用户名: 密码: 验证码:
具有形状记忆性能的可生物降解高分子复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要以生物降解高分子聚-D,L-乳酸(PDLLA)为基质,复合生物活性无机粒子,如羟基磷灰石(HA)、β-磷酸三钙(β-TCP)和四氧化三铁(Fe_3O_4)等,制备具有热致型形状记忆特性的可生物降解复合材料;并探讨复合材料的形状记忆效应的机理,材料降解过程的机理,以及聚合物与无机相之间的界面作用机理;期望得到一种安全、有效且具有形状记忆功能的可生物降解高分子复合材料,为生物材料在此相关领域的进一步拓展提供一个理论支持。
     首先,我们在论文第二章研究了具有可生物降解、生物相容性和形状记忆特性的PDLLA和HA复合材料。通过动态力学性能分析(DMA),我们可发现:PDLLA/HA复合材料的储能模量(E')在T_g前后具有明显差异,与玻璃态相比橡胶态的E'降低最多的达到两个数量级。这个结果证明了PDLLA/HA复合材料可能具有形状记忆效应。我们进一步通过形象的形状记忆回复实验说明这种效应,同时系统地考察了相关的形状记忆性能参数。实验结果显示,PDLLA/HA复合材料在一定的复合比例范围内有非常好的形状记忆效应,其形状回复率可达95%以上。生物活性HA粒子的加入也可提高PDLLA高分子材料的形状记忆效应。
     在论文第三章我们进一步研究了PDLLA与纳米HA复合后能产生形状记忆效应的机理。因此,在本章中,我们从聚合物的分子链与无机相的界面作用机理分析入手,揭示出两相之间可能存在氢键作用力。纳米复合材料通过溶液混合和热压复合成一种高分子为基体的热致型形状记忆材料,然后通过傅立叶变换红外光谱仪(FTIR)和X-射线光电子能谱仪(XPS)的检测分析,得出PDLLA中的羰基(C=O)和HA中的表面羟基(P-OH)有可能产生了氢键连接。基于实验数据,我们解释复合材料为什么有好的行状记忆特性;并构建了具有形状记忆性的复合模型,较形象地描绘了该复合材料产生形状记忆性能的原因。
     为了进一步验证我们对PDLLA/纳米HA复合材料的形状记忆效应机理的分析,我们在论文第四章还尝试利用Materials Studio(MS)软件来模拟、计算PDLLA和纳米HA的界面作用机理,从理论上与前面的实验结果进行对比、分析。得到的计算机模拟结果证实纳米复合材料中两相之间确实存在一定的键能作用;这就比较符合我们实验检测的PDLLA和HA两相之间的界面作用关系和形状记忆效应的结果。
     既然界面关系可以直接影响到复合材料的形状记忆性能,那么为了得到界面结合更好的有机与无机复合材料,我们在论文第五章通过原位合成的方法制备了明胶(Gel)/PDLLA/HA纳米复合材料。HA晶体在聚合物基质中形核、矿化,最终长成一种纤维状的无机纳米晶体。表征结果显示:矿化的HA晶体与聚合物的Gel和PDLLA分子链存在离子相互作用,并在两种聚合物之间起到“桥梁”作用,形成了一种复杂的网络结构,这也有助于复合材料产生更好的记忆效应。另外,明胶既作为一种复合成分,又作为一种改性剂,对HA纳米纤维的矿化、生长和复合材料的合成也起到一种有利的作用。
     研究具有形状记忆功能的可生物降解高分子复合材料最终目的是应用于人体,因此,我们认为探讨降解过程对材料形状记忆行为的影响非常必要。在论文第六章,我们系统地研究了PDLLA/β-TCP复合材料的体外降解性能,以及与记忆性能的关系。PDLLA与β-TCP的复合材料经过56天的体外降解,材料的重量、分子量、降解介质pH值、有机与无机界面都发生了改变,这也直接导致材料的形状回复率降低。但并不是随时间的增加一直变差,在降解21到28天之间时,其形状回复率略有反弹。通过XRD、IR等分析推测,聚合物分子量的波动和无机物发生一定的相转变使得复合材料的形状记忆性能也发生了非线型的变化。
     最后,我们探讨了具有磁性的可生物降解复合材料在交变磁场的条件下通过诱导纳米磁性粒子发热引起的形状记忆效应。首先,通过聚乙二醇(PEG)改性,化学共沉淀方法制备出20nm左右的Fe_3O_4磁性粒子,再与PDLLA复合。形状记忆性能测试是在超音频交变磁场环境下感应加热,我们观察到复合材料产生了形状记忆行为,并对产生这些现象的原因进行了初步分析。
In this dissertation,the thermo-induced shape memory and biodegradable composites consisted of poly(D,L-lactide)(PDLLA) as polymeric matrix and inorganic particles such as hydroxyapatite(HA),β-tricalcium phosphate(β-TCP) and magnetic iron oxide(Fe_3O_4) were prepared.Moreover,mechanism of shape memory effect,biodegradation and interface action of composites was also analyzed and discussed.The aim of these studies was that the safe and effective composites possessing shape memory effect and biodegradation are designed and a theoretical support for biomedical application can be provided.
     Firstly,PDLLA/HA composites were studied,which possess biodegradation, biocompatibility and shape memory properties.We could find the result by dynamic mechanical analysis(DMA) that storage modulus at the rubbery state is about two orders of magnitude larger than that at the glassy state,which could indicated that PDLLA/HA composites had desirable shape memory effect.It could also be identified by the shape memory testing and the parameters of shape memory properties.As a result,the shape recovery ratios(Rs) of the PDLLA/HA composites were above 95%.The results could conclude that bioactive HA particles in composites played an important role during the shape memory recovery.
     So,it was very significant for investigation of the mechanism that the composites of amorphous PDLLA and HA nanoparticles could show well shape memory effect.Based on the analysis of interface action between the molecular segments of polymer and inorganic phase,we revealed the existence of hydrogen bonding in nanocomposites.The PDLLA/HA nanocomposites were prepared by solution mixture and thermal mold-pressure.The results of Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS) indicated that the hydrogen bonding between the C=O in PDLLA and the surface P-OH groups of HA nano-crystalline was formed indeed.The improvement of shape memory properties further implied the existence of hydrogen bonding in nanocomposites.Moreover,a schematic model of the hydrogen bonding was designed on the base of the experimental results,which could clearly explain the memory mechanism of nanocomposites.
     In addition,the interface action of PDLLA and nano-HA was simulated and computed by Materials Studio(MS) software,so that could compare with previous experiment results.The results of MS simulation could clearly indicate that some interaction between polymer and inorganic phase existed in nanocomposites,which were in agreement with the examined results of experiment.
     In order to obtain polymer/inorganic composite with well interface,a novel biodegradable polymer-ceramic nanocomposite was prepared by the in-situ biomimetic method,which consisted of Gelatin(Gel),PDLLA and HA nanofibers. The results of XRD and IR showed that the HA nanofibers played an important role on the existence of bridging bond between polymeric Gel and PDLLA in the nanocomposite.The schematic model of two polymeric chains bridged by inorganic nanofibers was designed on the base of the experimental results,which could well show the interaction mechanism of three phases and explain the mechanism of improvement of the shape memory effect.Moreover,the Gel could initiate and regulate the mineral growth of HA crystals along the functional groups of molecular chains of polymer.
     It was also very signifcant for the investigation on effect of in vitro degradation of PDLLA/β-TCP composites on theirs shape memory properties.Thus, we prepared PDLLA/β-TCP composites with different weight ratios.The shape-memory behaviors of composites during degradation process of 56 days were performed.During degradation,the dispersed morphology,T_g,molecular weight, weight loss and pH change of composites were all changed,which could result in the decrease of reovery ratios of composites.The reaction formulae of crystalline phase transformation could explain that the change of shape memory properties of PDLLA/β-TCP composites might result from the new inorganic particles in degradation.
     Finally,the biocompatible PDLLA/Fe_3O_4 nanocomposites were prepared and their magnetic-field induced shape memory effect was also investigated.The Fe_3O_4 nanoparticles with an average size of 20 nm were synthesized by chemical co-precipitation method with the modifying of polyethylene glycol(PEG).Moreover, the magnetic-field induced shape memory effect of composites was performed in an alternating magnetic field.As a consequence,PDLLA/Fe_3O_4 nanocomposites displayed excellent shape memory effect.Moreover,the reason of the phenomenon was also further analysed.
引文
[1] Takagi T. Ion beam modification of solids: towards intelligent materials. Mat Sci Eng A. 1998,253:30-41.
    
    [2] Yanagida H. Intelligent materials for environment and people. Mater Design. 2000, 21: 507-509.
    [3] Xie P, Zhang RB. Liquid crystal elastomers, networks and gels: advanced smart materials. J Mater Chem. 2005, 15: 2529-2550.
    [4] Seeboth A, Schneider J, Patzak A. Materials for intelligent sun protecting glazing. Sol Energ Mat Sol C. 2000, 60: 263-277.
    
    [5] Lampert CM. Chromogenic smart materials. Materialstoday. 2004: 28-35.
    [6] Rattanachan S, Miyashita Y, Mutoh Y. Fabrication of piezoelectric laminate for smart material and crack sensing capability. Sci Technol Adv Mat. 2005, 6: 704-711.
    [7] Sheta EF, Moses RW, Huttsell LJ. Active smart material control system for buffet alleviation. J Sound Vib. 2006, 292: 854-868.
    [8] Kang I, Heung YY, Kim JH, et al. Introduction to carbon nanotube and nanofiber smart materials. Compos Part B. 2006, 37: 382-394.
    [9] Pickard WF, Knoblauch M, Peters WS, Shen AQ. Prospective energy densities in the forisome, a new smart material. Mat Sci Eng C. 2006, 26: 104-112.
    
