用户名: 密码: 验证码:
电场作用下高密度聚乙烯/纳米石墨微片导电复合材料非线性导电行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究导电复合材料在电场下的非线性导电行为特别是电击穿行为,不仅能更好地了解导电复合材料的导电性能和机理,还可以为导电复合材料的应用提供合理、可靠的依据。本论文主要研究了高密度聚乙烯/纳米石墨微片(HDPE/GN)导电复合材料在电场作用下非线性导电行为,着重研究了在电流作用下的电击穿行为。本论文主要研究工作如下:
     (1)HDPE/GN导电复合材料渗滤导电行为研究
     本文以GN与HDPE熔融复合制备的HDPE/GN导电复合材料作为研究对象,研究了HDPE/GN导电复合材料的渗滤导电行为。GN的含量与HDPE/GN导电复合材料电阻率之间的关系符合渗滤导电方程。HDPE/GN导电复合材料的渗滤阈值较低,说明具有较大径厚比的GN容易在高分子基体中形成导电通路。渗滤临界指数值与理论渗滤网络普适值差异较大,说明HDPE/GN导电复合材料渗滤体系的传输行为是非普适性传输行为。
     (2)HDPE/GN导电复合材料可逆非线性导电行为研究
     本文研究了HDPE/GN导电复合材料在电流下的I ? U曲线,得到非线性转变电流密度与线性电导率之间的标度模型。标度模型指数x值的范围在DRRN网络模型预测的理论指数值范围内,说明引起HDPE/GN导电复合材料可逆非线性导电行为的主要机理是导电网络的隧道效应。分析了HDPE/GN导电复合材料非线性导电行为偏离线性导电行为的程度,结果表明当GN的含量接近渗滤阈值时,HDPE/GN导电复合材料非线性导电行为得到增强。
     (3)HDPE/GN导电复合材料临界电击穿行为研究
     本文首先研究了电流( I≤Ib)作用下HDPE/GN导电复合材料的非线性响应。在电流作用下,导电复合材料内最终达到电热平衡状态,材料的电阻和温度在电热平衡状态下达到稳定值。研究了HDPE/GN导电复合材料电热平衡态的非线性导电行为,电热平衡态的非线性导电行为是导电网络内隧道效应和焦耳热效应共同作用的结果。研究了电流作用下HDPE/GN导电复合材料的电阻热松弛行为,热松弛时间τh随着电流的增加而变长,热松弛时间τh在临界击穿点发散。研究了HDPE/GN导电复合材料临界击穿电场,建立了临界击穿电场与线性电阻的标度模型。研究了GN的含量、测试样品的大小、电击穿的测试次数对HDPE/GN导电复合材料临界击穿电阻与线性电阻比值的影响,表明HDPE/GN导电复合材料的临界击穿电阻与线性电阻的比值Rb / R0为定值。研究了不同石墨填料/HDPE导电复合材料Rb / R0值,表明Rb / R0值与导电填料的性质有关。
     (4)HDPE/GN导电复合材料动态电击穿行为研究
     本文研究了在击穿电流作用下HDPE/GN导电复合材料的电阻随时间的变化,建立电阻与时间的标度模型。研究了导电复合材料在电流作用下的电击穿时间,建立击穿电流与击穿时间的标度模型。研究了HDPE/GN导电复合材料在动态电击穿过程中温度的变化,结果表明当HDPE/GN导电材料发生电击穿时,HDPE的相态发生了变化。研究了在电流作用下动态电击穿过程中HDPE/GN导电复合材料的电阻随温度的变化,结合温度场下HDPE/GN导电复合材料的PTCR效应,探讨了在电流作用下HDPE/GN导电复合材料的电击穿的机理。
     (5)电压作用下HDPE/GN导电复合材料自加热行为研究
     本文研究了在自加热效应作用下HDPE/GN复合材料的电阻和温度对时间的依赖性。研究了电压作用下HDPE/GN复合材料电热平衡态的非线性导电行为,探讨了电热平衡态非线性导电行为的机理。研究了HDPE/GN导电复合材料在自加热效应下的电开关特性,材料的电开关值随电压的升高而增大,电开关时间随电压的升高而变短。研究HDPE/GN导电复合材料的电开关临界电压值,建立临界电压值与样品的线性电阻的标度模型。
Study on the nonlinear conduction behavior of conducting composites under electric field in particular electrical breakdown behavior is important , not only for the better understanding of mechanism conduction of conducting composites, but also for the application of conducting composites by providing a reasonable and reliable basis. In this thesis, study on the nonlinear conduction behaviors of high-density polyethylene/ graphite nanosheets (HDPE/GN) conducting composites is presented.The main contents are as following:
     1) The percolative behavior of HDPE/GN conducting composites
     HDPE/GN conducting composites were prepared by melt blending of HDPE and GN. The percolative behavior of prepared HDPE/GN composites had been investigated. It was found that the conduction of conducting composites possessed a typical percolative phenomenon. The transport behaviors could be well described by percolation equation. The lower percolation threshold in HDPE/GN conducting composites illuminated that GN with higher aspect ratio possessed advantages in forming the conducting network via channel in the polymer matrix. However, the critical exponent was different from the universal value predicted in classical percolation theory, which indicated that the transport behavior in HDPE/GN conducting composites was non-universal transport behavior.
