用户名: 密码: 验证码:
三七总皂苷(PNS)口服吸收机理及W/O口服微乳的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三七总皂苷(Panax notoginseng saponins,PNS)是中药三七的主要成分,具有确切的心血管药理活性,但其口服制剂生物利用度低,疗效差。为探明PNS生物利用度低的原因,本文采用Caco-2细胞及动物等体内外模型对其口服吸收过程中的各个环节进行考察,并制备W/O微乳制剂以提高其口服生物利用度。
     分别考察了PNS在人工胃液、Hanks缓冲液、不同肠段内容物以及肠粘膜匀浆内的稳定性。结果表明PNS中的人参皂苷Rb_1(ginsenoside Rb_1,Rb_1)和人参皂苷Rg_1(ginsenoside Rg_1,Rg_1)单体在人工胃液内易被破坏,而在近中性环境(pH5.5、6.0、6.8、7.4的Hanks缓冲液)内基本保持稳定。Rb_1和Rg_1的单体及其混合物PNS在大肠内容物中易降解,尤以Rb_1降解较为明显;二者在小肠内容物及肠粘膜中则相对稳定。
     以Caco-2细胞为模型,模拟小肠上皮细胞,考察Rb_1和Rg_1的摄取及转运机制。实验发现,Rb_1和Rg_1的单体及其混合物PNS在Caco-2细胞层的摄取受温度的影响,而pH的变化及其他化合物(环孢菌素)的加入对二者摄取均无显著性影响,同时在实验考查浓度范围内,细胞内Rb_1(或Rg_1)的摄取量随着Rb_1(或Rg_1)单体或混合物PNS的浓度的增加而呈线性增加,Rb_1(或Rg_1)单体与总皂苷中的Rb_1(或Rg_1)在Caco-2细胞中的吸收特性无明显差异。Rg_1的细胞摄取量(1.07±0.16μg/mg protein)(C_0=1mg/ml)相对Rb_1(0.77±0.03μg/mg protein)(C_0=1mg/ml)较高(P<0.05)。Caco-2细胞转运实验表明,Rb_1和Rg_1单体的转运透过系数(P_(app))(Apical-Basolateral)分别为(5.90±1.02)×10~(-8) cm/s和(2.59±0.17)×10~(-7) cm/s,二者转运都不受环孢菌素影响。
     通过大鼠不同途径给药后血药浓度参数的比较,考察药物口服吸收过程中各部位对生物利用度的影响。结果表明PNS溶液灌胃(po)(1500 mg/kg)、十二指肠(id)(900 mg/kg)及门静脉(pv)(50 mg/kg)给药后测得Rb_1绝对生物利用度分别为0.71%、2.71%和65.77%;Rg_1绝对生物利用度分别为3.29%、3.41%和50.56%。
     口服吸收实验结果表明,PNS(包括Rb_1和Rg_1)的肠道吸收机制为单纯被动扩散,吸收过程不受细胞膜内P-gp等外排蛋白的作用,PNS中其他成分对Rb_1或Rg_1的吸收特性无明显影响。胃液的酸性环境、大肠菌丛产生的酶及肝的首过作用均对其口服吸收产生影响,而肠道粘膜的透过性低是其口服吸收差的主要影响因素。
     为深入了解PNS的体内吸收及药动学行为,分别考察了Rb_1、Rg_1的胆汁排泄及血浆蛋白结合率,并建立了胆汁和血浆样品的分析方法。静脉给药(PNS50mg/kg)后10h,Rg_1、Rb_1分别有(61.48±18.30)%和(3.94±1.49)%由胆汁排泄进入肠腔内,灌胃给药(PNS 1500mg/kg)后12h,Rg_1、Rb_1分别有(0.91±0.51)%,(0.055±0.02)%由胆汁排泄进入肠腔内。在PNS溶液20-200μg/ml浓度范围内,Rb_1、Rg_1的血浆蛋白结合率分别为(80.11~89.69)%和(6.56~12.74)%。结果表明,Rb_1的血浆蛋白结合率较高,胆汁排泄较低;Rg_1的血浆蛋白结合率较低,而胆汁排泄较高。
     为提高PNS的口服吸收,设计并制备了W/O微乳制剂。选择大豆磷脂/乙醇(SP/EtOH)为微乳的混合表面活性剂,并考察了不同K_m值和油相组成,以及药物加入前后对微乳形成及理化性质的影响。当处方组成为:SP/EtOH(K_m=1/1)、Labrafil M 1944CS、PNS水溶液(400mg/ml),各自质量百分比分别为30%、45%和25%时,微乳外观澄清透明,粒径为17.8±1.7nm,表面活性剂含量较低,而载药量较高。
     以SP/EtOH(K_m=1/1)[或(SQ/O)/EtOH(K_m=1/1)]和PNS水溶液(400mg/ml)与不同油相分别制备11个W/O微乳处方,于大鼠十二指肠内给药研究其体内药动学性质,实验结果表明大多数微乳处方可明显提高药物的生物利用度。W/O微乳促进药物吸收的作用除与制剂中所含的表面活性剂有关外,不同种类油相的选用也会产生一定影响,实验中发现,对于Rb_1、Rg_1采用不同油相制备的微乳其吸收促进作用大小都有IMWITOR 312≈IPM>IPP>2EHP,表明随着脂肪酸碳链的增加,长链(C>C_(14))脂肪酸酯的吸收促进作用较中链脂肪酸酯(C_8<C<C_(14))有所降低。
     研究不同处方微乳稀释20倍后的外翻肠囊吸收,结果表明大多数微乳处方稀释后可不同程度的促进Rb_1、Rg_1的肠吸收,其中,处方3无论对于Rb_1还是Rg_1,都具有非常明显的吸收促进作用。
     实验中制备大单室脂质体(200~300nm)做为生物膜模型,考察了W/O微乳对脂质体膜流动性的影响。结果表明大多数微乳处方可不同程度的提高脂质体膜流动性,提示微乳促进药物吸收的作用可能与其提高生物膜流动性有关。