    [10] Song G, Sethi V, Li HN. Vibration control of civil structures using piezoceramic smart materials: A review. Eng Struct. 2006, 28: 1513-1524.
    
    [11] Yang D. Shape memory alloy and smart hybrid composites-advanced materials for the 21 st Century. Mater Design. 2000, 21: 503-505.
    
    [12] Boczkowska A, Leonowicz M. Intelligent materials for intelligent textiles. Fibres Text East Eur. 2006, 14: 13-17.
    [13] Vili YYFC. Investigating smart textiles based on shape memory materials. Text Res J. 2007, 77: 290-300.
    [14] Coyle S, Wu YZ, Lau KT, De Rossi D, Wallace G, Diamond D. Smart nanotextiles: A review of materials and applications. MRS Bull. 2007, 32: 434-442.
    [15] Wang SX, Li Y, Hu JY, Tokura H, Song QW. Effect of phase-change material on energy consumption of intelligent thermal-protective clothing. Polym Test. 2006, 25:580-587.
    [16] Addington DM, Schodek DL. Smart and useful materials. Oxford: Architectural Press; 2005.
    [17] Flatau AB, Chong KP. Dynamic smart material and structural systems. Eng Struct. 2002, 24:261-270.
    [18] Rashid MK. Simulation study on the improvements of machiningaccuracy by using smart materials. Robot Com-Int Manuf 2005, 21:249-257.
    [19] Otsuka K, Wayman CM. Shape memory materials. Cambridge: Cambridge University Press; 1998.
    
    [20] Anderson DG, Burdick JA, Langer R. Smart biomaterials. Science 2004; 305: 1923-1924.
    [21] Lahann J, Langer R. Smart materials with dynamically controllable surfaces. MRS Bull. 2005,30: 185-188.
    [22] Sabolinski ML, Alvarez O, Auletta M, Mulder G, Parenteau NL. Cultured skin as a 'smart material' for healing wounds: experience in venous ulcers. Biomaterials. 1996, 17: 311-320.
    [23] Madden JDW, Vandesteeg NA, Anquetil PA, Madden PGA, Takshi A, Pytel RZ, Lafontaine SR, Wieringa PA, Hunter IW. Artificial muscle technology:Physical principles and naval prospects. IEEE J Oceanic Eng. 2004, 29:706-728.
    [24] Rosso F, Marino G, Giordano A, Barbarisi M, Parmeggiani D, Barbarisi A. Smart materials as scaffolds for tissue engineering. J Cell Physiol. 2005, 203: 465-470.
    [25] Filip P, Musialek J, Michalek K, Yen M, Mazanec K. TiAlV/Al_2O_3/TiNi shape memory alloy smart composite biomaterials for orthopedic surgery. Mat Sci Eng A. 1999, 273-275: 769-774.
    [26] Kopecek J. Smart and genetically engineered biomaterials and drug delivery systems. Eur J Pharm Sci. 2003, 20: 1-16.
    [27] Roy I, Gupta MN. Smart polymeric materials: merging biochemical applications. Chem Biol. 2003, 10: 1161-1171.
    [28] Tien HT. Self-assembled lipid bilayers a smart material for nanotechnology. Mat Sci Eng C. 1995,3:7-12.
    [29] Ten BG, Ikkala O. Smart materials based on self-assembled hydrogen-bonded comb-shaped supramolecules. Chem Rec. 2004, 4: 219-230.
    [30] Fairman R, Akerfeldt KS. Peptides as novel smart materials. Curr Opin Struc Biol. 2005, 15: 453-463.
    [31] Ulijn RV. Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem. 2006, 16: 2217-2225.
    [32] Olander A. An electrochemical investigation of solid cadmium gold alloys. J Am Chem Soc. 1932,56:3819-3833.
    [33] Buehler WJ, Grifrich J, Wiley KC. Effect of low-temperature phase changes on the machanical properties of alloys near composition TiNi. J Appl Phys. 1963, 34: 1467.
    [34] Humbeeck JV. Shape memory alloys: A material and technology. Adv Eng Mater. 2001, 11:837-850.
    [35] James RD, Hane KF. Martensitic transformations and shape memory materials. Acta Mater. 2000,48: 197-222.
    [36] Zhang XM, Fernandez J, Guilemany JM. Role of external applied stress on the two-way shape memory effect. Mat Sci Eng A. 2006,438-440: 431-435.
    [37] Enami K, Hara M, Maeda H. Effect of W addition on the martensitic transformation and shape memory behaviour of the TiNi-base alloys. J Phys. 1995, 5: 629-633.
    [38] Thamburaja P, Anand L. Polycrystalline shape-memory materials: effect of crystallographic texture. J Mech Phys Solids. 2001, 49: 709-737.
    [39] Imbeni V, Martini C, Prandstraller D, Poli G, Trepanier C, Duerig TW. Preliminary study of micro-scale abrasive wear of a NiTi shape memory alloy. Wear. 2003, 254: 1299-1306.
    [40] Mehta A, Imbeni V, Ritchie RO, Duerig TW. On the electronic and mechanical instabilities in Ni_(50.9)Ti_(49.1)- Mat Sci Eng A. 2004, 378: 130-137.
    [41] Kainuma R , Satoh N , Liu XJ. Phase equilibria and heusler phyase stability in the Cu-rich portion of the Cu-Al-Mn system. J Alloy Compd. 1998, 266: 191-200.
    [42] Wang R, Gui J, Chen X, et al. EBSD and TEM study of self-accommodating martensites in Cu75.7Al15.4Mn8.9 shape memory alloy. Acta Mater. 2002, 50: 1835-1847.
    [43] Tong JW, Wang SB, Mao C, Li HQ. Interferometric grating method and its application in Fe-base shape memory alloy structure design. Opt Laser Eng. 1998, 29: 437-445.
    [44] Vassiliev A. Magnetically driven shape memory alloys. J Magn Magn Mater. 2002, 242-245: 66-67.
    [45] Suorsa I, Pagounis E, Ullakko K. Magnetic shape memory actuator performance. J Magn Magn Mater. 2004, 272-276: 2029-2030.
    [46] Wang YD, Ren Y, Li H, Choo H, Benson ML, Brown DW, Liaw PK, Zuo L, Wang G, Brown DE, Alp EE. Tracing memory in polycrystalline ferromagnetic shape-memory alloys. Adv Mater. 2006, 18: 2392-2396.
    [47] Balta JA, Simpson J, Michaud V, Manson JAE, Schrooten J. Embedded shape memory alloys confer aerodynamic profile adaptivity. Smar Mater Bull. 2001, 12: 8-12.
    [48] Cho M, Kim S. Structural morphing using two-way shape memory effect of SMA. Int J Solids Struct. 2005,42: 1759-1776.
    [49] Maji AK, Negret I. Smart prestressing with shape-memory alloy. J Eng Mech. 1998, 124: 1121-1128.
    [50] Sherif ET, Juan OR. Prestressing concrete using shape-memory alloy tendons. ACI Struct J. 2004,11-12:846-851.
    [51] Nudelman I, Fuko V, Waserberg N, Niv Y, Rubin M, Szold A, Lelcuk S. Colonic anastomosis performed with a memory-shape device. Am J Surg. 2005, 190: 434-438.
    [52] Lim G, Park K, Sugihara M, Minami K, Esashi M. Future of active catheters. Sensor Actuat A. 1996,56: 113-121.
    [53] Sugawara T, Hirota K, Watanabe M, Takashi M, Makino E, Toh S, Shibata T. Shape memory thin film actuator for holding a fine blood vessel. Sensor Actuat A. 2006, 130-131: 461-467.
    [54] Kode V, Cavusoglu MC, Azar MT. Design and characterization of a novel hybrid actuator using shape memory alloy and D.C motor for minimally invasive surgery applications. IEEE Int Conf Mech Actuat. Ontario, Canada, 2005.
    [55] Duerig T, Pelton A, Stockel D. An overview of nitinol medical applications. Mat Sci Eng A. 1999,273-275: 149-160.
    [56] Swaint MV. Shape memory behaviour in partially stabilized zirconia ceramics. Nature. 1986,322:234-236.
    [57] Reyes-morel PE, Cherng JS, Chen IW. Transformation plasticity of CeO_2-stabilized tetragonal zirconia polycrystal: II, pseudoelasticity and shape memory effect. J Am Ceram Soc. 1988,71:648-657.
    [58] Jiang BH, Tu JB, Hsu TY, et al. The effect of some factors on Ms and SME in Ce-TZP ceramics. Mater Res Soc Symp Proc. 1992, 246: 213-216.
    [59] Zhang YL, Jin XJ, Hsu TY, et al. Shape memory effect in Y-Ce-TZP. Mater Sci Forum 2002,392-394: 573-576.
    [60] Heuer AH, Ruhle M, Marshall DB. On the thermoelastic martensitic transformation in tetragonal zirconia. J Am Ceram Soc. 1990, 73: 1084-1990.
    [61] Pandit P, Gupta SM, Wadhawan VK. Shape-memory effect in PMN-PT(65/35) ceramic. Solid State Commun. 2004, 131: 665-670.
    [62] Liu W, Chen W, Yang L, Wang Y, Zhang L, Zhou C, Li S, Ren X. Electro-shape-memory effect in hybrid doped BaTiO_3 ceramics. Mat Sci Eng A. 2006, 438-440: 350-353.
    [63] Schurch KE, Ashbee KHG. A near perfect shape-memory ceramic material. Nature. 1977, 266: 706-707.
    [64] Pandit P, Gupta SM, Wadhawan VK. Effect of electric field on the shape-memory effect in Pb[(Mg_(1/3)Nb_(2/3))_(0.70)Ti_(0.30)]O_3 ceramic. Smart Mater Struct. 2006, 15: 653-658.
    [65] Narayanan M, Schwartz RW, Zhou D. Stress-biased cymbals using shape memory alloys. J Am Ceram Soc. 2007, 90: 1122-1129.
    [66] Li F, Zhu W, Zhang X, Zhao C, Xu M. Shape memory effect of ethylene-vinyl acetate copolymers. J Appl Polym Sci. 1999, 71: 1063-1070.
    [67] Hornbogen E. Comparison of shape memory metals and polymers. Adv Eng Mater. 2006, 8: 101-106.
    [68] Beloshenko VA, Varyukhin VN, Voznyak YV. The shape memory effect in polymers. Cheminform. 2005, 36: 37.
    [69] Lendlein A. Shape-memory polymers. E-MRS 2005 Spring Meeting. Strasbourg, France. p11.
    
