路网短时交通流预测理论与方法研究[D].北京:北京交通大学.
    [262]岳吴.2008.基于元胞自动机的行人流仿真模型研究[D].北京:北京交通大学.
    [263]岳吴,邵春福,姚智胜,2009.基于元胞自动机的行人疏散流仿真研究[J].物理学报,58(07):4523-4530.
    [264]岳吴,邵春福,关宏志,段龙梅,2010.基于元胞自动机的行人视线受影响的疏散流仿真研究[J].物理学报,59(07):4499-4507.
    [265]张建勋,韩宝明,李得伟,2007VISSIM在地铁枢纽客流微观仿真中的应用[J].计算机仿真,24(6):239-242。
    [266]张晋,2004.基于元胞自动机的城域混合交通流建模方法研究[D].杭州:浙江大学.
    [267]张敏敏,2008.复杂环境下的人头定位技术研究与实现[D].南京:南京理工大学.
    [268]张琦,韩宝明,鲁放,2007a.城市轨道交通枢纽的动态评价方法研究[J].都市快轨交通,20(6):41-44.
    [269]张琦,韩宝明,李得伟,2007b.地铁枢纽站台的乘客行为仿真研究[J].系统仿真学报,19(22):5120-5124.
    [270]赵道亮,2007.紧急条件下人员疏散特殊行为的元胞自动机模拟[D].合肥:中国科学技术大学.
    [271]赵光华,陈艳艳,车广伙,耿雪,2006.大型赛事步行人流交通特性研究[J].道路交通与安全,6(2):19-21.
    [272]赵宏中,张彦超.2010.基于Canny边缘检测算子的图像检索算法[J].电子设计工程,18(2):75-80
    [273]赵明,2004.二维视觉对象分割[D].杭州:浙江大学.
    [274]郑建湖,王明,2009.动态交通信息采集技术比较分析[J].交通标准化,4:42-47.
    [275]郑营,2011,基于元胞自动机模型的火灾环境下人员疏散研究[D].北京:北京交通大学.
    [276]中国公路学会《交通工程手册》编委会,2001.交通工程手册[M].北京:人民交通出版社,pp.583-615.
    [277]周成虎,孙战利,谢一春,2000.地理元胞自动机研究[M].北京:科学出版社.
    [278]周金旺,陈秀丽,孔令江,刘慕仁,苏磊,唐国宁,2008.基于元胞自动机的行人流疏散模拟研究[J].广西师范大学学报:自然科学版,26(4):14-17.
    [279]朱健英,2001.智能系统非经典数学方法[M].武汉:华中科技大学出版社.
    [280]朱山江,史其信,2005.基于元胞自动机的行人管理[J].ITS通讯,1:39-41.
    [281]朱效正.2009.复杂条件下人头检测与计数技术研究与实现[D].南京:南京理工大学

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700