     首次采用PAMPA技术研究了不同微乳处方对药物膜转运的促进作用,计算有效渗透系数P_e,并将结果与大鼠体内肠吸收实验结果作相关性分析,探讨PAMPA分析技术作为制剂体外质量评价的可行性,并分析其影响因素。结果发现,在同等给药条件下,Rb_1的P_e值总体等于或小于Rg_1,这与细胞实验的结果相吻合。另一方面,稀释后微乳(D-ME)中药物的P_e大多高于PNS对照溶液,表明微乳中的组分可以提高药物的膜渗透转运能力,但P_e以及外翻肠囊实验与大鼠体内肠吸收实验结果间的相关性都比较差,原因可能是由于W/O微乳稀释
    后,体系中的脂质成分分层析出、粘附于肠粘膜表面或PAMPA膜上,从而对实验结果产生了一定的影响而导致的,另外PAMPA自身所缺乏的细胞旁通路转运机制,也可能是制约其全面反映药物吸收性质的一个原因。与此同时,实验发现稀释前微乳(ME)的PAMPA分析结果与大鼠体内肠吸收实验结果间具有相对较好的直线相关性,虽然W/O微乳在体内是以D-ME的形式发挥作用,但ME中药物膜转运能力的差异也可以在一定程度上反映微乳中组分对药物吸收的影响,该实验也进一步表明,除可应用于原料药物的膜转运研究外,在了解药物一定的相关背景知识,并在供试液体系相对单一的条件下,PAMPA可以尝试引入制剂处方研究的某些领域中。
As main ingredients of notoginseng, Panax notoginseng saponins (PNS) proved in recent years to possess pharmacological action in cardiovascular system. But bioavailability for both Rg_1 and Rb_1, which are main ingredients of PNS, is very low after oral administration. In present study, Caco-2 cells and rat models were applied to study the mechanism of absorption after oral administration of PNS, and W/O microemulsion were prepared to enhance bioavailability of PNS.
    Stability of of both Rb_1 and Rg_1 in PNS in artificial gastric juice, HBSS at different pH value (pH 5.5, 6.0, 6.8, 7.4), contents of different parts of intestine, and homogenates of intestine mucosa were studied. It showed that Rb_1 (and Rg_1) proved to be readily eliminated in stomach, but stable in relatively neutral circumstance. Both Rb_1 and Rg_1 in PNS, especially for Rb_1, degraded significantly in the contents of large intestine. However, both of them kept mainly intact in the contents of small intestine and homogenates of intestinal mucosa.
    Uptake of both Rb_1 and Rg_1 by Caco-2 cell monolayers was inhibited in low temperature, but not by cyclosporine, and the change in the apical pH showed no pronounced effects. Uptake and transport were non-saturable and increased linearly with rising of concentration of Rb_1 (and Rg_1) over the range of concentration tested, which indicated a passive transport. There was no significant difference between monomer (Rb_1 and Rg_1) and mixture (PNS) for absorption characteristic. Uptake amount of Rg_1(1.07±0.16μg/mg protein) (Co=1mg/ml) in Caco-2 cells was a little higher than that of Rb_1 (0.77±0.03μg/mg protein) (Co=lmg/ml). Meanwhile, apparent permeability coefficient of (5.90±1.02)×10~(-8) cm/s(C_0=1mg/ml) for Rb_1 and (2.59±0.17)×l0~(-7)cm/s (Co=1mg/ml) for Rg_1 from apical compartment to basolateral compartment predicted an incompletely absorption. Transport of both Rb_1 and Rg_1 were not influenced by cyclosporine.