    [70] Wornyo E, Gall K, Yang F, King W. Nanoindentation of shape memory polymer networks. Polymer. 2007, 48: 3213-3225.
    [71] Jiang HY, Kelch S, Lendlein A. Polymers move in response to light. Adv Mater. 2006, 18: 1471-1475.
    [72] Eisenbach CD. Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect. Polymer. 1980, 21: 1175-1179.
    [73] Finkelmann H, Nishikawa E, Pereira GG, Warner M. A new opto-mechanical effect in solids. Phys Rev Lett. 2001, 87: 015501.
    [74] Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M. Fast liquid-crystal elastomer swims into the dark. Nature Mater. 2004, 3: 307-310.
    [75] Yu YL, Nakano M, Ikeda T. Directed bending of a polymer film by light. Nature. 2003, 425: 145.
    [76] Li MH, Keller P, Li B, Wang XG, Bruner M. Light-driven side-on nematic elastomer actuators. Adv Mater. 2003, 15: 569-572.
    [77] Yu YL, Ikeda T. Photodeformable polymers: a new kind of promising smart material for micro- and nano-applications. Macromol Chem Phys. 2005, 206: 1705-1708.
    [78] Lendlein A, Jiang H, Juger O, Langer R. Light-induced shape-memory polymers. Nature. 2005,434: 879-882.
    [79] Yoshida R, Sakai T, Tambata O, Yamaguchi T. Design of novel biomimetic polymer gels with self-oscillating function. Sci Techno Adv Mat. 2002, 3:95-102.
    [80] Osada Y, Okuzaki H, Hori H. A polymer gel with electrically driven motility. Nature. 1992, 355: 242-244.
    [81] Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. PNAS. 2006, 103: 3540-3545.
    [82] Monkman GJ. Advances in shape memory polymer actuation. Mechatronics. 2000, 10: 489-498.
    [83] Lu TJ, Evans AG. Design of a high authority flexural actuator using an electro-strictive polymer. Sensor Actuat A. 2002, 99: 290-296.
    [84] Nikitin LV, Stepanov GV, Mironova LS, Gorbunov AI. Magnetodeformational effect and effect of shape memory in magnetoelastics. J Magn Magn Mater. 2004. 272-276: 2072-2073.
    [85] Gall K, Kreiner P, Turner D, Hulse M. Shape-memory polymers for microelectromechanical systems. J Microelectromech S. 2004. 13: 472-483.
    [86] Kaursoin J, Agrawal AK. Melt spun thermoresponsive shape memory fibers based onpolyurethanes: Effect of drawing and heat-setting on fiber morphology and properties. J Appl Polym Sci. 2006. 103: 2172-2182.
    [87] Ahir SV, Tajbakhsh AR, Terentjev EM. Self-assembled shape-memory fibers of triblock liquid-crystal polymers. Adv Funct Mater. 2006. 16: 556-560.
    [88] Yakacki CM, Shandas R, Lanning C, Rech B, Eckstein A, Gall K. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials. 2007, 28: 2255-2263.
    
    
    [89] Hampikian JM, Heaton BC, Tong FC, Zhang Z, Wong CP. Mechanical and radiographic properties of a shape memory polymer composite for intracranial aneurysm coils. Mat Sci EngC. 2006, 26: 1373-1379.
    [90] Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004. 428: 487-492.
    [91] Lendlein A, Kelch S. Shape-memory polymers as stimuli-sensitive implant materials. Clin Hemorheol Micro. 2005. 32: 105-116.
    [92] Ferrera DA. Shape memroy polymer intravascular delivery system. US Patent. 2001. US 6224610.
    
    [93] Metcalfe A, Desfaits AC, Salazkin I, Yahia LH, Sokolowski WM, Raymond J. Cold hibernated elastic memory foams for endovascular interventions. Biomaterials. 2003. 24: 491-497.
    
    [94] Fare S, Valtulina V, Petrini P, Alessandrini E, Pietrocola G, Tanzi MC, Speziale P, Visai L. In vitro interaction of human fibroblasts and platelets with a shape-memory polyurethane. J Biomed Mater Res A. 2005. 73: 1 -11.
    
    [95] Osada Y, Matsuda A. Shape memory in hydrogels. Nature. 1995, 376: 219.
    [96] Hu Z, Zhang X, Li Y. Synthesis and application of modulated polymer gels. Science. 1995, 269: 525-527.
    
    [97] Dagani R. Intelligent gels. Chem Eng News. 1997. 75(23): 26-37.
    [98] Kwon IC, Bae YH, Kim SW. Electrically erodible polymer gel for controlled release of drugs. Nature. 1991. 354: 291.
    
    [99] Peppas N, Langer R. New Challenges in Biomaterials. Science. 1994. 263: 1715-1720.
    [100]Kajiwara K, Ross-Murphy SB. Synthetic gels on the move. Nature. 1992. 355: 208-209.
    
    [101] Osada Y, Ross-Murphy SB. Intelligent gels. Sci Am. 1993. 268: 82-87.
    [102] Frank S, Lauterbur PC. Voltage-sensitive magnetic gels as magnetic resonance monitoring agent. Nature. 1993. 363: 334.
    [103] Mondal S, Hu JL Water vapor permeability of cotton fabrics coated with shape memory polyurethane. Carbohyd Polym. 2007. 67: 282-287.
    
    [104] Sahoo NG, Jung YC, Yoo HJ, Cho JW. Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Compos Sci Technol. 2007. 67: 1920-1929.
    
    [105] Merline JD, Nair CPR, Gouri C, Sadhana R, Ninan KN. Poly(urethane-oxazolidone): Synthesis, characterisation and shape memory properties. Eur Polym J. 2007. 43: 3629-3637.
    
    [106] Beloshenko VA, Beygelzimer YE, Borzenko AP, Varyukhin VN. Shape memory effect in the epoxy polymer-thermoexpanded graphite system. Compos Part A. 2002. 33: 1001-1006.
    [107] Cho JW, Lee SH. Influence of silica on shape memory effect and mechanical properties of polyurethane-silica hybrids. Eur Polym J. 2004. 40: 1343-1348.
    
    [108] Yang B, Huang WM, Li C, Chor JH. Effects of moisture on the glass transition temperature of polyurethane shape memory polymer filled with nano-carbon powder. Eur Polym J. 2005. 41: 1123-1128.
    