     2) The reversible nonlinear conduction behavior of HDPE/GN conducting composites
     The investigation of the nonlinear conduction in HDPE/GN conducting composites indicated that the nonlinear crossover current density scaled with the linear conductance of sample. The value of exponent x in the scale equation was in the range of theoretic value predicted by using dynamic random resistor network model (DRRN), which illuminated that the macroscopic nonlinear conduction of HDPE/GN conducting composites might originate from tunneling effect in conduction network. Investigation on the degree of nonlinear conduction deviating from linear conduction in HDPE/GN conducting composites indicated that the nonlinear conduction behavior enhanced when the GN content was close to the percolation threshold.
     3) The critical electrical breakdown behavior of HDPE/GN conducting composites
     All above, the nonlinear responses of HDPE/GN conducting composites under applied currents were studied. Under applied currents, an electrical-thermal equilibrium state in composites was ultimately reached, associating with the resistance and temperature both reached steady values. The nonlinear conduction behavior in electric-thermal equilibrium state for HDPE/GN conducting composites under applied currents was investigated. The result showed that nonlinear conduction behavior in electric-thermal equilibrium state was induced by tunneling effect and Joule heating effect in the conducting network. The thermal relaxation behavior of resistance in composites was studied. In the process of thermal relaxation, the thermal relaxation time became longer with increasing current. It was also found that the thermal relaxation diverged at the critical electrical breakdown current. Investigation on the critical electrical breakdown field of HDPE/GN conducting composites showed that the critical electrical breakdown field scaled with the linear resistance of sample. The effects of GN content, the size of sample, breakdown cycle on the ratio of the critical electrical breakdown resistance to the linear resistance ( Rb / R0) were also investigated. It was found that the ratio of the critical electrical breakdown resistance to the linear resistance in HDPE/GN conducting composites assumed a fixed value of about 1.30. The investigation also found that the Rb / R0 value in other HDPE conducting composites filled with different graphite indicated that the value Rb / R0 depended on the property of conducting fillers.
     4) The dynamic electrical breakdown behavior of HDPE/GN conducting composites
     The model of resistance and time was established by studying the changes of resistance over time in HDPE/GN conducting composites under applied breakdown current. Furthermore, the electrical breakdown time of HDPE/GN conducting composites under different currents was measured and the scale equation of electrical breakdown time and current was established. The changes in temperature of HDPE/GN conducting composites in dynamic electrical breakdown process indicated that phase transition of HDPE appeared when the electrical breakdown occurred. The positive temperature coefficient of resistivity (PTCR) behavior under temperature field was also discussed. The mechanism of electrical breakdown in HDPE/GN conducting composites under applied currents was investigated, associating with the PTCR effect of HDPE/GN conducting composites under temperature field.
     5) The self-heating behavior of HDPE/GN conducting composites under electric field
     The nonlinear responses in HDPE/GN conducting composites under applied field were investigated. Under sufficient electric field, the resistance and temperature increased initially due to the Joule heating effect and eventually reached a steady value. The electrical switching properties under self-heating effect in HDPE/GN conducting composites were studied. The results showed that the switching ratio increased and the switching time became shorter with the increasing applied field. The threshold voltage value of thermal switching was studied and the scale equation of threshold voltage value vs. resistance was established.
引文
[1] R. Strümpler, J. Glatz-Reichenbach. Conducting polymer composites [J]. J. Electroceram., 1999, 3(4): 329-346.