    The serum concentration-time profiles of Rb_1 afer tail venous (iv), portal venous (pv), intraduodenal (id) and peroral (po) administration to rats were compared to evaluate the the role of stomach, intestine and liver involved in absorption process. The pharmacokinetic behavior of Rb_1 (and Rg_1) after different routes of administration to rats showed that the absolute bioavailability after po (PNS 1500mg/kg), id (PNS 900mg/kg), and pv (PNS 50mg/kg) administration is 0.71%, 2.71% and 65.77% respectively for Rb_1and 3.29%, 3.41% and 50.56% respectively
    for Rg_1.
    So, it can be concluded that transport across Caco-2 cell monolayers for PNS (include Rb_1 and Rg_1) is a simple passive diffusion process. No efflux transporters in Caco-2 cells and other components in PNS showed effects on it. The elimination in stomach, large intestine and liver contributed to the low bioavailability of PNS, but the low membrane permeability might be a more important factor dominating the extent of absorption.
    This thesis studies Plasma protein binding and bile excretion of both Rg_1 and Rb_1 for further analysis of PNS. (61.48±18.30)% dose of Rg_1, and (3.94±1.49)% dose of Rb_1 were respectively excreted into bile 10 hours after iv administration (PNS 50mg/ml), and (0.91±0.51%)% dose of Rg_1 and (0.055±0.02)% dose of Rb, were excreted into bile 12 hours after po administration (PNS 1500mg/ml). Ranging from 20 to 200μg/ml in PNS concentration, the plasma protein binding degrees of Rg_1 and Rb_1 are respectively 6.56-12.74% and 80.11-89.69%.
    In further study, SP/EtOH was selected as surfactant/co-surfactant for the preparation of W/O microemulsion to enhance the bioavailability of PNS. Studies are mainly focused on the influence of different K_m and oil, and addition of drug (PNS) on the formation and physico-chemical properties of W/O microemulison. When W/O microemulision is composed of 30% SP/EtOH(K_m-1/1), 45%Labrafil M 1944CS and 25%PNS solution (400mg/ml), it shows a transparent system and particle size is 17.8±1.7nm, the content of surfactant is fairly low while that of PNS is relatively high. With the surfactant/co-surfactant of SP/EtOH (K_m=1/1) [or (SQ/O) /EtOH (K_m=1/1) ] and 11 PNS W/O microemulison prepared in different kinds of oils, pharmacokinetic behavior of W/O microemulison was experimented in the rats after intraduodenal administration. The results show that most of microemulison enhances the absorption of Rg_1 and Rb_1 significantly, and the mechanism of the enhanced absorption may be attributed to the effect of surfactant/co-surfactant. Meanwhile, the composition of the oil plays a role that cannot be neglected here and the enhancement of PNS absorption varies with the microemulsion containing different kinds of oil, as follows: BvIWITOR 312~IPM>IPP>2EHP. Accompanying with the rising carbon chain of fatty acid in oil, the rate of absorption enhancement by the long chain glyceride (C> C_(14)) is lower than that by the medium chain glyceride (C_8    The experiments are also carried out for the analysis of the microemulsion absorption in everted intestine sac, and it is proved by the results that most of
    microemulison can enhance the absorption of Rb_1 and Rg_1 after diluted with Kreb's solution. Among them, microemulision 3 can significantly enhance the absorption of both Rb_1 and Rg_1.
    Liposome was used as a model to imitate biological membrane, and then W/O microemulison was found to enhance the membrane fluidity of liposome to different extents. It suggests that the effect of W/O microemulison on the absorption enhancement may be related with its enhancement in the membrane fluidity.
    PAMPA analysis was first applied in the present study of P_erformulation to explore the effects of different W/O microemulison on the absorption of PNS. The value of P_e and the correlation between P_e and Fr, P_e and R were studied to evaluate the feasibility of PAMPA being an in vitro model and the pharmaceutical dosage.
    The results show that P_e of Diluted-Microemulsion (D-ME) is mostly higher than that of PNS solution (control), which suggests the components of microemulision can facilitate the membrane P_ermeability of drug. While in the coordinate conditions, P_e of Rg_1 is mainly lower than that of Rb_1, which accords with the results of Caco-2 cell exP_eriments. But for D-ME, neither P_e nor R shows linearity correlation with Fr and this may be attributed to the phase transformation resulted from the separation, precipitation and flocculation of the system after the dilution of the Microemulsion. In some exP_eriments, lipids separated from the system even adhere to PAMPA membrane or intestine mucous membrane, which may also influence the results of the exP_eriment. The linearity correlation between PAMPA and Fr acquired in Microemulison (ME) analysis further indicates that the PAMPA analysis can be brought into not only the investigation of membrane transport of crude drug, but also conditioned preformulation research.
引文
[1] 甘烦远,郑光植.三七化学成分研究概况[J].中国药学杂志,1992,27(3):138-143.
    [2] 王淑琴,于洪军,官廷荆编著.中国三七[M].昆明:云南民族出版社,1993,11-81.
    [3] Liu JH, Wang X, Cai SQ, et al. Analysis of the Constituents in the Chinese Drug Notoginseng by Liquid Chromatography-Electrospray Mass Specrometry [J]. J Chin Pharm Sci, 2004, 13(4): 225-237.
