用户名: 密码: 验证码:
钢淬火换热系数计算及温度与微观组织模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淬火是改变和提高金属材料性能的重要手段。近几十年来,学者对淬火过程进行了大量的研究,而计算机模拟技术因其能够优化工艺、降低废品率、提高工作效率而成为非常有效的研究方法。淬火是涉及热、力、组织及其相互作用的复杂过程,对这一过程的模拟主要包括边界条件和各种热物性参数的测算、模型的建立、对计算结果的验证等。
     本论文根据反传热思想和实测的几种典型钢探头在多种介质中淬火时的冷却曲线,建立了耦合相变的轴对称有限差分模型,用FORTRAN语言编程计算钢探头淬火过程的表面综合换热系数。结果表明,考虑相变时计算得到的换热系数比不考虑相变时的计算值要大,而且考虑相变时的计算结果被证明更加合理和准确。同时发现,相同探头淬火过程的换热系数随淬火介质种类不同而变化,同一淬火介质对不同材料的探头的冷却能力也不同,即淬火过程的换热系数与淬火介质及探头材料均相关。
     以大型有限元软件MSC.MARC作为模拟平台,建立了淬火过程三维非线性分析模型,借助MSC.MARC的二次开发功能编写模拟相变过程的程序,以计算得到的非线性表面综合换热系数为边界条件,模拟了淬火过程中的瞬态温度场和组织场。模拟中把相变潜热作为每个单元的内热源,迭代求解中修正温度场,以提高计算精度。结果显示,淬火探头测温点的模拟冷却曲线与实测曲线吻合较好;组织模拟结果与实验金相照片的比较,说明模拟的组织场较接近真实淬火组织。上述结果说明利用本文所建模型能够对淬火工件温度场和组织场进行较为准确的模拟。
     本论文还用有限元软件DEFORM建立2D和3D模型,模拟42CrMo支重轮、42CrMo轴等大工件淬火过程的温度场和组织场。42CrMo支重轮在不同介质中淬火得到的组织不同,按照水淬油冷工艺淬火后,支重轮在组织性能上能够达到要求;42CrMo轴在同种介质中的淬硬层深度随工件尺寸而变化。
Quenching as an important means of improving the mechanical properties of steel materials has been researched widely in recent years. The numerical simulation technique has become an efficient method to study quenching process, because it can optimize process, reduce the numbers of rejects and improve worked efficiency. The quenching of steels is a complex process that involves thermal, mechanical, and structural phenomena and their couplings. The simulation of quenching mainly includes the calculation of boundary conditions and thermophysical property parameters, the establishment of models, and the verification of calculation results.
     In this essay, axisymmetric finite-difference model with phase transformation was developed according to the inverse heat conduction method and the cooling curves. Surface heat transfer coefficients for several typical steels quenched in quenchants have been estimated with the designed FORTRAN program. The obtained surface heat transfer coefficient is larger and more reasonable while phase transformation is taken into account. It is also found that surface heat transfer coefficients for the same steel probe during quenching vary with the kind of quenchant, and the cooling capacity of a coolant medium cooling steel probes made of different materials is different. The results prove that surface heat transfer coefficients depend on both the type of quenchant and the material of steel probe.
     Taken surface heat transfer coefficients calculated above as boundary condition, a 3D nonlinear analysis model was presented by using the FE software MSC.MARC. The coupling between temperature and phase transformation was taken into account in the model. The simulation subroutine of phase transformation during quenching was developed, and the latent heat of phase transformation was treated as internal heat source which was added to each volume element to correct the calculated temperature field.
     The transient temperature field, the microstructure field of several typical steels during quenching were simulated with the FE model established above. The calculated cooling curves are in good agreement with the measured ones, and the simulated microstructure results have been compared with the metallographic graphs and verified reasonable. The above results show that it is capable of predicting the transient temperature field and microstructure field accurately with the model developed in this thesis.
     Also 2D and 3D models were established by using the FE software Deform, which were used to simulate the temperature and microstructure fields of large-scale 42CrMo shafts, 42CrMo thrust during quenching. The simulation results show that microstructures of the same large-scale 42CrMo thrust quenching in water and super-oil respectively are different from each other, and the microstructures and properties of 42CrMo thrust could satisfy the real requirements after quenching in water first and then cooling in super-oil. The depth of hardening zone varies with the size of large-scale 42CrMo shafts during quenching.