    [2]杜仕国.抗静电剂的开发及其应用[J]化工新型材料,1994,22(7):9-12.
    [3]龚文化,曾黎明.聚合物基导电复合材料研究进展[J].化工新型材料, 2002, 30, 38-40.
    [4]江家清.高分子导电材料的新进展[J].材料导报,1992, 6:54-58.
    [5]王宏军.国外粉末导电填料/聚合物导电复合材料近期研究开发的特点[J].化工进展1990,6:36-40.
    [6]k. Ohe ,Y. Natio.A new resistor having an anomalously large positive temperature coefficient [J] . Jap .J.Appl.phys., 1971,10:99-108.
    [7] J. Fournier, G. Boiteux, G.Seytre. Positive temperature coefficient effect in carbon black/epoxy polymer composites. J .Mater. Sci., 1997, 16:1677-1679.
    [8]席军,刘廷华. PTC热敏电阻的开发应用现状[J].塑料,2005, 34( 4): 79-84.
    [9]蒋红梅,王久芬,高保娇.复合型导电高分子材料研究进展[J].华北工学院学报,1998,19(3): 231-234.
    [10] F. Carmona, L. Lamaignère. Static and dynamic non-linear behaviors of carbon particle filled polymers with positive thermal coefficient [J].Compos. interfaces., 2001,8 (3):249-256.
    [11] A. J. Heeger, P. Smith, A. Fizazi. Recent progress in conducting polymers: opportunities for science and opportunities for technology [J]. Synth. Met.,1991, 3: 1027-1032.
    [12]万影,闻荻江.导电橡胶的压敏性和热敏性研究,橡胶工业,1999,46(8):482-486.
    [13] J. Volf , S. Holy , J. Vlcek. Using of tactile transducer for pressure-distribution measurement on the sole of the foot[J]. Sens. Actuators. A ,1997,62:556 -561.
    [14]万影,闻荻江.导电高分子复合材料及其特殊效应[J].自然杂志, 1999,21( 3):149-153.
    [15]周祚万,卢昌颖.复合型导电高分子材料导电性能影响因素研究概况[J].高分子材料科学与工程,1998,14(2): 5-7.
    [16] I .G .Chen, W. B .Johnson. Non-ohmic I-V behaviour of random metal-insulator composites near their percolation threshold [J]. J. Mater. Sci., 1992, 27(20): 5497-5503.
    [17] Y. Gefen, W. H .Shih, R. B. Laibowitz, et al.. Nonlinear behavior near the percolationmetal-insulator transition. [J] Phys. Rev. Lett., 1986, 57, 3097-3100.
    [18] A. Celzard, G. Furdin, J. F. Mareche, et al.. Non-linear current-voltage characteristics in anisotropic epoxy resin-graphite flake composites [J]. J. Mater. Sci., 1997, 32(7): 1849-1853.
    [19] R. K. Chakrabarty, K. K. Bardhan, A. Basu. Nonlinear I-V characteristics near the percolation threshold [J]. Phys. Rev. B, 1991, 44(13): 6773-6779.
    [20] T. Kimura, S. Yasuda, Self-temperature-control plane heaters by graphite-polyethylene glycol mixed systems [J] J. Appl. Phys.. 1986, 59, 960-962.
    [21] A. R. Duggal, F.G. Sun.The initiation of high current density switching in electrically conductive polymer composite materials[J].J. Appl .Phys.,1998,83(4):2046-2051.
    [22] A .R. Duggal, L. M. Levinson. A novel high current density switching effect in electrically conductive polymer composite materials [J]. J .Appl. Phys.,1997,82(11):5532-5539.
    [23]王荣国,武卫莉,谷万里.复合材料概论[M].哈尔滨工业大学出版社,1999.
    [24]张柏生.共混高聚物-炭黑复合材料的导电特性[J].塑料科技, 1996,4: 1-5.
    [25] G. Pinto,A .Jiménez-martín.Conducting aluminum-filled nylon 6 composites[J]. Polym. Comp.,2001,22(1): 65-70.
    [26] E. K. Sichel. Carbon black-polymer composites: the physics of electrically conducting composites [M]. New York: Marcel Dekker, 1982.
    [27] W. P. Wang, C.Y. Pan. Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization [J]. Polymer, 2004, 45: 3987-3995.