    [4] Ma WG, Mizutani M, Malterud KE, et al. Saponins from the roots of Panax notoginseng [J]. Phytochemistry, 1999, 52(6): 1133-1139.
    [5] Takino Y. Studies on the pharmacodynamics of ginsenoside- Rg_1, - Rb_1 and -Rb2 in rats [J]. Yakugaku-Zasshi, 1994, 114(8): 550-564.
    [6] Karikura M, Miyase T, Tanizawa H, et al. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. Ⅶ. Comparison of the decomposition modes of ginsenoside-Rb_1 and Rb_2 in the digestive tract of rats [J]. Chem Pharm Bull, 1991, 39(9): 2357-61.
    [7] 王毅,刘铁汉,王巍,等.肠内菌群对人参皂苷R_(g1)的代谢转化作用的研究[J].中国中药杂志,2001,26(3):188-190.
    [8] 王毅,刘铁汉,王巍,等.人参皂苷R_(g1)的肠内菌代谢及其代谢产物吸收入血的研究[J].药学学报,2000,35(4):284-288.
    [9] Kanaoks M, Akao T, Kobashi K. Metabolism of ginseng saponins, ginsenoside, by human intestinal flora [J]. Wakan Lyakugaku Zasshi, 1994, 11 (2): 241-246.
    [10] Hasegawa H, Sung JH, Matsumiya S, et al. Main ginseng saponin metabolites formed by intestinal bacteria [J]. Planta Med, 1996, 62(5): 453-457.
    [11] Akao T, Kida H, Kanaoka M, et al. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb_1 from Panax ginseng [J]. J Pharm Pharmacol, 1998, 50(10): 1155-1160.
    [12] Akao T, Kanaoka M, Kobashi K. Appearance of compound K, a major metabolite of ginsenoside Rb_1 by intestinal bacteria, in rat plasma after oral administration--measurement of compound K by enzyme immunoassay [J]. Biol Pharm Bull, 1998, 21(3): 245-249.
    [13] Bae EA, Park SY, Kim DH. Constitutive beta-glucosidases hydrolyzing ginsenoside Rb_1 and Rb_2 from human intestinal bacteria [J]. Biol Pharm Bull, 2000, 23(12): 1481-1485.
    [14] Hasegawa H, Sung JH, Benno Y. Role of human intestinal Prevotella otis in hydrolyzing ginseng saponins [J]. Planta Med, 1997, 63(5): 436-440.
    [15] 陈听,周秋丽,王本祥.人参皂苷Rbl在大鼠肠内菌代谢物吸收入血成分的研究[J].药学学报,1999,34(7):481-483.
    [16] 马吉省,周秋丽,费晓方,等.真菌对人参皂苷Rb_1及人参二醇系皂苷的代谢作用[J].药学学报,2001,36(8):603-605.
    [17] 李昊,孙建国,谢海裳,等.大鼠肠管外翻模型对人参皂苷R_(g1)吸收机制的研究[J].中国临床药理学与治疗学,2004,9(5):510-513.
    [18] 赵浩如,李振泉.人参制剂中人参皂甙在大鼠小肠中的吸收.中国药科大学学报[J],2001,33(3):188-191.
    [19] Odani T, Tanizawa H, Takino Y. Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. Ⅱ. 1) The absorption, distribution and excretion of ginsenoside Rgl in the rat [J]. Chem Pharm Bull, 1983, 31(1): 292-298.
    [20] Odani T, Tanizawa H, Takino Y. Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. III. The absorption, distribution and excretion of ginsenoside Rb_1 in the rat [J]. Chem Pharm Bull, 1983, 31(3): 1059-1066.
    [21] Takino Y. Studies on the pharmacodynamics of ginsenoside- Rg_1, -Rb1 and -Rb2 in rats [J]. Yakugaku-Zasshi, 1994, 114(8): 550-564.
    [22] Benet LZ, Izumi T, Zhang Y, et al. Intestinal Mdr transport proteins and P-450enzymes as barriers to oral drug delivery [J]. J Control Release, 1999, 62(1-2): 25-31.
    [23] Suzuki H, Sugiyama Y. Role of metabolic enzymes and efflux transporters in the absorption of drugs from the small intestine [J]. Eur J Pharm Sci, 2000, 120): 3-12.
    [24] Wagner D, Spahn-Langguth H, Hanafy A, et al. Intestinal drug effiux: formulation and food effects [J]. Adv Drug Deliver Rev, 2001, 50 Suppl: S13-S31.
    [25] Hunter J, Hirst BH. Intestinal secretion of drugs. The role of P-glycoprotein and related drug effiux systems in limiting oral drug absorption [J]. Adv Drug Deliver Rev, 1997, 25(2-3): 129-157.
    [26] Wacher V. J, Salphati L, Benet L. Z. Active secretion and enterocytic drug metabolism barriers to drug absorption [J]. Adv Drug Deliver Rev, 1996, 20(1): 99-112.