    [109] Beloshenko VA, Varyukhin VN, Voznyak YV. Electrical properties of carbon-containing epoxy compositions under shape memory effect realization. Compos Part A. 2005. 36: 65-70.
    [110] Yang B, Huang WM, Li C, Li L, Chor JH. Qualitative separation of the effects of carbon nano-powder and moisture on the glass transition temperature of polyurethane shape memory polymer. Scripta Mater. 2005. 53: 105-107.
    [111] Ni QQ, Zhang C, Fu Y, Dai G, Kimura T. Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Compos Struct. 2007.81: 176-184.
    [112] Sahoo NG, Jung YC, Cho JW. Electroactive shape memory effect of polyurethane composites filled with carbon nanotubes and conducting polymer. Mater Manuf Process. 2007.22:419-423.
    [113] Rezanejad S, Kokabi M. Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur Polym J. 2007. 43: 2856-2865.
    [114] Razzaq MY, Anhalt M, Frormann L, Weidenfeller B. Mechanical spectroscopy of magnetite filled polyurethane shape memory polymers. Mat Sci Eng A. 2007, 471: 57-62.
    [115] Conti S, Lenz M, Rumpf M. Modeling and simulation of magnetic-shape-memory polymer composites. J Mech Phys Solids. 2007. 55: 1462-1486.
    [116] Smith NA, Antoun GG, Ellis AB, Crone WC. Improved adhesion between nickel-titanium shape memory alloy and a polymer matrix via silane coupling agents. Compos Part A. 2004. 35: 1307-1312.
    [117] Hosoda H, Takeuchi S, Inamura T, Wakashima K. Material design and shape memory properties of smart composites composed of polymer and ferromagnetic shape memory alloy particles. Sci Technol Adv Mat. 2004. 5: 503-509.
    [118] Poon C, Lau K, Zhou L. Design of pull-out stresses for prestrained SMA wire/polymer hybrid composites. Compos Part B. 2005. 36: 25-31.
    [119] Bollas D, Pappas P, Parthenios J, Galiotis C. Stress generation by shape memory alloy wires embedded in polymer composites. Acta Mater. 2007. 55: 5489-5499.
    [120] Choi J, Bogdanski D, Koller M, Esenwein SA, Muller D, Muhr G, Epple M. Calcium phosphate coating of nickel-titanium shape-memory alloys. Coating procedure and adherence of leukocytes and platelets. Biomaterials. 2003. 24: 3689-3696.
    [121] Jardine AP. Synthesis of thin film ferroelectrics on Si and shape memory effect TiNi substrates. Smart Mater Struc. 1994. 3: 140-146.
    [122] Liu QS, Liu YF, Ma X, Han X. Study of the structure and interface of NiTi SMA/FC composite films prepared by the sol-gel method. Mater Charact. 2008. 59:188-191.
    [123] Park YC, Lee JK, Lee GC. Development of an expert system for evaluation of the strength of matrix shape memory composites. Compos Struct. 2007. 77: 241-248.
    [124] Behl M, Lendlein A. Shape-memory polymers. Materialstoday. 2007. 10: 20-28.
    [125] Yang Z, Huck WTS, Clarke SM, Tajbakhsh AR, Terentjev EM. Shape-memory nanoparticles from inherently non-spherical polymer colloids. Nature. 2005. 4: 486-490.
    [126] Emile O, Floch AL, Vollrath F. Shape memory in spider draglines. Nature. 2006. 440: 621.
    [127] Poilane C, Delobelle P, Lexcellent C, Hayashi S, Tobushi H. Analysis of the mechanical behavior of shape memory polymer membranes by nanoindentation, bulging and point membrane deflection tests. Thin Solid Films. 2000. 379: 156-165.
    [128] Lendlein A, Kelch S. Shape-memory polymers. Angew Chem Int Ed. 2002. 41: 2034-2057.
    [129] Lendlein A, Schmidt AM, Schroeter M, Langer R. Shape-memory polymer networks from oligo(ε-caprolactone) dimethacrylates. J Polym Sci Pol Chem. 2005. 43: 1369-1381.
    [130] Zhang CS, Ni QQ. Bending behavior of shape memory polymer based laminates. Compos Struct. 2007. 78: 153-161.
    [131] Ohki T, Ni QQ, Ohsako N, Iwamoto M. Mechanical and shape memory behavior of composites with shape memory polymer. Compos Part A. 2004. 35: 1065-1073.
    [132] Wang M, Luo X, Ma D. Dynamic mechanical behavior in the ethylene terephthalate-ethylene oxide copolymer with long soft segment as a shape memory material. Eur Polym J. 1998. 34: 1-5.
    [133] Lendlein A, Schmidt AM, Langer R. AB-polymer networks based on oligo(ε-caprolactone) segments showing shape-memory properties. PNAS. 2001. 98: 842-847.
    [134] Foullerat DP,Hild S, Mucke A, Rieger B. Synthesis and properties of poly(ketone-co-alcohol) materials: shape memory thermoplastic elastomers by control of the glass transition process. Macromol Chem Phys. 2004. 205: 374-382.
    [135] Yang JH, Chun BC, Chung YC, Cho JH. Comparison of thermal/ mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment. Polymer. 2003. 44: 3251-3258.
    [136] Chun BC, Cho TK, Chung YC. Enhanced mechanical and shape memory properties of polyurethane block copolymers chain-extended by ethylene diamine. Eur Polym J. 2006. 42: 3367-3373.
    [137] Chun BC, Cha SH, Chung YC, Cho JW. Enhanced dynamic mechanical and shape-memory properties of a poly(ethylene terephthalate) - poly(ethylene glycol) copolymer crosslinked by maleic anhydride. J Appl Polym Sci. 2002. 82: 27-37.
    [138] Zhu G, Liang G, Xu Q, Yu Q. Shape-memory effects of radiation crosslinked poly(ε-caprolactone). J Appl Polym Sci. 2003. 90: 1589-1595.
    [139] Shikinami Y. Shape-memory, biodegradable and absorbable material. US Patent 6281262.2001.
    [140] Liu G, Ding X, Cao Y, Zheng Z, Peng Y. Shape memory of hydrogen-bonded polymer network/poly(ethylene glycol) complexes. Macromolecules. 2004. 37: 2228 -2232.
    [141] Liu G, Guan C, Xia H, Guo F, Ding X, Novel shape-memory polymer based on hydrogen bonding. Macromol Rapid Comm.2006.27:1100-1104.
    [142] Ji FL, Zhu Y, Hu JL, Liu Y, Yeung LY, Ye GD. Smart polymer fibers with shape memory effect. Smart Mater Struct. 2006. 15: 1547-1554.
    [143] Chen S, Hu J, Liu Y, Liem H, Zhu Y, Meng Q. Effect of molecular weight on shape memory behavior in polyurethane films. Polym Int. 2007. 56: 1128-1134.
    [144] Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press. 1969. p432-494.
    [145] Tobushi H, Okumura K, Hayashi S, Ito N. Thermomechanical constitutive model of shape memory polymer. Mech Mater. 2001. 33: 545-554.
    [146] Liu Y, Gall K, Dumn ML, McCluskey P. Thermomechanics of shape memory polymer nanocomposites. Mech Mater. 2004. 36: 929-940.
    [147] Liu Y, Gall K, Dumn ML, Greenberg AR. Thermomechanics of the shape memory effect in polymers. Mater Res Soc Symp Proc. 2005. 855: 581-586.
    [148] Liu Y, Gall K, Dumn ML, Greenberg AR, Diani J. Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling. Int J Plasticity. 2006. 22: 279-313.
    [149] Gall K, Duran ML, Liu Y. Internal stress storage in shape memory polymer nanocomposites. Appl Phys Lett. 2004. 85: 290-292.
    [150] Gall K, Yakacki CM, Liu Y, Shandas R, Willett N, Anseth KS. Thermomechanics of the shape memory effect in polymers for biomedical applications. J Biomed Mater Res A. 2005. 73: 339-348.
    [151] Yang B, Huang WM, Li C, Li L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer. 2006. 47: 1348-1356.
    [152] Ota S. The heat shrinkage properties of polyethylene. Radiat Phys Chem. 1981. 18: 81-84.
    [153] Lin JR, Chen LW. Shape-memorized crosslinked ester-type polyurethane and its mechanical viscoelastic model. J Appl Polym Sci. 1999. 73:1305-1319.
    [154] Barbucci R. Integrated biomaterial science. New York: Kluwer Academic/ Plenum Publishers. 2002.
    [155] Shalaby SW, Burg KJL. Absorbable and biodegradable polymers (advances in polymeric materials). Boca Raton: CRC Press. 2003.
    [156] Domb AJ, Wiseman DM. Handbook of biodegradable polymers. Boca Raton: CRC Press. 1998.
    [157] Piskin E. Biodegradable polymers as biomaterials. J Biomat Sci Polym Ed. 1995. 6: 775-795.
    [158] Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007. 32: 762-798.
    [159] Benicewicz BC, Hopper PK. Polymers for absorbable surgical suture. J Bioact Compat Polym. 1991.6:64-94.
    [160] Leenslang JW, Pennings AJ, Ruud RM, Rozema FR, Boering G. Resorbable materials of poly(L-lactide), VI. Plates and screws for internal fracture fixation. Biomaterials. 1987. 8: 70-73.
    [161] Holland SJ, Tighe BJ, Gould PL. Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release system. J Controlled Release. 1986.4: 155-180.
    [162] Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 1993.27: 11-23.
    [163] Reed AM, Gilding DK. Biodegradable polymers for use in surgery-PGA/PLA homo and copolymers. Polymer. 1981. 22: 494-498.
    [164] Uchida T, Ikeda S, Oura H, Tada M, Nakano T, Fukuda T, Matsuda T, Negoro M, Arai F. Development of biodegradable scaffolds based on patient-specific arterial configuration. J Biotechnol. 2008. 133: 213-218.
    [165] Winzenburg G, Schmidt C, Fuchs S, Kissel T. Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Adv Drug Deliver Rev. 2004. 56: 1453-1466.
    [166] Walduck AK, Opdebeeck JP, Benson HE, Prankerd R. Biodegradable implants for the delivery of veterinary vaccines: design, manufacture and antibody responses in sheep. J Control Release. 1998. 51: 269-280.
    [167] Rothen-Weinhold A, Gurny R, Dahn M. Formulation and technology aspects of controlled drug delivery in animals. Pharm Sci Techno Today. 2000. 3: 222-231.
    [168] Miller J. Controlled release products for control of ectoparasites of livestock, in: M.J. Rathbone, R. Gurny (Eds.). Controlled Release Veterinary Drug Delivery. Elsevier. Amsterdam. 2000. p229-248.
    [169] Matschke C, Isele U, van Hoogevest P, Fahr A. Sustained-release injectables formed in situ and their potential use for veterianry products. J Control Release. 2002. 85: 1-15.
    [170] Lloyd AW. Interfacial bioengineering to enhance surface biocompatibility. Med Device Technol. 2002. 13: 18-21.
    [171] Gopferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996. 17: 103-114.
    [172] Peter MA. Homogenisation of a chemical degradation mechanism inducing an evolving microstructure. CR Mecanique. 2007. 335: 679-684.
    [173] Fasani E, Albini A, Gemme S. Mechanism of the photochemical degradation of amlodipine. Int J Pharm. 2008. 352: 197-201.
    [174] Peng M, Liu W, Yang G, Chen Q, Luo S, Zhao G, Yu L. Investigation of the degradation mechanism of cross-linked polyethyleneimine by NMR spectroscopy. Polym Degrad Stabil. 2008. 93: 476-482.
    [175] Katti DS, Lakshmi S, Langer R, Laurencin CT. Toxicity, biodegradation and elimination of polyanhydrides. Adv Drug Deliv Rev.2002.54:933-961.
    [176] Tamada J, Langer R. Erosion kinetics of hydrolytically degradable polymers. PNAS. 1993. 90: 552-556.
    [177] von Burkersroda F, Schedl L, Gopferich A. Why degradable polymers undergo surface erosion or bulk erosion.Biomaterials.2002.23:4221-4231.
    [178] Gopferich A, Langer R. Modeling of polymer erosion. Macromolecules. 1993. 26: 4105-4112.
    