    [28] L. Moreno Baron, A. Merkoci, S. Alegret. Graphite-epoxy composite as an alternative material to design mercury free working electrodes for stripping voltammetry[J]. Electrochim. Acta., 2003,48: 2599-2605.
    [29] G. H. Chen, D. J. Wu, W. G. Weng, W.L. Yan. Preparation of polymer/ graphite conducting nanocomposite by intercalation polymerization[J]. J. Appl. Polym. Sci., 2001, 82: 2506-2518.
    [30] K. Hashimoto, H .Sumitom, M .Kowasumi. Preparation of a new polyamide macromer having a vinylbenyl group from bicyclic oxalactam and its radical copolymerization with styrene [J]. Polym. Bull., 1984,11: 121-128.
    [31]吴翠玲,翁文桂,陈国华.膨胀石墨的多层次结构[J].华侨大学学报,2003, 24: 147-150.
    [32] G .H .Chen, W. G. Weng, D. J .Wu, et al. Exfoliation of graphite flake and its nanocomposites [J]. Carbon, 2003, 41(3): 619-621.
    [33] G. H. Chen, W.G. Weng, D.J.Wu, et al.. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique [J] . Carbon,2004, 42: 753-759.
    [34]蓝立文.功能高分子材料[M].西安:西北工业大学出版社, 1995.
    [35] A .I. Medalia. Electrical conduction in carbon black composites[J]. Rubber. Chem. Tech., 1986, 59, 432-454.
    [36] B. I. Shklovskii , A .L. Efros. Electronic properties of doped semiconductors[M]. Berlin, 1984.
    [37] P. Sheng, E. K. Sichel, J. I. Gittleman. Fluctuation- induced tunneling conduction in carbon-polyvinylchloride composites[J]. Phys .Rev. Lett., 1978, 40:1197-1200.
    [38] J. G. Simmons. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. J. Appl. Phys., 1963, 34, 1793-1803.
    [39] P. Sheng, J .Klafter. Hopping conductivity in granular disordered systems[J]. Phys. Rev. B, 1983, 27:2583-2586.
    [40] T. A. Ezquerra. Charge transport in polyethylene-graphite composite materials[J]. Adv. Mater., 1990, 2:597-600.
    [41] H. Boettger, V. V. Bryksin. Hopping conduction in solids [M]. Berlin: Akademie- Verlag, 1986.
    [42] H. M. Allak, A. W. Brinkman. I-V characteristics of carbon black-loaded crystalline polyethylene [J]. J.Mater.Sci., 1991, 28: 117-120 .
    [43]T.A. Ezquerra,C.F.J.Balta and J.Plans, On tunneling effects in metal-deposited polyethylene-carbon black and polycarbonate-carbon black systems [J]. J. Mater Res.,1986,1:510-514.
    [44]J.C.Dawson and C.J.Adkins, Conduction mechanisms in carbon-loaded composites[J]. J. phys: Condens. Mater., 1996,8: 8321-8338.
    [45] J .G. Simmons. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film [J]. J .Appl. Phys., 1963, 34(6): 1793-1803.
    [46]章明秋,曾汉民.HDPE导电复合材料的交流开关效应研究[J].复合材料学报,1991,8:1-6.
    [47] L .H. K. Van Beek, B.I.C.F. Van Pul. Internal field emission in carbon black-loaded natural rubber vulcanizates [J]. J .Appl .Polym. Sci., 1962, 6(24): 651-655.
    [48] M. Mehbod, P. Wyder, R. Deltour, et al.. Temperature dependence of the resistivity in polymer–conducting-carbon-black composites [J] . Phys. Rev. B, 1987, 36: 7627-7630.
    [49]D.van der Putten, J. T. Moonen, H. B.Brom, et al.. Evidence for superlocalization on a fractalnetwork in conductive carbon-black–polymer composites [J].Phys. Rev. Lett., 1992, 69: 494-497.
    [50] A. Aharony, A. B. Harris and O. Entin-Wohlman. Multicritical phase diagram and random field effects in superconducting bismuthates [J]. Phys.Rev.Lett., 1993, 70: 1874-1877.
    [51]M. A. J. Michels, J. C. M. Broken-zijo, et al.. Was superlocalization observed in carbon-black- polymer composites [J]. Phys. Rev. Lett., 1993, 70:4161-4164.
    [52] A. I. Medalia. Electrical conduction in carbon black composites [J]. Rubber. Chem. Tech., 1986, 59(3): 432-454.