    [27] Suzuki H, Sugiyama Y. Role of metabolic enzymes and efflux transporters in the absorption of drugs from the small intestine [J]. Eur J Pharm Sci, 2000, 12(1): 3-12.
    [28] 郑年信,阮金秀,张永祥,等.地黄寡糖的吸收动力学研究[J].中国中西医结合杂志,2000,20(6):444-446.
    [29] Gelder JV, Shafiee M, Clercq ED, et al. Species-dependent and site-specific intestinal metabolism of ester prodrugs [J]. Int J Pharm, 2000, 205(1-2): 93-100.
    [30] Braggio S, Ferrara A, Sartori M,et al. Evaluation of the role of intestinal and liver metabolism in the conversion of two different ester prodrugs of sanfetrinem to the parent drug in vitro and in vivo using different rat tissues and a surgically prepared rat model [J]. Eur J Pharm Sci, 2002, 16(1-2): 45-51.
    [31] Lyons KC, Charman WN, Miller R, et aL Factors limiting the oral bioavailability of N-acetylglucosaminyl-N-acetylmuramyl dipeptide (GMDP) and enhancement of absorption in rats by delivery in a water-in-oil microemulsion [J]. Int J Pharm, 2000, 199(1): 17-28.
    [32] David E, Clark G. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomenal prediction of intestinal absorption [J]. J Pharm Sci, 1999, 88(8): 807-814.
    [33] Lipinski CA, Lombardo E Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings [J]. Adv Drug Deliv Rev. 1997, 23(1-3): 3-25.
    [34] Camenisch G, Alsenz J, Van DWH,et al. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using drugs' lipophilicity and molecular weight [J], Eur J Pharm Sci, 1998, 6(4): 317-324.
    [35] Norinder VIF, Thomas O, Artursson P. Theoretical calculation and prediction of Caco-2 cell permeability using Molsurf parametrization and PLS statistics [J]. Pharm Res.1997, 14(12): 1786-1791.
    [36] Leo A, Hansch C, Elkins D. Partition coefficients and their uses [J]. Chem Rev, 1971, 71: 525-616.
    [37] Miyoshi H, Maeda H, Tokutake N, et al. Quantitative analysis of partition behavior of substituted phenols from aqueous phase into liposomes made of lecithin and various lipids [J]. Bull Chem Soc Jpn, 1987, 60: 4357-4362.
    [38] Avdeef A, Box KJ, Comer JEA, et al. pH-metric logP. 10. Determination of vesicle membrane - water partition coefficients of ionizable drugs [J]. Pharm Res, 1997, 15(2): 208-214.
    [39] Avdeef A, Box KJ. Sirius Technical Application Notes (STAN). Vol. 2. Sinus Analytical Instruments Ltd. Forest Row, UK, 1995.
    [40] Balon K, Riebesehl BU, Muller BW. Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption [J]. Pharma Res, 1999, 16(6): 882-887.
    [41] Miller KW, Yu SCT. The dependence of the lipid bilayer membrane: buffer partition coefficient of pentobarbitone on pH and lipid composition [J]. Br J Pharmacol, 1977, 61(1): 57-63.
    [42] Pidgeon C, Venkataram U.V. Immobilized artificial membrane chromatography: supports composed of membrane lipids [J]. Anal Biochem, 1989, 176(1): 36-47.
    [43] Pidgeon C, Ong S, Choi H, et al. Preparation of mixed ligand immobilized artificial membranes for predicting drug binding to membranes [J]. Anal Chem, 1994, 66(17): 2701-2709.
    [44] Pidgeon C, Ong S, Liu H, et al. IAM chromatography: an in vitroscreen for predicting drug membrane permeability [J]. J Med Chem, 1995, 38(4): 590-594.
    [45] Kansy M, Senner F, Gubeznator K. Physicochemical High Throughput Screening; Parallel Artificial Membrane Permeation Assay in the Description of Passive Absorption Processes [J]. J Med Chem, 1998,41(7): 1007-1009.
    [46] Wohnsland F, Faller B. High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes [J]. J Med Chem, 2001, 44(6): 923-930.
    [47] Avdeef A, Strafford M, Block E, et al. Drug absorption in vitro model: filter-immobilized artificial membranes: 2. Studies of the permeability properties of lactones in Piper methysticum Forst [J]. Eur J Pharm Sci. 2001, 14(4): 271-280.
    [48] Sugano K, Hamada H, Machida M, et al. Optimized conditions of bio-mimetic artificial membrane permeation assay [J]. Int J Pharm, 2001, 228(1-2): 181-188.
    [49] Di L, Kerns EH, Fan K, et al. High throughput artificial membrane permeability assay for blood-brain barrier [J]. Eur J Med Chem, 2003, 38(3): 223-232.
    [50] Liu H, Sabus C, Carter GT, et al. In vitro permeability of poorly aqueous soluble compounds using different solubilizers in the PAMPA assay with liquid chromatography/mass spectrometry detedtion [J]. Pharm Res, 2003, 20(11): 1820-1826.
