用户名: 密码: 验证码:
钢基体无熔深熔敷铜高频感应焊接数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究钢基体无熔深熔敷铜高频感应焊接温度场的数值模拟。从感应加热原理及感应熔敷焊特点着手,以电磁学和传热学理论为基础,给出了电磁场和温度场分布的有限元分析模型,建立了感应熔敷焊的数学模型,利用有限元模拟软件ADINA,以内热加载方式对钢基体无熔深熔敷铜高频感应焊接过程温度场进行模拟,得出了感应熔敷焊时工件上的温度场分布规律。
     对模拟结果分析可知,针对于大直径小壁厚工件,材料为非铁磁性物质时,其表面趋肤效应较铁磁性物质显著减弱,整个铜环及铜钢的界面处温差较小。工件上获得的有效总能量是影响工件上温度场分页的主要因素。
     分析在不同的电源功率下的温度场分布云图,可知感应熔敷焊中存在功率的临界值,当功率降低到某一临界值时,工件上达到动态热平衡,延长加热时间并不能起到熔化工件的作用。
     通过对不同边界换热条件下的模拟结果分析,可知电源功率、冷却水流量、通水时间三者存在一最佳匹配,只有当电源功率达到某一值时,控制合适的水流量及通水时间,才能保证铜熔化,钢基体不熔化的技术要求。
     依据建立的红外测温验证系统,对加热的钢基体表面选定点进行温度采集,与数值模拟的结果进行比较,结果表明:误差值在5%~10%之间,温度变化趋势基本一致。证明了有限元模拟分析方法的可行性,将会对实际工程应用提供有力的技术支持。
In this paper, study numerical simulation about the high-frequency induction welding temperature field, established mathematical model of induction welding cladding based on electromagnetic and heat transfer theory and proceed from characters of induction cladding welding. In order to find the rule of temperature distribution when welding, using ADINA to simulate high frequency induction welding temperature field.
     The results of simulation analysis revealed that, as for big-diameter and thin work pieces, the surface skin effect obviously decreased and the temperature difference of the entire copper loop and copper-steel interface was comparatively small when material was ferromagnetism.
     The temperature field distribution pictures with different mains inputs were analyzed. The results indicated that there is critical power of induction cladding welding. When the power droped to critical value,dynamic hot balance was achieved. And the work piece could not be melt only by prolonging heat time.
     According to the simulation analysis of different interface heat transfer conditions, the opitimized parameters(main powe imput, cooling water flux, water-cooling time )were found. Moreover, the technological requirement of making copper metl and keeping steel substrate unmelt could only be achieved under optimized parameters.
     Based on the infrared temperature measurement system, the temperatures of set point on the steel surface were investigated. Compared with simulation results, the conclusion could be made: when error value set in the range of 5%~10%, the change trend of temperation was basically uniform. Therefore, the feasibility of finit element analysis method was proved which could provide strong technical support for practical engineering application.
引文
[1]王克鸿,徐越兰,王建平,等.弹带熔敷扩散焊技术研究[J].兵器材料科学与工程,2002,25(2):34.
    [2]谭玉春,陈一新.T_2铜管和1Cr18Ni9Ti不锈钢管的焊接[J].株洲工学院学报,2003,17(2):74.
    [3]张秉刚,冯吉才,吴林.铬青铜与双相不锈钢电子束熔钎焊接头形成机制[J].焊接学报,2005,26(2):17-24.
    [4]李亚江,王娟,刘鹏.异种难焊材料的焊接及应用[M].北京:化学工业出版社,2004.176.
    [5]Malin V.Development of mold solidification welding for deporsting non-ferrous allays onto steel Weld[J].1992,71(5):35-36.
    [6]Prochaow J.Formmg metal guide strip on shelling casing[P].USP4787985,1989,1.17-927556,B21K21.
    [7]张文钺.焊接物理冶金[M].天津:天津大学出版社,1991.180-207.
    [8]周振丰.焊接冶金学:金属焊接性[M].北京:机械工业出版社.1988.1-190.
    [9]陈伯蠡.金属焊接性基础[M].北京:机械工业出版社,1982.278-295.
    [10]美国焊接学会.焊接手册,第一卷,焊接基础[M].机械工业出版社,1985.