    [53] E. K. Sichel, J. I. Gittleman, P. Sheng. Transport properties of the composite material carbon- poly(vinyl chloride) [J]. Phys. Rev. B, 1978, 18, 5712 - 5716 .
    [54] Q. Zheng, Y. H .Song, G. Wu, et al.. Reversible nonlinear conduction behavior for high-density polyethylene/graphite powder composites near the percolation threshold [J]. J Polym. Sci. Part B: Polym. Phys., 2001, 39(22): 2833-2842.
    [55] B. K. Chakrabarti. L Benguigui. Statistical physics of fracture and breakdown in disordered systems[M].Oxford University Press, Oxford, 1997.
    [56] Y. Gefen, W. H. Shih, R B Laibowitz, et al.. Nonlinear behavior near the percolation metal-insulator transition [J] .Phys. Rev. Lett., 1986, 57, 3097-3100.
    [57] K. Miyasaka. Electrical conductivity of carbon-polymer composites as a function of carbon content [J]. J .Mater. Sci., 1982, 17:1610-1616.
    [58]宋义虎,郑强,潘颐等.单轴压力对高密度聚乙烯/碳黑导电复合材料电阻特性的影响[J].高等学校化学学报,2003,3:475-479.
    [59] K. K. Bardhan. Nonlinear conduction in composites above percolation threshold-beyond the backbone [J]. Physica A, 1997, 241(1): 267-277.
    [60] W. Lu, D. J. Wu, C. L. Wu, et al. Nonlinear DC response in high-density polyethylene/graphite nanosheets composites [J]. J. Mater. Sci., 2006, 41(6): 1785-1790.
    [61] S .S. Manna, B. K. Chakrabarti. Dielectric breakdown in the presence of random conductors [J]. Phys. Rev. B, 1987, 36(7): 4078-4081.
    [62] P. M. Duxbury, P. L. Leath, P. D. Beale. Breakdown properties of quenched random systems: the random-fuse network [J]. Phys. Rev. B, 1987, 36(1): 367-380.
    [63] D. Stroud, P. M. Hui. Nonlinear susceptibilities of granular matter [J]. Phys. Rev. B, 1988, 37(15): 8719-8724.
    [64] K. K. Bardhan, R. K. Chakrabatry. Identical scaling behavior of dc and ac response near the percolation threshold in conductor-insulator mixtures [J]. Phys. Rev. Lett., 1994, 72(7): 1068-1071.
    [65] H. F. Lin, W. Lu , G. H. Chen. Nonlinear DC conduction behavior in Epoxy Resin/Graphite Nanosheets Composites[J]. Physica B, 2007,400:229-236.
    [66] P. Sheng. Fluctuation-induced tunneling conduction in disordered materials [J]. Phys. Rev. B,1980, 21:2180-2195.
    [67] G. E. Pike, C. H. Seager .Electrical properties and conduction mechanisms of Ru-based thick- film (cermet) resistors [J]. J. Appl. Phys., 1977, 48:5152-5169.
    [68] H. Sodolski. Determination of ion mobility from ionic injection current at strong diffusion[J]. J. Phys. C: Solid. State. Phys., 1979, 12:3717-3724.
    [69] Y. Gefen, W. H. Shih, R. B. Labowitz, et al.. Nonlinear Behavior near the Percolation Metal-Insulator Transition [J]. Phys. Rev. Lett., 1987, 57:3097-3100.
    [70] A. Aharony. Crossover from linear to nonlinear resistance near percolation [J]. Phys. Rev. Lett., 1987, 58:2726-2729.
    [71] C. D. Mukherjee, K. K .Bardhan, M. B. Heaney. Predictable electrical breakdown in composites [J]. Phys. Rev. Lett., 1999, 83(6): 1215-1218.
    [72] Y. Yagil, G. Deutscher, D. J. Bergman. Electrical breakdown measurements of semi-continuous metal films [J] . Phys. Rev. Lett., 1992, 69(9): 1423-1426.
    [73] L. Lamaignere, F. Carmona, D. Sormette. Experimental realization of critical thermal fuse rupture[J]. Phys. Rev. Lett.,1996, 77(13):2738-2741.
    [74] Y. Yagil, G. Deutscher.Third-hrmonic generation in semicontinuous metal films[J]. Phys. Rev.B, 1992, 46(24):16155-16121.