    [51 ] Ruell JA, Tsinman O, Avdeef A. Acid-Base cosolvent method for determining aqueous permeability of amiodarone,itraconazole, tamoxifen, terfenadine and other very insoluble molecules [J]. Chem Pharm Bull, 2004, 52(5):561-565.
    [52] Bermejo M, Avdeef A, Ruiz A, et al. PAMPA—a drug absorption in vitro model: 7. Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones[J]. Eur J Pharm Sci, 2004, 21(4): 429-441.
    [53] Huque FTT, Box K, Platts JA, et al. Permeability through DOPC/dodecane membranes: measurement and LFER modeling [J]. Eur J Pharma Sci, 2004, 23(3): 223-232.
    [54] Sugano K. Takata N, Machida M, et al. Prediction of passive intestinal absorption using bio-mimetic artificial membrane permeation assay and the paracellular pathway model [J]. Int J Pharm, 2002, 241(2): 241-251.
    [55] Kessler M, Acuto O, Storelli C. et al. A modified procedure for the rapid precipitation of efficiency transporting vesicles from small intestine brush border membrane [J]. Biochim Biophys Acta, 1978, 506:136-154.
    [56] Tomita M, Hayashi M, Horie T, et al. Enhancement of colonic drug absorption by the transcellular permeation route [J]. Pharm Res, 1988, 2(12): 786-789.
    [57] Poelma FGJ, Tukker JJ. Evaluation of a chronically isolated internal loop in the rat for the study of drug absorption kinetics [J]. J Pharm Sci, 1987, 76(6): 433-466.
    [58] Kai M, Hayashi K, Kaida I,et al. Permeation-enhancing effect of aloe-emodin anthrone on water-soluble and poorly permeable compounds in rat colonic mucosa [J]. Biol Pharm Bull, 2002, 25(12): 1608-1613.
    [59] Mardones P, Andrinolo D, Csendes A, et al. Permeability of human jejunal segments to gonyautoxins measured by the Ussing chamber technique [J]. Toxicon, 2004, 44(5): 521-528.
    [60] Hess S, Rotshild B, Hoffman A. Investigation of the enhancing mechanism of sodium N-[8-(2-hydroxybenzoly) amino] caprylate effect on the intestinal permeability of polar molecules utilizing a voltage clamp method [J]. Eur J Pharm Sci, 2005, 25(2-3): 307-312.
    [61] Hillgren KM, Kato A, Borchardt RT. In vitro systems for studying intestinal drug absorption [J]. Med Res Rev, 1995, 15(2):83-109.
    [62] Amidon G, Sinko P, Fleisher D. Estimating human oral fraction dose absorbed: a correlation using rat intestinal membrane permeability for passive and carrier-mediated compounds [J]. Pharm Res, 1988, 5(10): 651.
    [63] Pang KS, Cherry WF, Ulm EH. Disposition of enalapril in the perfused rat intestine-liver preparation: absorption, metabolism and first-pass effect [J]. J Pharmacol Exp, 1985, 233(3): 788-795.
    [64] Doherty MM, Pang KS. Route-dependent metabolism of morphine in the vascularly perfused rat small intestine preparation [J]. Pharm Res, 2000, 17(3): 291-298.
    [65] Hirayama H, Pang KS. First-pass metabolism of gentisamide: influence of intestinal metabolism on hepatic formation of conjugates. Studies in the once-through vascularly perfused rat intestine-liver preparation [J]. Drug Metab Dispos. 1990,18 (5):580-587.
    [66] Stewart BH, Chan OH, Jezyk N, et al. Discrimination between drug candidates using models for evaluation of intestinal absorption [J]. Adv Drug Deliver Rev, 1997, 23(1-3): 27-45.
    [67] Hidalgo I.J, Li J. Carrier-mediated transport and efflux mechanisms in Caco-2 cells [J]. Adv Drug Deliver Rev, 1996, 22(1-2): 53-66.
    [68] Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport [J]. Adv Drug Deliver Rev, 1996, 22(1-2): 67-84.
    [69] Hirohashi T, Suzuki H, Chu XY, et al. Function and expression of multidrug resistance-associated protein family in human colon adencarcinoma cells(Caco-2)~1[J]. J Pharmacol Exp Ther, 2000, 292(1): 265-270.
    [70] Sikka HC, Rutkowski JP, Kandaswami C. Comparative metabolism of benzo(a)pyrene by liver microsomes from bullhead and carp [J]. Aquatic Toxicol, 1990, 16(2): 101-112.
    [71] Christian F, Marie CH, Pierre G, et al. Hepatic extraction, metabolism, and biliary excretion of irinotecan in the isolated perfused rat liver [J]. J Pharm Sci, 2001,90(6):722.
    [72] 杨哲琼,彭仁.精细肝切片技术在药物代谢研究中的应用.生物技术[J],2002,12(2):48-51.