    [179] Gopferich A, Langer R. Polymer bulk erosion. Macromolecules. 1997. 30: 2598-2604.
    [180] Fu K, Pack DW, Klibanov AM, Langer R: Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm Res 2000. 17: 100-106.
    [181] Hooper K, Macon ND, Kohn J. Comparative histological evaluation of newtyrosine-derived polymers and poly(1-lactic acid) as a function of polymer degradation. J Biomed Mater Res. 1998. 41: 443-454.
    [182] Temenoff JS, Mikos AG. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials. 2000. 21: 2405-2412.
    [183] Ikenaga M, Hardouin P, Lemaitre J, Andrianjatovo H, Flautre B. Biomechanical characterization of a biodegradable calcium phosphate hydraulic cement: a comparison with porous biphasic calcium phosphate ceramics. J Biomed Mater Res. 1998. 40: 139-144.
    [184] Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002. 295: 1014-1017.
    [185] Frayssinet P, Gineste L, Conte P, Fages J, Rouquet N. Short-term implantation of a DCPD-based calcium phosphate cement. Biomaterials. 1998. 19: 971-977.
    [186] Petrova A. Gipsfullung von knochenhohlen bei osteomyelitis. Zentralorg Ges Chir. 1992. 43:485.
    [187] Nystrom G. Plugging of bone cavities with rivanol-plaster porridge. Acta Chir Scand. 1992. 63: 296.
    [188] Dacquet V, Varlet A, Tandogan RN, Tahon MM, Fournier L, Jehl F, Monteil H, Bascoulergue G. Antibiotic-impregnated plaster of paris beads-trials with teicoplanin. Clin Orthop. 1992. 282: 241-249.
    [189] Rauschmann MA, Wichelhaus TA, Stirnal V, Dingeldein E, Zichner L, Schnettler R, Alt V. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials. 2005. 26: 2677-2684.
    [190] Klein CPAT, Dreissen AA, de Groot K. Biodegradation behavior of various calcium phosphate materials in bone tissue. J Biomed Mater Res. 1983. 17: 769-784.
    [191] Daculsi G, LeGros RZ, Nery E, Lynch K, Kerebel B. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res. 1989.23:883-894.
    [192] Gauthier O, Bouler J-M, Weiss P, Bosco J, Daculsi G, Aguado E. Kinetic study of bone ingrowth and ceramic resorption associated with the implantation of dilerent injectable calcium-phosphate bone substitutes. J Biomed Mater Res 1999. 47: 28-35.
    [193] Dupraz A, Delecrin J, Moreau A, Pilet P, Passuti N. Long-term bone response to particulate injectable ceramic. J Biomed Mater Res 1998. 42: 368-375.
    [194] Miyamoto Y, Ishikawa K, Takechi M, Toh T, Yoshida Y, Nagayama M, Kon M, Asaoka K. Tissue response to fast-setting calcium phosphate cement in bone. J Biomed Mater Res. 1997.37:457-464.
    [195] Knaack D, Goad MEP, Aiolova M, Rey C, Tofighi A, Chakravarthy P, Lee DD. Resorbable calcium phosphate bone substitute. J Biomed Mater Res. 1998. 43: 399- 409.
    [196] Martinetti R, Dolcini L, Mangano C. Physical and chemical aspects of a new porous hydroxyapatite. Anal Bioanal Chem. 2005. 381: 634-638.
    [197] Lu JX, Flautre B, Anselme K. Study of porous interconnections of bioceramic on cellular rehabitation in vitro and in vivo. Bioceramics. 1997. 10: 583-586.
    [198] Lu JX, Flautre B, Anselme K, Gallur A, Descamps M, Thierry B, Hardouin P. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci: Mater Med. 1999. 10: 111-120.
    [199] Ueno H, Nakamura F, Murakami M, Okumura M, Kadosawa T, Fujinaga T. Evaluation effects of chitosan for the extracellular matrix production by fibroblasts and the growth factors production by macrophages. Biomaterials. 2001. 22: 2125-2130.
    [200] Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, Proust JP. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res. 2002. 63: 408-412.
    [201] Hing KA. Bioceramic bone graft substitutes: Influence of porosity and chemistry. Int J Appl Ceram Tec. 2005. 2: 184-199.
    [202] Dias AG, Gibson IR, Santos JD, Lopes MA. Physicochemical degradation studies of calcium phosphate glass ceramic in the CaO-P_2O_5-MgO-TiO_2 system. Acta Mater. 2007.3:263-269.
    [203] Ozaki SK, Monteiro MBB, Yano H, Imamura Y, Souza MF. Biodegradable composites from waste wood and poly(vinyl alcohol). Polym Degrad Stabil. 2005. 87: 293-299.
    [204] Morreale M, Scaffaro R, Maio A, La Mantia FP. Effect of adding wood flour to the physical properties of a biodegradable polymer. Compos Part A. 2008. 39: 503-513.
    [205] Tserki V, Matzinos P, Kokkou S, Panayiotou C. Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Compos Part A. 2005. 36: 965-974.
    [206] Tserki V, Matzinos P, Panayiotou C. Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour. Compos Part A. 2006. 37: 1231-1238.
    [207]Vilaseca F,Mendez JA,P(?)lach A,Llop M,Ca(?)igueral N,Giron(?)s J,Turon X,Mutj(?) P.Composite materials derived from biodegradable starch polymer and jute strands.Process Biochem.2007.42:329-334.
    [208]Plackett D,Andersen TL,Pedersen WB,Nielsen L.Biodegradable composites based on L-polylactide and jute fibres.Compos Sci Technol.2003.63:1287-1296.
    [209]Ochi S.Mechanical properties of kenaf fibers and kenaf/PLA composites.Mech Mater.2008.40:446-452.
    [210]Kumar H,Radha JC,Ranganathaiah C,Siddaramaiah.Physico-mechanical and free volume behaviour of guar gum filled polyurethane/polyacrylonitrile biodegradable composites.Eur Polym J.2007.43:1580-1587.
    [211]Alves V,Costa N,Hilliou L,Larotonda F,Goncalves M,Sereno A,Coelhoso I.Design of biodegradable composite films for food packaging.Desalination.2006.199:331-333.
    [212]Cui F,Shi K,Zhang L,Tao A,Kawashima Y.Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery:Preparation,in vitro characterization and in vivo evaluation.J Control Release.2006.114:242-250.
    [213]Khandare J,Minko T.Polymer-drug conjugates:Progress in polymeric prodrugs.Prog Polym Sci.2006.31:359-397.
    [214]Luten J,van Nostrum CF,De Smedt SC,Hennink WE.Biodegradable polymers as non-viral carriers for plasmid DNA delivery.J Control Release.2008.126:97-110.
    [215]Liu X,Zou Y,Cao G,Luo D.The preparation and properties of biodegradable polyesteramide composites reinforced with nano-CaCO_3 and nano-SiO_2.Mater Lett.2007.61:4216-4221.
    [216]Taddei P,Simoni R,Fini G.Spectroscopic study on the in vitro degradation of a biodegradable composite periodontal membrane.J Mol Struct.2001.565-566:317-322.
    [217]Gross KA,Rodr(?)guez-Lorenzo LM.Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering.Biomaterials.2004.25:4955-4962.
    [218]Rezwan K,Chen QZ,Blaker JJ,Boccaccini AR.Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.Biomaterials.2006.27:3413-3434.
    [219]Yang XB,Webb D,Blaker J,Boccaccini AR,Maquet V,Cooper C,Oreffo ROC.Evaluation of human bone marrow stromal cell growth on biodegradable polymer/Bioglass~(?) composites.Biochem Bioph Res Co.2006.342:1098-1107.
    [220]Zhou Y,Chen F,Ho ST,Woodruff MA,Lim TM,Hutmacher DW.Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts.Biomaterials.2007.28:814-824.
    [221]Bertmer M,Buda A,Blomenkamp-H(o|¨)fges I,Kelch S,Lendlein A.Biodegradable shape-memory polymer networks:Characterization with solid-state NMR.Macromolecules.2005.38:3793-3799.
    [222]Wang W,Ping P,Chen X,Jing X.Polylactide-based polyurethane and its shape-memory behavior.Eur Polym J.2006.42:1240-1249.
    [223]Venkatraman SS,Tan LP,Joso JFD,Boey YCF,Wang X.Biodegradable stents with elastic memory.Biomaterials.2006.27:1573-1578.
    [224]Choi NY,Kelch S,Lendlein A.Synthesis,shape-memory functionality and hydrolytical degradation studies on polymer networks from poly(rac-lactide) -b- poly(propylene oxide) -b- poly(rac-lactide) dimethacrylates.Adv Eng Mater.2006.8:439-445.
    [225]Min C,Cui W,Bei J,Wang S.Effect of comonomer on thermal/mechanical and shape memory property of L-lactide-based shape-memory copolymers. Polym Advan Technol. 2007.
    [226] Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich NE. Characterization of nanocellulose- reinforced shape memory polyurethanes. Polym Int. 2007. 57: 651-659.
    [227] Gunatillake PA, McCarthy SJ, Meijs GF, Adhikari R. Shape memory polyurethane or polyurethane-urea polymers. US Patent 6858680. 2005.
    [228] Yang Z, Hu J, Liu Y, Yeung L. The study of crosslinked shape memory polyurethanes. Mater Chem Phys. 2006. 98: 368-372.
    [229] Lendlein A, Lang R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science. 2002. 296: 1673-1676.
    [230] Mak AFT, Zhang M. Skin and Muscle: in Handbook of Biomaterial Properties. Black J, Hastings G, Eds. (Chapman and Hall, New York, ed. 1, 1998). pp66-69.
    [231] Bellin I, Kelch S, Langer R, Lendlein A. Polymeric triple-shape materials. PNAS. 2006. 103: 18043-18047.
    [232] Kagami Y, Gong JP, Osada Y. Shape memory behaviors of crosslinked copolymers containing stearyl acrylate. Macromol Rapid Comm. 2003. 17: 539-543.
    [233] Han SI, Gu BH, Nam KH, Im SJ, Kim SC, Im SS. Novel copolyester-based ionomer for a shape-memory biodegradable material. Polymer. 2007. 48: 1830-1834.
    [234] Kelch S, Steuer S, Schmidt AM, Lendlein A. Shape-memory polymer networks from oligo[(ε-hydroxycaproate)-co-glycolate] dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules. 2007. 8: 1018-1027.
    [235] Park C, Lee JY, Chun BC, Chung YC, Cho JW, Cho BG. Shape memory effect of poly(ethylene terephthalate) and poly(ethylene glycol) copolymer cross-linked with glycerol and sulfoisophthalate group and its application to impact-absorbing composite material. J Appl Polym Sci. 2004. 94: 308-316.
    [236] Sahoo NG, Jung YC, Goo NS, Cho JW. Conducting shape memory polyurethane-polypyrrole composites for an electroactive actuator. Macromol Mater Eng. 2005. 290: 1049-1055.
    [237] Hayashida T, Pan L, Nakayama Y. Mechanical and electrical properties of carbon tubule nanocoils. Physica B. 2002. 323: 352-353.
    [238] Lau KT, Hui D. Effectiveness of using carbon nanotubes as nano-reinforcements for advanced compositestructures. Carbon. 2002. 40: 1597-1617.
    [239] Jung YC, Kim JW, Goo NS, Cho JW. Polyurethane-carbon nanotube composites for electroactive shape memory actuator. Abstracts of Papers of the Am Chem Soc. 2004. 227: 364.
    [240] Cho JW, Kim JW, Jung YC, Goo NS. Electroactive sape-mmory plyurethane cmposites icorporating crbon nnotubes. Macromol Rapid Comm. 2005. 26: 412-416.
    [241] Meng Q, Hu J, Zhu Y. Shape-memory polyurethane/multiwalled carbon nanotube fibers. J Appl Polym Sci. 2007. 106: 837-848.
    [242] Elias KL, Price RL, Webster TJ. Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials. 2002. 23: 3279-3287.
    [243] Price RL, Waid MC, Haberstroh KM, Webster TJ. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials. 2003. 24: 1877-1887.
    [244] Moroz P, Jones SK, Gray BN. Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit tumor model. J Surg Oncol. 2002. 80: 149-156.
    [245] Schmidt AM. Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Comm. 2006. 27: 1168-1172.
    [246] Razzaq MY, Anhalt M, Frormann L, Weidenfeller B. Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mat Sci Eng A. 2007. 444: 227-235.
    [247] Gall K, Dunn ML, Liu Y, Finch D, Lake M, Munshi NA. Shape memory polymer nanocomposites. Acta Mater. 2002. 50: 5115-5126.
    [248] Ni QQ, Ohki T, Iwamoto M. Mechanical property and application of innovative composites based on shape memory polymer. 8th Japa/Euro Sym on Comp Mater. Tokyo, Japan. 2002.
    [249] Zheng X, Zhou S, Li X, Weng J. Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites. Biomaterials. 2006. 27: 4288-4295.
    [250] Zhou S, Zheng X, Yu X, Wang J, Weng J, Li X, Feng B, Yin M. Hydrogen Bonding Interaction of Poly (D,L-lactide) /hydroxyapatite Nanocomposites. Chem Mater. 2007. 19: 247-253.
    [251] Zheng X, Zhou S, Yu X, Li X, Feng B, Qu S, Weng J. Effect of in vitro degradation of poly(D, L-lactide)/β-tricalcium composite on its shape-memory properties. J Biomed Mater Res B. 2008. 86: 170-180.
    [252] Charlesby A. Atomic Radiation and Polymers. Oxford: Pergamon Press; 1960. p.198-257.
    