    [75] A. R. Duggal , F. G. Sun. The voltage dependence of switching in a polymer current limiter device [J]. J. Appl. Phys., 1998, 84:5720 -5726.
    [76] C. D. Mukherjee, K. K. Bardhan.Critical behavior of thermal relaxation near a breakdown point [J]. Phys .Rev. Lett., 2003, 91(2):0257021-0257024
    [77] U. N. Nandi, C. D. Mukherjee, K. K. Bardhan. Transport at large fields in composites[J]. Physica. B, 2000, 279:72-74.
    [78] L. Lamaignere, F. Carmona, D. Sormette. Static and dynamic electrical breakdown in conductingfilled-polymers[J]. Physica A,1997,241:328-333.
    [79] D.Scornette, C.Vanneste. Dynamics and memory effects in rupture of thermal fuse networks[J]. Phys. Rev. Lett., 1992, 68(5):612-615.
    [80] C .Vanneste, D. Somette.. The dynamical thermal fuse model[J].J. Phys. I,1992,2:1621-1644.
    [81] J. V. Andersen, D. Sornette and K. Leung. Tricritical behavior in rupture Induced by disorder[J]. Phys. Rev. Lett.,1997, 78: 2140 -2143.
    [82] M. B. Heaney. Resistance-expansion-temperature behavior of a disordered conductor- insulator composite [J], Appl. phys. Lett.,1996,69(17):2602-2604.
    [83] M. A. Duson, Y .C. Hui, M. B. Weissman. Measurement of the fourth moment of the current distribution in two-dimensional random resistor networks[J].Phys. Rev. B,1989,39(10):6807-6815.
    [84]林鸿飞,卢伟,陈国华.聚合物复合材料非线性导电行为研究进展[J].华侨大学学报,2006, 27(3): 225-230.
    [85] P. M. Duxbury, P. L.Leath, P. D. Beale. Breakdown properties of quenched random systems: The ramdom- fuse network [J]. Phys. Rev. B, 1987, 36(1):367-380.
    [86] D. Azulay, M. Eylon, O. Eshkenazi, et al. Electrical-thermal switching in carbon-black-polymer composites as a local effect [J] .Phys. Rev. Lett. , 2003, 90(23):236601-236604.
    [87] C. Lin, W. S. Lee, C. C. Sun, et al. A varistor-polymer composite with nonlinear electrical- thermal switching properties[J]. Cerami. Int..,2006,105: 577-582.
    [1] K. Kirkpatrick. Percolation and conduction [J]. Rev. Mod. Phys, 1973, 45: 574-588.
    [2]周祚万,卢昌颖.复合型导电高分子材料导电性能影响因素研究概况[J].高分子材料科学与工程,1998,14(2): 5-7.
    [3] W. Lu, D. J. Wu, C. L. Wu, et al. Nonlinear DC response in high-density polyethylene/graphite nanosheets composites [J]. J. Mater. Sci., 2006, 41(6): 1785-1790.
    [4] K. K. Bardhan. Nonlinear conduction in composites above percolation threshold-beyond the backbone [J]. Physica A, 1997, 241(1): 267-277.
    [5] J. F. Zou, Z. Z. Yu, Y. C. Ou. Conductive Mechanism of Polymer/Graphite Conducting Composites with Low Percolation Threshold [J]. J. Polym. Sci., 2002, 40:954-980.
    [6] S. Galam, A. Mauger. Universal formulas for percolation thresholds[J]. Phys. Rev. B, 1996, 53: 2177-2181.
    [7] D. Stauffer, A. Aharony. Introduction to percolation theory[M].Taylor and Francis, London ,1992.
    [8] G. E. Pike, C. H. Seager. Percolation and conductivity: A computer study [J]. Phys. Rev. B, 1974, 10: 1421 - 1434 .
    [9] S. Feng, P. N. Sen, B. L .Halperin et al. Percolation on two-dimensional elastic networks with rotationally invariant bond-bending forces [J] .Phys. Rev. B ,1984,30:5386-5389.
    [10]B.Wessling, H. Volk. Post polymerization processing of conductive polymers [J]. Synth. Met., 1987, 18: 671-676.
    [11] M. Sumita, S. Asai, N .Miyadera, et al. Process and device for purifying exhaust air [J]. Coll. Polym. Sci., 1986, 264:212-218.