    [73] Yoshihiro S, Hiroyuki T. A convenient in vitro screening method for predicting in vivo drug metabolic clearance using isolated hepatocytes suspended in serum [J]. Drug Metab Disp, 2000, 28(12): 1518.
    [74] Ring BJ, Gillespie JS, Eckstein JA, et al. Identification of the human cytochromes P450 responsible for atomoxetine metabolism [J]. Drug Metab Disp, 2002, 30(3): 319.
    [75] Sasaki K, Yonebayashi S, Yoshida M, et al. Improvement in the bioavailability of poorly absorbed glycyrrhizin via various non-vascular administration routes in rats [J]. Int J Pharm, 2003, 265(1-2): 95-102.
    [76] Koyama E, Sakai N, Ohori Y, et al. Absorption and metabolism of glycosidic sweeteners of stevia mixture and their aglycone, steviol, in rats and humans [J]. Food Chem Toxicol, 2003, 41(6): 875-883.
    [77] Kim SH, Lee MG. Pharmacokinetics of ipriflavone, an isoflavone derivative, after intravenous and oral administration to rats hepatic and intestinal first-pass effects [J]. Life Sci, 2002, 70(11): 1299-1315.
    [78] Kim J, Kim SH, Lee MG. Liver and gastrointestinal first-pass effects of azosemide in rats [J]. J Pharm Pharmacol, 1997, 49(9): 878-883.
    [79] Fujieda Y, Yamaoka K, Ito T, et al. Local absorption kinetics of levofloxacin from intestinal tract inot portal vein in conscious rat using portal-venous concentration difference [J]. Pharm Res, 1996, 13(8): 1201-1204.
    [80] Azuma R, Hirota T, Manabe H, et al. First-pass of GTS-21 on canine gut wall and liver determined by portal-systemic concentration difference [J]. Eur J Pharm Sci, 2001, 14(2): 159-165.
    [81] Li J, Dobson GL, Marietta MP, et al. In vivo determination of drug kinetic linearity and individual organ elimination by the accelerated infusion technique [J]. J Pharmacol Toxicol Methods, 1997, 37(1): 45-53.
    [82] New RRC, Kirby CJ. Solubilisation of hydrophilic drugs in oily formulations [J]. Adv Drug Deliver Rev, 1997, 25(1): 59-69.
    [83] Li CL, Deng YJ. Oil-based formulations for oral delivery of insulin. J Pharm Pharmacol [J], 2004, 56(9): 1101-1107.
    [84] 吴建梅,陈大为.黄芩苷磷脂复合物理化性质的研究[J].中国药学杂志, 2001(36): 173-177.
    [85] Bombardelli E, Magistretti MJ. Pharmaceutical compositions containing flavanolignans and phospholipids as active principles [J]. Eur Patent, 209,037. 1987-01-21.
    [86] Lawrence MJ, Rees GD. Microemulsion-based media as novel drug dlivery systems [J]. Adv Drug Deliver Rev, 2000, 45(1): 89-121.
    [87] Shen H, Howles P, Tso P. From interactionof lipidic vehicles with intestinal epithelial cell membranes to the formation and secretion of chylomicrons [J]. Adv Drug Deliver Rev, 2001, 50 Suppl: S103-S125.
    [88] Khoo SM, Shackleford DM, Porter CJH, et al. Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs [J]. Pharma Res. 2003, 20(9): 1460-1465.
    [89] Kaukonen AM, Boyd BJ, Charman WN, et al. Drug solubilization behavior during in vitro digestion of suspension formulation of poorly water-solube drugs in triglyceride lipids [J]. Pharm Res, 2004, 21(2): 254-261.
    [90] Sek L, Porter CJH, Charman WN. Characterisation and quantification of medium chain and long chain triglycerides and their in vitro digestion products by HPTLC coupled with in situ densitometric anaylisis [J]. J Pharm Biomed Anal, 2001, 25(3-4):651-661.
    [91] Moreno MA, Frutos P, Ballesteros MP. Lyophilized lecithin based oil-water microemulisons as a new and low toxic delivery system for amphotericin B [J]. Pharma Res, 2001, 18(3): 344-351.
    [92] Porter CJH, Kaukonen AM, Boyd BJ, et al. Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation [J]. Pharma Res, 2004, 21(8): 1405-1412.
    [93] Reymond JP, Sucker H, Vonderscher J. In vivo model for ciclosporin intestinal absorption in lipid vehicles [J]. Pharma Res, 1988, 5(10): 677-679.
    [94] Celebi N, Turkyilmaz A, Gonul B, et al. Effects of epidermal growth factor microemulsion formulation on the healing of stress-induced gastric ulcers in rats [J]. J Control Release, 2002, 83(2): 197-210.
    [95] Constantinides PP, Scalart JP. Formulation and physical characterization of water-in-oil microemulsions containing long- versus medium-chain glycerides [J]. Int J Pharm, 1997, 158(1): 57-68.