引文
[1]徐洲,赵连城.金属固态相变原理[M].北京:科学出版社,2004.
    [2]崔晓龙,万妮丽.大型锻件热处理过程的数值模拟研究[J].鞍钢技术,2004,6:41-45.
    [3]H. M. Tensi, A. Stick. Martens Harding of Steel-Prediction of Temperature Distribution and Surface Hardness[J]. Material Science Forum,1992, (102-104):741-754.
    [4]T. Furukawaw, H.Huang,0. Matsumura. Effects of Carbon Content on Mechanical Properties of 5%Mn Steels Exhibiting Transformation Induced Plasticity [J]. Materials Science and Technology,1994, (10):964-969.
    [5]陈君若,王洪纲.厚壁管类工件水淬传热问题的计算机模拟[J].金属热处理学报,1997,18(1):38-39.
    [6]张立文,赵志国,范全利,等.用有限元法计算35CrMo钢大锻件淬火过程的瞬态温度场[J].金属热处理,1994,12:24-27.
    [7]张立文,赵志国,范全利,等.35CrMo钢大锻件淬火过程组织分布的计算机预测[J].金属热处理学报,1994,15(4):15-21.
    [8]张伟民.大模块淬火冷却虚拟生产及智能化工艺装备研究[D]:)(博士学位论文).上海:上海交通大学材料科学与工程学院,2007.
    [9]张正容.传热学[M].北京:人民教育出版社,1982.
    [10]谢建斌.金属及合金在不同介质中淬火时的数值模拟和应用研究[D]:(博士学位论文).昆明:昆明理工大学建筑工程及力学系,2003.
    [11]M. Narazaki, S. Asada and K. Fukahara. Research on Cooling Power of Liquid Quenchants in Japan[C]. The Second International Conference on Quenching and the Control of Distortion, USA,1996:37-46.
    [12]M. Narazaki and M. Kogawara. Evaluation of heat transfer coefficient in Jominy End-quench Test[C]. The Fourth International Conference on Quenching and Control of Distortion. Beijing,2003:97-104.
    [13]Dong-ying JU. Simultaneous Identification on Multi-positions for Heat Transfer Coefficient in Quenching of Steel [C]. The Fourth International Conference on Quenching and Control of Distortion. Beijing,2003:105-110.
    [14]Dong-ying JU. Effect of Bubbling Boiling and Breaking of Steam Film on Heat Transfer Coefficient in Stirring Quenching Process[C]. The Fourth International Conference on Quenching and Control of Distortion. Beijing,2003:69-74.
    [15]陈乃录、潘健生、廖波,等.淬火油动态下换热系数的测量与计算[J].热加工工,2002,3:6-7,40.
    [16]陈乃录、高长银,单进,等.动态淬火介质冷却特性及换热系数的研究[J].材料热处理学报,2001,22(3):41-44.
    [17]Cheng Heming, Huang Xieqing, Xie Jianbin. Comparison of Surface Heat-Transfer Coefficients between Various DiameterCylinders during Rapid Cooling[J]. Journal of Materials Technology,2003,138:399-402.
    [18]Hernandez-Morales. B, Brimacombe. J K, Hawbolt. E B, et al. Determination of Quench Heat Transfer Coefficients Using Inverse Techniques, Quenching and Distortion Control, Eds.G. E. Totten,1992ASM International, Materials Park, USA,1992:155-164.
    [19]M. Maniruzzaman, R. D. Sisson. Heat Transfer Coefficients for Quenching Process Simulation[C]. The Second International Conference on Thermal Process Modelling and Computer Simulation, Nancy, France,2003:120:269-276.
    [20]M. Raudensky. Heat Transfer Coefficient Estimation by Inverse Conduction Algorithm [J]. Heat Fluid Flow,1993,3:257-266.
    [21]J. V. Beek. Inverse Heat ConductionⅢ-Posed Problems[M]. NewYork:Wiley-Interscience, NY,1985:258-291.
    [22]A. M. Osman, J. V. Beck. Investigation of Transient Heat Transfer Coefficients in Quenching Experiments[J]. Journal of Heat Transfer,1990,112:843-848.
    [23]顾剑锋,潘健生,胡明娟.淬火过程中表面综合换热系数的反传热分析[J].上海交通大学学报,1998,32(2):19-22,31.