    [11]吕德林,李砚珠.焊接金相分析[M].北京:机械工业出版社,1987.283-301.
    [12]潘春旭.异种钢及异种金属焊接显微结构特征及其转变机理[M].人民交通出版社,2000.56-78.
    [13]Jese U.Eddy current calculation in 3-D using the finite element method[J],IEEE Transactions on Megnetics,1982,18(2):426-430.
    [14]Chaei M.Finit element computation of 3-D electrostatic and magnetostatic field problems[J],IEEE Transactions on Megnetics,1983,19(6):2321-2324.
    [15]Hyun-Kyo,Gi-shik Lee,Song-yop Hahn.3-D magnetic field computations using finite-element approach with localized functional[J],IEEE Transactions on Magnetics,1985,21(6):2129-2198.
    [16]Fireteanu V,Tudorache T.Electromagntic forces in transverse flux induction heating[J].IEEE Transactions on Magnetics,2000,36(4):1792-1795.
    [17]Wang KF,Chandrasekar S,Yang HTYFinite.element simulation of moving induction heat treatment[J].Journal of Materials Engineering and Performance,1995,4(4):460-473.
    [18] Kawase Y, Miyatake T. Thermal analysis of steel blade quenching by induction heating[J]. IEEE Transactions on Magnetics, 2000, 36(4): 1788-1791.
    [19] Fuhrmann, Homberg D. Numerical simulation of induction hardening of steel [J]. International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 1999, 18(3): 482-493.
    [20] Fuhrmann, Homberg D. Numerical simulation of the surface hardening of steel [J]. International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 1999, 9(5): 705-724.
    [21] Dughiero F, Battistetti M. Optimization procedures in the design of continuous induction hardening and tempering installations for magnetic steel bars[J]. IEEE Transactions on Magnetics 1998, 34(5): 2865-2868.
    [22] Pokrovslii AM, Leshkovtsev VG. Computational determination of the structure and hardness of rolls after induction hardening[J]. Metal Science and Heat Treatment 1997,39(9-10): 396-400.
    [23] Di Barba P, Dughiero F, Trevisan F. Optimal design of windings for the continuous induction hardening processof steel bars[J] . International Journal of Applied Electronmagnetics and Mechanics, 1998, 9(1): 53-63.
    [24] Krahenbuhl L, Fabregue O, Wanser S. BIEM and FEM coupled with ID nonlinear Solutions to solve 3D high frequency eddy current problems[J]. IEEE Transactions on Magnetics, 1997, 33(2): 1167-1172.
    [25] Xu DH, Kuang ZB. A study on the distribution of residual stress due to surface induction hardening[J]. Journal of Engineering Materials and Technology, Transactions of the ASME, 1996, 118(4): 571-575.
    [26] Tjermberg A. Comparision of methods for determining residual stresses in induction hardened transmission sharfts[J]. IEEE Transactions on Magnetics, 1997, 25(1):282-290.
    [27] Adam Bokota, Slawomir Islierka. Numerical analysis of phase transformations and residual stresses in steel cone-shaped elements hardened by induction and flame meshods[J]. Int.J, Mesh, 1998, (40): 617-629.
    [28] Wang KF, Chandrasekar S, Yang HTY. Finite element simulation of induction heat treatment[J]. Journal of Materials Engineering and Performance, 1996, 118(4):571-575.
    [29] Chaboudez C, Clain S, Glardon R, Rappaz J, Suierkosz M. Numerical modeling of induction heating for axisymmetric geometries[J]. IEEE Transactions on Magnetics, 1997,33(1):739-745.
    [30]Bukanin V,Dughiero F.3D FEM simulation of transverse flux induction heaters [J].IEEE Transactions on Magnetics,1995,31(1):2174-2177.
    [31]Karol A,Adam S.A New Concept for Finite Element Simulation of Induction Heating of Steel Cylinders[J].IEEE transactions on industry applications,1997,33(4):893-897.
    [32]Wang Z,Huang W,ect.3D multifields FEM computation of transverse fluxinduction heating for moving-strips[J].IEEE Transactions on Magnetics,1999,35(3):1642-1645.
    [33]高印寒.高频感应加热温度场建模方法研究[J].内蒙古师范大学学报,2007,36(1):1-4.