    [96] Constantinides PP, Yiv SH. Particle size determination of phase-inverted water-in-oil microemulsions under different dilution and storage conditions [J]. Int J Pharm, 1995, 115(2): 225-234.
    [97] Constantinides PP, Lancaster CM, Marcello J, et al. Enhanced intestinal absorption of an RGD peptide from water-in-oil microemulsions of different composition and particle size [J]. J Control Release, 1995, 34(2): 109-116.
    [98] Ferreira LAM, Seiller M, Grossiord JL, et al. Vehicle influence on in vitro release of glucose: w/o, w/o/w and o/w systems compared [J]. J Control Release, 1995, 33: 349-356.
    [99] Trotta M. Influence of phase transformation on indomethacin release from microemulsions [J]. J Control Release, 1999, 60: 399-405.
    [100] Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport [J]. Adv Drug Deliv Rev, 2001, 46: 27-43.
    [101] Yamashita S, Furubayashi T, Kataoka M, et al. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells [J]. J Pharm Sci, 2000, 10(3): 195-204.
    [102] Brunet JL, Maresca M, Fantini J, et al. Human intestinal absorption of imidaclopfid with Caco-2 cells as enterocyte model [J]. Toxicol Appl Pharm, 2004, 192(1): 1-9.
    [103] Liang E, Proudfoot J, Yazdanian M. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers [J]. Phann Res, 2000, 17(10): 1168-1180.
    [104] Xu QF, Fang XL, Chen DF. Pharmacokinetics and bioavailability of ginsenoside Rb_1 and Rg_1 from Panax notoginseng in rats [J]. J Ethnopharmacol, 2003, 84(2-3): 187-192.
    [105] 马郁琪,李彤,肖建初,等.~3H三七皂甙Rg_1在大鼠体内的药代动力学研究[J].中草药,1987,18(9):21-24.
    [106] 徐叔云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社,1982,441-445.
    [107] Xu ZX, Melethil S. Simultaneous sampling of blood, bile, and urine in rats for pharmacokinetic studies [J]. J Pharmacol Methods, 1990, 24(3): 203-208.
    [108] Palomero MF, Herrera MC, Macias RIR, et al. Transient enterohepatic circulation and enhanced biliary versus urinary excretion of the cytostatic drug bischolylglycinate-chloroplatinum (Ⅱ)(Bamet-H2)~1[J]. Int J Pharm, 1998; 172: 79-88.
    [109] Moulik SP, Paul BK. Structure, dynamics and transport properties of microemulsions [J]. Adv Colloid Interface Sci, 1998, 78: 99-195.
    [110] 梁文权.乳状液科学与技术基础[M].北京:科学出版社,2001,211-245.
    [111] Avramiotis S, Bekiari V, Lianos P, et al. Structural and dynamic properties of lecithin-alcohol based w/o microemulsions: a luminescence quenching study [J]. J Colloid Interface Sci, 1997, 194(2): 326-331.
    [112] Aboofazeli R, Barlow DJ, Lawrence MJ. Particle size analysis of concentrated phospholipid microemulsions: Ⅰ. total intensity light scattering [J]. AAPS Pharrnsci, 2000, 2(2): 13.
    [113] Aboofazeli R, Barlow DJ, Lawrence MJ. Particle size analysis of concentrated phospholipid microemulsions: Ⅱ. photon correlation spectroscopy [J]. AAPS Pharmsci, 2000, 2(2): 19.
    [114] 文爱东编译,蒋永培审校.吸收促进剂在口服制剂中增强药物生物利用度的作用[J].国外医学药学分册,2000,27(6):354-357.
    [115] L. Lohikangas MW. Effects of a new lipid-based drug delivery system on the absorption of low molecular weight heparin (fragmin) through monolayers of human intestinal epithelial caco-2 cells and after rectal administration to rabbits [J]. Eur J Pharm Sci, 1994, 1: 297-305.
    [116] Lindmark T, Kimura Y, Artursson E Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells [J]. J Pharmacol Exp Ther, 1998, 284(1): 362-369.
    [117] Gabbianelli R, Giancarlo F, Lupidi G, et al. Fluorescence study on rat epithelial cells and liposomes exposed to aromatic nitroxides [J]. Comp Biochem Physiol, Part C, 2004, 137(4): 355-362.
    [118] Kikuchi T, Suzuki M, Kusai A, et al. Mechanism of permeability-enhancing effect of EDTA and boric acid on the corneal penetration of 4-[1-hydroxy-1-methylethyl]-2-propyl-1-[4-[2-[tetrazole-5-yl] phenyl] phenyl] methylmidazole-5-carboxylic acid monohydrate (CS-008) [J]. Int J Pharm, 2005, 299(1-2): 107-114.
    [119] Wohnsland F, Faller B. High-throughput Permeability pH Profile and High-throughput Alkane/Water Log P With Artificial Membranes [J]. J Med Chem, 2001, 44(6): 923-930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700