    [24]程赫明,王洪纲,陈铁力.45钢淬火过程中热传导方程逆问题求解[J].金属学报,1997,33(5):467-472.
    [25]程赫明,张曙红,王洪纲.淬火过程中具有非线性表面换热系数考虑相变时温度场的有限元分析[J].应用数学和力学,1998,19(1):15-19.
    [26]谢建斌,程赫明,何天淳.1045钢淬火时温度场的数值模拟[J].甘肃工业大学学报.2003,29(4):33-37.
    [27]谢建斌,程赫明,何天淳.钢淬火时非线性热问题的研究[J].桂林工学院学报,2001,21(3):265-270.
    [28]程赫明,王洪纲.圆柱体45钢淬火过程中热传导方程逆问题的求解[J].昆明理工大学学报.1996,21(3):54-57.
    [29]程赫明,何天淳.高压气体淬火过程中热传导方程逆问题的求解[J].材料热处理学报,2001,22(4):81-83.
    [30]侯立军.TIO钢高压气体淬火过程中的数值模拟和应用研究[D]:(硕士学位论文).昆明:昆明理工大学建筑工程及力学系,2005.
    [31]李辉平,赵国群,牛山廷,等.淬火过程冷却曲线的采集及换热系数求解方法的研究[J].金属热处理.2006,31(7):29-32.
    [32]Li Huiping, Zhao Guoqun, Niu Shanting, et al. Inverse Heat Conduction Analysis of Quenching Process Using Finite-Element and Optimization Method[J]. Finite Elements in Analysis and Design,2006,42:1087-1096.
    [33]王伟佳.多种常用钢在不同介质中换热系数的测算[D]:(硕士学位论文).大连:大连理工大学,2007.
    [34]王宇挺,张立文,裴继斌.利用常用钢热探头建立淬火冷却介质数据库[J].金属热处理,2004,29(12):33-35.
    [35]张伟民,潘健生等.热处理数值模拟与远程服务.材料热处理学报,2001,1(22):60-67
    [36]刘庄,吴肇基,吴景之,等.热处理过程的数值模拟[M].北京:科学出版社,1996:119-158
    [37]M. Melander, J. Nicolov. Heating and Cooling Transformation Diagrams for the Rapid Heat Treatment of Two Alloy Steels. J.Heat Treating[J],1985,4(3):2-38.
    [38]J. S. Kirkaldy, R. C. Sharma. A New Phenomenology for Steel IT and CCT Curves [J]. Scripta Metallurgical,1982,6(10):1193-1198.
    [39]B. Hildenwall, T. Ericsson. Prediction of Residual Stresses in Case-Hardening Steels[J]. Hardenability Concepts with Application to Steel,1978:579-606.
    [40]P. K. Agarwal, J. K. Brimacombe. Mathematical Model of Heat Flow and Austenite-Pearlite Transformation in Eutectoid Carbon Steel Rods for Wire[J]. Metall. Trans.,1981,12B: 121-133.
    [41]A. J. Fletcher, A. B. Soomro.Effect of Transformation Temperature Range on Generation of Thermal Stress and Strain during Quenching[J]. Materials Science and Technology, 1986,2:714-719.
    [42]S. Denis, A. Simon, G. Beck.钢马氏体淬火过程中的热力学行为分析及内应力计算.第三届国际材料热处理大会论文集,1985:70-80.
    [43]M. Umemoto, N. Nishioka, I. Tamura,碳素钢等温及连续冷却时先共析铁素体析出动力学,第三届国际材料热处理大会论文选集。北京:机械工业出版社,1985.42-51.
    [44]M. B. Fernandes, S.Denis, A.Simon. Mathematical Model Coupling Phased Transformation and Temperature Evolution during Quenching of Steels[J]. Materials Science and Technology,1985,1(10):838-844.
    [45]F. G. Rammerstorfer, D. F. Fischer, W. Mitter. On Thermo-Elastic-Plastic Analysis of Heat Treatment Processes Including Creep and Phase Changes. Computers& Structures[J], 1981,13:771-779.
    [46]T. Inoue, S. Nagaki, T. Kishino, et al. Description of Transformation Kinetics, Heat Conduction and Elastic-Plastic Stress in the Course of Quenching and Tempering of Some Steels[J]. Ing-Arch,1981,50:315-327.