    [34]吴金富,许雪峰.感应加热工件内电磁场计算及其有限元模拟[J],浙江工业大学学报,2004,32(1):3-7.
    [35]刘浩,陈立新.基于ANSYS的连铸坯感应加热温度场数值模拟[J],特种铸造及有色合金,2007,27(4):259-261.
    [36]刘继全.感应加热的热计算模型[J].大型铸锻件,2003,4(3):16-20.
    [37]杨晓光,汪友华.横向磁通感应加热装置中线圈形状对涡流及温度分布的影响[J].金属热处理,2003,28(7):49-53.
    [38]周跃庆,高忠科.移动式平板感应加热磁热耦合的数值模拟[J].热加工工艺,2007,36(14):55-58.
    [39]李朝林.高频感应蛇行加热过程中国有应变的研究[D].上海:上海交通大学,2001.1-6.
    [40]金晓昌.感应加热技术中的趋肤效应[J].武汉化工学院学报,1995,17(4):65-68.
    [41]刘白.双频感应淬火的计算与应用[J].贵州工业大学学报(自然科学版),2001,30(4):12-16.
    [42]金晓昌.感应线圈中电磁场分析[J].武汉化工学院学报,1996,18(2):2-5.
    [43]肖新棉.感应加热线圈中的电磁场[[J].武汉水利电力大学学报,1996,29(6):12-15.
    [44]干肇智.感应加热的数值计算[J].1985,2(5):1-12.
    [45]肖春国.圆竹感应加热工件内电参数计算[J].工业加热,1993,13(4):19-26.
    [46]戴挺,吴炳尧.半固态坯料感应三次加热的模拟分析[J].中国压铸、挤压铸造、半固态加工学术年会论文集,2001.
    [47]李海红,夏巨堪,闰洪,等.半固态触变成形坯料感应加热的数值模拟[J].金属成型工艺,2003,21(1):6-10.
    [48]徐霖,张恒华,邵光杰.半固态铝合金感应加热工艺参数的模拟研究[J].上海金属,2002,24(6):5-7.
    [49]张恒华,许路萍,邵光杰.A356铝合金半固态重熔温度场的有限元模拟[[J].材料 热处理学报,2002,23(2):4-8.
    [50]张恒华,许洛萍,邵光杰.铝合金半固态感应加热的计算机模拟[J].中国有色金属学报,2001,11(2):15-17.
    [51]郭景杰,王同敏,苏彦庆.钛的水冷铜坩埚感应熔炼温度场数值模拟[[J].铸造,1997,7(9):1-4.
    [52]郡波,程先华,赵萍.减振器连杆高频感应淬火工艺的温度场有限元模拟[J].上海交通大学学报,2003,37(1):1-6.
    [53]徐东辉,匡震邦,骆竞希.抽油杆表面感应淬火引起的残余应力[J].应用力学学报,1995,(3):26-32.
    [54]ADINAR&D.ADINA User Interface UsersGuide Report ARD[M].2002,2(1):1-4.
    [55]岳戈,陈权.ADINA应用基础与实例详解[M].北京:人民交通出版社,2008.
    [56]M.Γ.洛津斯基.感应加热的工业应用[M].上海科学技术出版社,1962.14-15.
    [57][英]华尔布顿-勃伦.感应加热实践[M].北京:国防工业出版社,1966.11-33.
    [58]刘志儒.金属感应热处理[M].北京:机械工业出版社,1987.1-19.
    [59]孙玉发.电磁场与电磁波[M].合肥:合肥工业大学出版社,2006.
    [60]徐立勤,曹伟.电磁场与电磁波理论[M].北京:科学出版社,2006.30-56.
    [61]鲁述,徐鹏根.电磁场边值问题解析方法[M].武汉大学出版社,2005.
    [62]拉达伊.焊接热效应.温度场、残余压力、变形[M].北京:机械工业出版社,1997:1-87.
    [63]陈丙森.计算机辅助焊接[M].北京:机械工业出版社,1999:107-168.
    [64]陈楚.数值分析在焊接中的应用[M].上海:上海交大出版社,1985.
    [65]张文钺.焊接传热学[M].北京:机械工业出版社.1989.
    [66]任世铮.传热学[M].北京:冶金工业出版社.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700