    [253] Keusch P, Greer D, Rozembersky J. NASA contactor report 1969. NASA CR-1384.
    [254] Kitahara S, Nagata N. A Polynorbornene Showing Shape-Memory Effect. Japanese Patent 535520. 1984.
    [255] Kitahara S, Nagata N. Cross-linked Polymer Having Shape Memorizing Property, Method of Its Use and Molded Article Having Shape Memory. US Patent 5043396. 1991.
    [256] Edlund U, Albertsson AC. Degradable Polymer Microspheres for Controlled Drug Delivery. Adv Polym Sci. 2000. 157: 68-105.
    [257] Sarazin P, Roy X, Favis BD. Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers. Biomaterials. 2004. 25: 5965-5978.
    
    [258] Ylinen P. Filling of bone defects with porous hydroxyapatite reinforced with polylactide or polyglycolide fibers. J Mater Sci Mater Med. 1994. 5: 522-528.
    [259] Hofmann GO. Biodegradable implants in traumatology-a review on the state-of-the-art. Arch Orthop Trauma Surg. 1995. 114: 123-132.
    [260] Bostman OM. Metallic or absorbable fracture fixation devices. A cost minimization analysis. Clin Orthop Relat Res. 1996. 329: 233-239.
    [261] Leclerc E, Furukawa KS, Miyata F, Sakai Y, Ushida T, Fujii T. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications. Biomaterials. 2004. 25: 4683-4690.
    [262] Leiggener CS, Curtis R, Muler AA, Pfluger D, Gogolewski S, Rahn BA. Influence of copolymer composition of polylactide implants on cranial bone regeneration. Biomaterials. 2006. 27: 202-207.
    [263] Osther PJ, Gjode P, Mortensen BB, Bartholin J, Gottrup F. Randomized comparison of polyglycolic acid and polyglyconate sutures for abdominal fascial closure after laparotomy in patients with suspected impaired wound healing. Br J Surg. 1995. 82: 1080-1082.
    [264] Aguilar CA, Lu Y, Mao S, Chen SC. Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers. Biomaterials. 2005. 26: 7642-7649.
    [265] Wood JS, Frost DB. Results using the biofragmentable anastomotic ring for colon anastomosis. Am Surg. 1993. 59: 642-644.
    [266] Langer R, Lendlein A, Schmidt A et al. Biodegradable Shape Memory Polymers. WO 99/42147. 1999.
    [267] Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop. 1981. 157: 259-278.
    [268] Legeros RZ. Apatites in biological systems. Prog Cryst Growth Charact Mater. 1981. 4: 1-45.
    [269] Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic material as permanently implantable skeletal prostheses. J Biomed Mater Res. 1970.4:433-456.
    [270] De Groot K, De Putter C, Smitt P, Driessen A. Mechanical failure of artificial teeth made of dense calciumhydroxyapatite. Sci Ceram. 1981. 11: 433-437.
    [271] Gilding DK, Reed AM, Biodegradable polymers for use in surgery- Poly(glycolic)/poly (lactic acid) homo and copolymers. Polymer. 1979. 20: 1459-1464.
    [272] Deng X, Hao J, Wang C. Preparation and mechanical properties of nanocomposites of poly(D,L-lactide) with Ca-deficient hydroxyapatite nanocrystals. Biomaterials. 2001. 22: 2867-2873.
    [273] Suljovrujic E, Ignjatovic N, Uskokovic D. Gamma irradiation processing of hydroxyapatite/poly-L-lactide composite biomaterial. Radiat Phys Chem. 2003. 67: 375-379.
    [274] Chen BQ, Sun K. Poly( ε -caprolactone)/hydroxyapatite composites: effects of particle size, molecular weight distribution and irradiation on interfacial interaction and properties. Polym Test. 2005. 24: 64-70.
    [275] Bleach NC, Nazhat SN, Tanner KE, Kellomaki M, Tormala P. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites. Biomaterials. 2002. 23: 1579-1585.
    [276] Byung KK, Sang YL, Mao X. Polyurethanes having shape memory effects. Polymer. 1996.37:5781-5793.
    
    [277] Ferry JD. Viscoelastic properties of polymers. New York: Wiley Press. 1961.
    [278] Steendam R, van Steenbergen MJ, Hennink WE, Frijlink HW, Lerk CF. Effect of molecular weight and glass transition on relaxation and release behaviour of poly(DL-lactic acid) tablets. J Control Release. 2001. 70: 71-82.
    [279] Liu R, Ma GH, Meng FT, Su ZG. Preparation of uniform-sized PLA microcapsules by combining Shirasu Porous Glass membrane emulsification technique and multiple emulsion-solvent evaporation method. J Control Release. 2005. 103: 31-43.
    [280] Richardson SM, Curran JM, Chen R, Thomas AV, Hunt JA, Freemont AJ, Hoyland JA. The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid(PLLA) scaffolds. Biomaterials. 2006. 27: 4069-4078.
    [281] Rokkanen P. Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials. 2000. 21: 2607-2613.
    [282] Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003. 24: 2161-2175.
    