    [47]S,Denis, E. Gautier, A. Simon, et al. Stress-Phase-Transformation Interactions-Basic Principles, Modeling and Calculation of Internal Stresses[J]. Materials Science and Technology,1985,1(10):805-814.
    [48]M. Gergely, S. Somogyi, G. Buzza. Calculation of Transformation Sequences in Quenched Steel Components to Help Predict Internal Stress Distribution [J]. Materials Science and Technology,1985,1(10):893-898.
    [49]S. Sjostrom. Interactions and Constitutive Models for Calculating Quenching Stresses in Steels[J]. Materials Science and Technology,1985,1(10):823-829.
    [50]S.Denis, S. Sjostrom, A. Simon. Coupled Temperature, Stress, Phase Transformation Calculation Model Numerical Illustration of The Internal Stresses Evolution During Cooling of a Eutectoid Carbon Steel Cylinder[J]. Metallurgical Transactions A,1987, 18A:1203-1212.
    [51]K. Funatani. The Trends and Tasks of Modeling and Simulation for Reduetion of Heat Treatment Distortion [J]. Journal of Shanghai Jiaotong University,1998, E-5(1):35-41.
    [52]T. hioue, K. Funatani, G. E. Totten. Proeess Modeling for Heat Treatment:Current Status and Future Developments[J]. Journal of Shanghai Jiaotong University,2000, E-5(1): 14-25.
    [53]牛山廷.淬火过程三位有限元模拟及工艺参数优化的研究[D]:(博士学位论文).山东:山东大学,2007.
    [54]吴景之.温度场计算机模拟在国外大锻件生产中的应用[J].大型铸造件,1993,2:64-66.
    [55]吴景之.大段件加热[J].大型铸锻件,1992,3:12-18.
    [56]C. Liu, Z. Liu, G. Chen, et al. Effect of Stress On Transformation and Predietion of Residual Stresses[J].Materials Science and Technology,1984,14(8):747-750.
    [57]潘健生,张伟民,田东,等.热处理数学模型及计算机模拟[J].中国科学工程,2003,5(5):47-54.
    [58]李勇军.顾剑锋.潘建生,等.70Cr3Mo钢大型支承辊淬火加热计算机模拟[J].金属热处理,2000.9:34-35.
    [59]宋冬利,顾剑锋,袁文庆.718塑料模具钢大模块摧毁工艺优化[J].机械工程材料,2004,28(5):22-25.
    [60]徐骏,张伟民,陈乃录,等.塑料模具钢大模块的水冷复合间隙淬火技术[J].金属热处理,2006,31(10):76-78.
    [61]李勇军,潘健省,胡明娟.淬火冷却过程非线性有限元分析的单元选择[J].金属热处理学报,1999,20(4):22-24.
    [62]顾剑锋,潘健生,胡明娟,等.冷轧辊崔冷过程数值模拟的研究[J].金属热处理学报,1999,20(2):1-7.
    [63]邹壮辉,高守义,张立文.淬冷热应力场研究和应用进展[J].金属热处理学报,1993,14(3):1-8.
    [64]李强.淬火过程的计算机模拟与试验研究[D]:(博士学位论文).2003,秦皇岛:燕山大学.
    [65]姚仲鹏,王瑞君,张习军.传热学[M].北京:北京理工大学出版社,1995.
    [66]曹玉璋.传热学[M].北京:北京航空航天大学出版社,2001.
    [67]曹明盛.物理冶金基础[M].北京:冶金工业出版社,1985.
    [68]杨晓琼.传热学计算机辅助教学[M].西安:西安交通大学出版社,1992.
    [69]徐瑞.材料科学中数值模拟与计算[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [70]徐鑫华,叶卫平.计算机在材料科学中的应用[M].北京:机械工业出版社,2003.
    [71]陈火红.Marc有限元实力分析教程[M].北京:机械工业出版社,2002.
    [72]王宇挺.淬火介质的常用钢热探头评价和淬火介质数据库[D]:(硕士学位论文).大连:大连理工大学,2004.
    [73]谭真,郭广文.工程合金热物性[M].北京:冶金工业出版社,1994.
    [74]Touloukian Y. S.. Specific heat:metallic elements and alloys[M]. New York:IFI/Plenum, 1970.
    [75]Touloukian Y. S.. Thermal Conductivity:metallic elements and alloys[M]. New York: IFI/Plenum,1970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700