    [283] Hench LL. Bioceramics. J Am Ceram Soc. 1998. 81: 1705-1728.
    [284] Tancred DC, McCormack BAO, Carr AJ. A quantitative study of the sintering and mechanical properties of hydroxyapatite/phosphate glass composites. Biomaterials. 1998. 19:1735-1743.
    [285] Soriano I, Evora C. Formulation of calcium phosphates/poly(d,l-lactide) blends containing gentamicin for bone implantation. J Control Release. 2000. 68: 121-134.
    [286] Stamboulis A, Hench LL, Boccaccini AR. Mechanical properties of biodegradable polymer sutures coated with bioactive glass. J Mater sci: Mater Med. 2002. 13(9): 843-848.
    [287] Ignjatovic N, Uskokovic D. Synthesis and application of hydroxyapatite/polylactide composite biomaterial. Appl Surf Sci. 2004. 238: 314-319.
    [288] Hojo Y, Kotani Y, Ito M, Abumi K, Kadosawa T, Shikinami Y, Minami A. A biomechanical and histological evaluation of a bioresorbable lumbar interbody fusion cage. Biomaterials. 2005. 26: 2643-2651.
    [289] Hasegawa S, Ishii S, Tamura J, Furukawa T, Neo M, Matsusue Y, Shikinami Y, Okuno M, Nakamura T. A 5-7 year in vivo study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures. Biomaterials. 2006. 27: 1327-1332.
    [290] Yasunaga T, Matsusue Y, Furukawa T, Shikinami Y, Okuno M, Nakamura T. Bonding behaviour of ultrahigh strength unsintered hydroxyapatite particles/poly(L-lactide) composites to surface of tibial cortex in rabbits. J Biomed Mater Res. 1999. 47: 412-419.
    [291] Kasuga T, Ota Y, Nogami M, Abe Y. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials. 2001. 22: 19-23.
    [292] Hong ZK, Qiu XY, Sun JR, Deng MX, Chen XS, Jing XB. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer. 2004. 45: 6699-6706.
    [293] Tanaka H, Watanabe T, Chikazawa M, Kandori K, Ishikawa T. TPD, FTIR, and Molecular Adsorption Studies of Calcium Hydroxyapatite Surface Modified with Hexanoic and Decanoic Acids. J Colloid Interf Sci. 1999. 214: 31-37.
    [294] Nikolenko NV, Esajenko EE. Surface Properties of Synthetic Calcium Hydroxyapatite. Adsorpt Sci Technol. 2005. 23: 543-553.
    [295] Leventouri T. Synthetic and biological hydroxyapatites: Crystal structure questions. Biomaterials. 2006. 27: 3339-3342.
    [296] Cheng ZH, Yasukawa A, Kandori K, Ishikawa T. FTIR Study of Adsorption of CO_2 on Nonstoichiometric Calcium Hydroxyapatite. Langmuir. 1998. 14: 6681-6686.
    [297] Nicholas LB, Wilson Jr. OC. Surface modification of hydroxyapatite. Part I. Dodecyl alcohol. Biomaterials. 2003. 24: 3671-3679.
    [298] Kister G, Cassanas G, Vert M. Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer. 1998. 39: 267-273.
    [299] Murugan R, Ramakrishna S. Aqueous mediated synthesis of bioresorbable nanocrystalline hydroxyapatite. J Cryst Growth. 2005. 274: 209-213.
    [300] Shan HB, Zhang ZT. Preparation of Nanometre-Sized ZrO_2/Al_2O_3 Powders by Heterogeneous Azeotropic Distillation. J Eup Ceram Soc. 1997. 17: 713-717.
    [301] Young SK, Gemeinhardt GC, Sherman JW, Storey RF, Mauritz KA, Schiraldi DA, Polyakova A, Hiltner A, Baer E. Covalent and non-covalently coupled polyester-inorganic composite materials. Polymer. 2002. 43: 6101-6114.
    [302] Gonsalves KE, Jin S, Baraton MI. Synthesis and surface characterization of functionalized polylactide copolymer microparticles. Biomaterials. 1998. 19: 1501-1505.
    [303] Ishikawa T, Wakamura M, Kondo S. Surface Characterization of Calcium Hydroxylapatite by Fourier Transform Infrared Spectroscopy. Langmuir. 1989. 5: 140-144.
    [304] Ivanova, TI, Kamenetskaya OVF, Kol'tsov AB, Ugolkov VL. Crystal Structure of Calcium-Deficient Carbonated Hydroxyapatite. Thermal Decomposition. J Solid State Chem. 2001. 160:340-349.
    [305] Fleet ME, Liu X. Location of type B carbonate ion in type A-B carbonate apatite synthesized at high pressure. J Solid State Chem. 2004. 177: 3174-3182.
    [306] Tanaka H, Yasukawa A, Kandori K, Ishikawa T. Modification of Calcium Hydroxypapatite Using Alkyl Phosphates. Langmuir. 1997. 13: 821-826.
    [307] Ignjatovic N, Savic V, Najman S, Plavsic M, Uskokovic D. A study of Hap/PLLA composite as a substitute for bone powder using FT-IR spectroscopy. Biomaterials. 2001. 22:571-575.
    [308] Kiss E, Bertoti I, Butler EIV. XPS and Wettability Characterization of Modified Poly(lactic acid) and Poly(lactic/glycolic acid) Films. J Colloid Interf Sci. 2002. 245: 91-98.
    [309] Yan LL, Leng Y, Weng LT. Characterization of chemical inhomogeneity in plasma-sprayed hydroxyapatite coatings. Biomaterials. 2003. 24: 2585-2592.
    [310] Nishikawa H. Surface changes and radical formation on hydroxyapatite by UV irradiation for inducing photocatalytic activation. J Mol Catal A: Chem. 2003. 206: 331-338.
    [311] Gopinath CS, Hegde SG, Ramaswamy AV, Mahapatra S. Photoemission studies of polymorphic CaCO_3 materials. Mater Res Bull. 2002. 37: 1323-1332.
    [312] Kaciulis S, Mattogno G, Pandolfi L, Cavalli M, Gnappi G, Montenero A. XPS study of apatite-based coatings prepared by sol-gel technique. Appl Surf Sci. 1999. 151: 1-5.
    [313] Li L, Chan CM, Weng LT. The effects of specific interactions on the surface structure and composition of miscible blends of poly(vinyl alcohol) and poly(N-vinyl-2-pyrrolidone). Polymer. 1998. 39: 2355-2360.
    [314] Gou J, Minaie B, Wang B, Liang Z, Zhang C. Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comp Mater Sci. 2004.31:225-236.
    [315] Henin J, Chipot C. Hydrogen-bonding patterns of cholesterol in lipid membranes. Chem Phys Lett. 2006. 425: 329-335.
    [316] Cerius2 Version 4.0, Molecular modeling software for materials research from Molecular Simulations Inc. of San Diego, CA.
    [317] Frank M, Gutbrod P, Hassayoun C, von der Lieth CW. Dynamic molecules: molecular dynamics for everyone. An internet-based access to molecular dynamic simulations: basic concepts. J Mol Model. 2003. 9: 308-315.
    [318] Lipkowitz KB. Theoretical studies of brush-type chiral stationary phases. J Chromatogr A. 1994.666:493-503.
    [319] Wilson RM, Elliott JC, Dowker SEP, Rodriguez-Lorenzo LM. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials. 2005. 26: 1317-1327.
    [320] Suetsugu Y, Takahashi Y, Okamura FP, Tanaka J. Structure analysis of A-type carbonate apatite by a single-crystal X-ray diffraction method. J Solid State Chem. 2000. 155: 292-297.
    [321] Astala R, Stott MJ. First principles investigation of mineral component of bone:CO_3 substitutions in hydroxyapatite. Chem Mater. 2005. 17: 4125-4133.
    [322] Peroos S, Du Z, de Leeuw NH. A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxy-apatite. Biomaterials. 2006. 27: 2150-2161.
    [323] Muller L, Conforto E, Caillard D, Muller FA. Biomimetic apatite coatings-Carbonate substitution and preferred growth orientation. Biomol Eng. 2007. 24: 462-466.
    [324] Elliott JC. Structure and chemistry of the apatites and othercalcium orthophosphates. Amsterdam: Elsevier; 1994.
    [325] Wilson RM, Elliott JC, Dowker SEP, Smith RI. Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials. 2004. 25: 2205-2213.
    [326] Mostafa NY, Brown PW. Computer simulation of stoichiometric hydroxyapatite: Structure and substitutions. J Phys Chem Solids. 2007. 68. 431-437.
    [327] de Leeuw NH. A computer modelling study of the uptake and segregation of fluoride ions at the hydrated hydroxyapatite (0001) surface: introducing a Ca_(10)(PO_4)_6(OH)_2 potential model. Phys Chem Chem Phys. 2004. 6. 1860-1866.
    [328] Palache C, Berman H, Frondel C. The system of mineralogy of James Dwight Dana and Edward Salisbury Dana. In: 7th ed. Vol. II. Wiley, New York. 1951. p.880.
    [329] Wierzbicki A, Cheung HS. Molecular modeling of inhibition of hydroxyapatite by phosphocitrate. J Mol Struct. 2000. 529: 73-82.
    [330] Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P. A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc. 1984. 106: 765-784.
    [331] Jorgensen WL, Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc. 1988. 110: 1657-1666.
    [332] Rappe AK, William A, Goddard III. Charge equilibration for molecular dynamics simulations. J Phys Chem. 1991. 95: 3358-3363.
    [333] Heuchel M, Hofmann D. Molecular modeling of polyimide membranes for gas separation. Desalination. 2002. 144: 67-72.
    [334] Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res. 2001. 55: 20-27.
    [335] Naka K, Chujo Y. Control of crystal nucleation and growth of calcium carbonate by synthetic substrates. Chem Mater. 2001. 13: 3245-3259.
    [336] Cenni E, Ciapetti G, Stea S, Corradini A, Carozzi F. Biocompatibility and performance in vitro of a hemostatic gelatin sponge. J Biomater Sci Polym Ed. 2000. 11: 685-699.
    [337] Word AG, Courts A. The science and technology of gelatin. London: Academic Press; 1977.
    [338] Nayar S, Sinha A. Systematic evolution of a porous hydroxyapatite -poly(vinylalcohol) -gelatin composite. Collo Surf B. 2004. 35: 29-32.
    [339] Bigi A, Bracci B, Panzavolta S. Effect of gelatin on the properties of calcium phosphate cement. Biomaterials. 2004. 25: 2893-2899.
    
    [340] Veis A. The macromolecular chemistry of gelatin. London: Academic Press; 1964.
    [341] Sivakumar M, Rao KP. Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite-gelatin composite microspheres. Biomaterials. 2002. 23: 3175-3181.
    [342] Yoshimura M, Suda H, Okamoto K, Ioku K. Hydrothermal synthesis of biocompatible whiskers. J Mater Sci. 1994. 29: 3399-3402.
    [343] Ota Y, Iwashita T, Kasuga T, Abe Y. Novel preparation method of hydroxyapatite fibers. J Am Ceram Soc. 1998. 81: 1665-1668.
    [344] Kim HW, Kim HE. Nanofiber generation of hydroxyapatite and fluor-hydroxyapatite bioceramics. J Biomed Mater Res B. 2005. 77: 323-328.
    [345] Roeder RK, Converse GL, Leng H, Yue W. Kinetic effects on hydroxyapatite whiskers synthesized by the chelate decomposition method. J Am Ceram Soc. 2006. 89: 2096-2104.
    [346] Chang MC, Ko CC, Douglas WH. Conformational change of hydroxyapatite/gelatin nanocomposite by glutaraldehyde. Biomaterials. 2003. 24: 3087-3094.
    [347] Teng S, Shi J, Peng B, Chen L. The effect of alginate addition on the structure and morphology of hydroxyapatite/gelatin nanocomposites. Compos Sci Technol. 2006. 66: 1532-1538.
    [348] Teng S, Chen L, Guo Y, Shi J. Formation of nano-hydroxyapatite in gelatin droplets and the resulting porous composite microspheres. J Inorg Biochem. 2007. 101: 686-691.
    [349] Wang L, Li C. Preparation and physicochemical properties of a novel hydroxyapatite/chitosan-silk fibroin composite. Carbohyd Polym. 2007. 68: 740-745.
    [350] Deng X, Zhou S, Li X, Zhao J, Yuan M. In vitro degradation and release profiles for poly-dl-lactide-poly(ethylene glycol) microspheres containing human serum albumin. J Control Release. 2001. 71: 165-173.
    [351] Borum-Nicholas L, Wilson Jr OC. Surface modification of hydroxyapatite. Part I. Dodecyl alcohol. Biomaterials. 2003. 24: 3671-3679.
    [352] Muller L, Muller F. Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006. 2: 181-189.
    [353] Eiden-Aβmann S, Viertelhaus M, Heiβ A, Hoetzer KA, Felsche J. The influence of amino acids on the biomineralization of hydroxyapatite in gelatin. J Inorg Biochem. 2002.91:481-486.
    [354] Mann S, Ozin GA. Synthesis of inorganic materials with complex form. Nature. 1996. 365: 499-505.
    [355] Rhee SH, Tanaka J. Self-assembly phenomenon of hydroxyapatite nanocrystals on chondroitin sulfate. J Mater Sci-Mater M. 2002. 13: 597-600.
    [356] Zhang W, Liao SS, Cui FZ. Hierarchical self-assembly of nanofibrils in mineralized collagen. Chem Mater. 2003. 15: 3221-3226.
    [357] Chang MC, Ikoma T, Kikuchi M, Tanaka J. Preparatin of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a cross-linkage agent. J Mater Sci Lett. 2001. 20: 1109-1201.
    [358] Chang MC, Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials 2002,23:4811-8.
    [359] Li J, Chen YP, Yin Y, Yao F, Yao K. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials. 2007. 28: 781-790.
    [360] Facca AG, Kortschot MT, Yan N. Predicting the tensile strength of natural fibre reinforced thermoplastics. Compos Sci Technol. 2007. 67: 2454-2466.
    [361] Sorensen BF, Gamstedt EK, Ostergaard RC, Goutianos S. Micromechanical model of cross-over fibre bridging prediction of mixed mode bridging laws. Mech Mater. 2008. 40: 220-234.
    [362] Feninat FE, Laroche G, Fiset M, Mantovani D. Shape memory materials for biomedical applications. Adv Eng Mater. 2002. 4: 91-104.
    [363] Boland ED, Coleman BD, Barnes CP, Simpson DG, Wnek GE, Bowlin GL. Electrospinning polydioxanone for biomedical applications. Acta Mater. 2005. 1: 115-123.
    [364] Kim BK, Lee SY, Xu M. Polyurethanes having shape memory effects. Polymer. 1996. 37: 5781-5793.
    [365] Jeong HM, Kim BK, Choi YJ. Synthesis and properties of thermotropic liquid crystalline polyurethane elastomers. Polymer. 2000. 41: 1849-1855.
    [366] Liu R, Ma GH, Wan YH, Su ZG. Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and double emulsion-solvent evaporation method. Colloid Surface B. 2005. 45: 144-153.
    [367] Chen CC, Chueh JY, Tseng H, Huang HM, Lee SY. Preparation and characterization of biodegradable PLA polymers blends. Biomaterials. 2003. 24: 1167-1173.
    [368] Chazono M, Tanaka T, Komaki H, Fujii K. Bone formation and bioresorption after implantation of injectable β-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects. J Biomed Mater Res A. 2006. 70: 542-549.
    [369] Kondo N, Ogose A, Tokunaga K, Ito T, Arai K, Kudo N, et al. Bone formation and resorption of highly purified β-tricalcium phosphate in rat femoral condyle. Biomaterials. 2005. 26: 5600-5608.
    [370] Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spin J. 2001. 10: 114-121.
    [371] Hoshino M, Egi T, Terai H, Namikawa T, Takaoka K. Repair of long intercalated rib defects using porous beta-tricalcium phosphate cylinders containing recombinant human bone morphogenetic protein-2 in dogs. Biomaterials. 2006. 27: 4934-4940.
    [372] Miranda P, Saiz E, Gryn K, Tomsia AP. Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Mater. 2006. 2: 457-466.
    [373] Lin FH, Chen TM, Lin CP, Lee CJ. The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Artif Organs. 1999. 23(2): 186-194.
    [374] Yoneda M, Terai H, Imai Y, Okada T, Nozaki K, Inoue H, Miyamoto S, Takaoka K. Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing implant. Biomaterials. 2005. 26: 5145-5152.
    [375] Baro M, Sanchez E, Delgado A, Perera A, Evora C. In vitro-in vivo characterization of gentamicin bone implants. J Control Release. 2002. 83: 353-364.
    [376] Prokop A, Jubel A, Helling HJ, Eibach T, Peters C, Baldus SE, Rehm KE. Soft tissue reactions of different biodegradable polylactide implants. Biomaterials. 2004. 25: 259-267.
    [377] Prokop A, Jubel A, Hahn U, Dietershagen M, Bleidistel M, Peters C, Hofl A, Rehm KE. A comparative radiological assessment of polylactide pins over 3 years in vivo. Biomaterials. 2005. 26: 4129-4138.
    [378] Schiller C, Epple M. Carbonated calcium phosphates are suitable pH-stabilising fillers for biodegradable polyesters. Biomaterials. 2003. 24: 2037-2043.
    [379] Koc N, Timucin M, Korkusuz F. Fabrication and characterization of porous tricalcium phosphate ceramics. Ceram Int. 2004. 30: 205-211.
    [380] Yang F, Cui W, Xiong Z, Liu L, Bei J, Wang S. Poly (L,L-lactide-co-glycolide)/tricalcium phosphate composite scaffold and its various changes during degradation in vitro. Polym Degrad Stabil. 2006. 91: 3065-3075.
    [381] Ara MMw, Imai Y. Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid). Biomaterials. 2002. 23: 2479-2483.
    [382] Yoshida K, Kobayashi M, Hyuga H, Kondo N, Kita H, Hashimoto K, Toda Y. Reaction sintering of β-tricalcium phosphates and their mechanical properties. J Eup Ceram Soc. 2007.27:3215-3220.
    [383] Copinet A, Bertrand C, Govindin S, Coma V, Couturier Y. Effect of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere. 2004. 55: 763-73.
    [384] Bian JJ, Kim DW, Hong KS. Phase transformation and sintering behavior of Ca_2P_2O_7. Mater Lett. 2004. 58: 347-351.
    [385] Kunze C, Freier T, Helwig E, Sandner B, Reif D, Wutzler A, Radusch HJ. Surface modification of tricalcium phosphate for improvement of the interfacial compatibility with biodegradable polymers. Biomaterials. 2003. 24: 967-974.
    [386] Choi D, Kumta PN. Mechano-chemical synthesis and characterization of nanostructured β-TCP powder. Mat Sci Eng C. 2007. 27: 377-381.
    [387] Hafeli U, Schutt W, Teller J, Zborowski M. Scientific and Clinical Applications of Magnetic Microspheres. New York: Plenum; 1997.
    [388] Lian S, Wang E, Kang Z, Bai Y, Gao L, Jiang M, Hu C, Xu L. Synthesis of magnetite nanorods and porous hematite nanorods. Solid State Commun. 2004. 129: 485-490.
    [389] Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B. Physical and chemical properties of magnetite and magnetitepolymer nanoparticles and their colloidal dispersions. J Colloid Interface Sci. 1999. 212: 49-57.
    [390] Cornell RM, Schertmann U. Iron Oxides in the Laboratory: Preparation and Characterization. Weinheim: VCH; 1991.
    [391] Chen S, Feng J, Guo X, Hong J, Ding W. One-step wet chemistry for preparation of magnetite nanorods. Mater Lett. 2005. 59: 985-988.
    [392] Cotton FA, Wilkinson G. In: Advanced inorganic chemistry. New York: Wiley Interscience; 1988.
    [393] Lian S, Kang Z, Wang E, Jiang M, Hu C, Xu L. Convenient synthesis of single crystalline magnetic Fe_3O_4 nanorods. Solid State Commun. 2003. 127: 605-608.
    [394] Huang Z, Tang F. Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres. J Colloid Interface Sci. 2005. 281: 432-436.
    [395] Cornell RM, Schertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. Weinheim: VCH; 1996.
    [396] Voit W, Kim DK, Zapka W, Muhammed M, Rao KV. Magnetic behavior of coated superparamagnetic iron oxide nanoparticles in ferrofluids. Mater Res Soc. 2001. 676: 781-786.
    [397] Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, Li M. Synthesis and characterization of biocompatible Fe_3O_4 nanoparticles. J Biomed Mater Res A. 2007. 80: 333-341.
    [398] Kryszewski M, Jeszka JK. Nanostructured conducting polymer composites- superparamagnetic particles in conducting polymers. Synthetic Met. 1998. 94: 99-104.
    [399] Ma M, Zhang Y, Yu W, Shen H, Zhang H, Gu N. Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloid Surface A. 2003. 212: 219-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700