    [12] D.S. Mclachlan, M .Blaszkiewicz, R.E. Newnham. Electrical resistivity of composites [J]. J. Am. Ceram. Soc., 1990, 73: 2187-2203.
    [13] T. Slupkowski. Electrical conductivity of mixtures of conducting and insulating particles [J] Phys. . Status. Solid., 1984,83:329-335.
    [14] I. Balberg, N. Binenbaum. Direct determination of the conductivity exponent in directed percolation [J]. Phys. Rev. B, 1986, 33:2017-2019.
    [15] B. I. Halperin, S. Feng , P. N. Sen. Differences between Lattice and Continuum Percolation Transport Exponents [J]. Phys. Rev. Lett., 1985,54:2391-2394.
    [16]B. Derrida, D. Stauffer, H. J. Hermann, et al. Singular behavior of certain infinite products of random 2×2 matrices [J]. J. Phys. A: Math. Gen, 1983, 16 : 2641-2654 .
    [17]W. Y. Hsu,W. G. Holtje and J. R. Barkeley. Percolation phenomena in polymer/carbon composites [J]. J.Mater. Sci. Lett.,1988, 7:459-462.
    [18] D. van der Putten. Evidence for superlocalization on a fractal network in conductive carbon- black–polymer composites [J]. Phys. Rev. Lett., 1992,69:494-497.
    [19] F. Carmona, P. Prudhon , F. Barreau. Percolation in short fibers epoxy resin composites: Conductivity behavior and finite size effects near threshold [J] .Solid. State. Commun., 1984, 51: 255-257.
    [20] A. Quivy, R. Deltour, A .G. M. Jansen, P. Wyder. Transport phenomena in polymer-graphite composite materials [J]. Phys. Rev. B, 1989, 39:1026-1030.
    [21] I. Balberg.Tunneling and nonuniversal conductivity in composite materials [J] .Phys. Rev. Lett., 1987, 59:1305-1308.
    [22] I. Balberg. Recent developments in continuum percolation [J] .Philo. Maga. B,1987,56:991-1003.
    [23] I. Balberg, N. Binenbaum. Applicability to composite systems [J]. Phys. Rev. B, 1987, 35: 8749-8752.
    [24] P. M. Kogut, P. Straley.Distribution-induced non-universality of the percolation conductivity exponents [J]. J. Phys. C , 1979,12:2151-2159.
    [25]E. K. Sichel, P. Sheng, J. I. Gittleman, et al. Observation of fluctuation modulation of tunnel junctions by applied ac stress in carbon polyvinylchloride composites [J]. Phys. Rev. B, 1981, 24:6131-6134.
    [26]P. Sheng. Fluctuation-induced tunneling conduction in disordered materials [J]. Phys. Rev. B, 1980, 21: 2180-2185.
    [27] M. B. Heaney. Measurement and interpretation of nonuniversal critical exponents in disordered conductor–insulator composites [J] .Phys. Rev .B, 1995,52:12477-12480.
    [28]Y. Chekanov, R. Ohnogi, S .Asai,et al. Positive Temperature Coefficient Effect of Epoxy Resin Filled with Short Carbon Fibers[J]. Polymer ,1998, 30:381-387.
    [29]卢金荣.聚乙烯/纳米石墨片复合材料在外场作用下电导非线性研究[D].硕士论文,华侨大学,2005.
    [30] W. Lu, D. J. Wu, G. H. Chen. Nonlinear DC Response in High-Density Polyethylene/Graphite Nanosheets Composites [J]. J .Mater. Sci., 2006, 41:1785-1790.
    [31]G. A. Niklasson, K. Brantervik. Analysis of current-voltage characteristics of metal-insulator composite films [J]. J. Appl. Phys., 1986, 59(3): 980-982.
    [32] I. G. Chen, W. B. Johnson. Non-ohmic I-V behaviour of random metal-insulator composites near their percolation threshold [J]. J. Mater. Sci., 1992, 27(20): 5497-5503.
    [33] A .Celard, E. McRae, G. Furdin, et al. Conduction mechanisms in some graphite-polymer composites: the effect of a direct-current electric field [J]. J. Phys.: Condens. Mat., 1997, 9(10): 2225-2237.
    [34] Y. Gefen, W. H. Shih, R. B. Labowitz, et al. Nonlinear Behavior near the Percolation Metal-Insulator Transition [J]. Phys. Rev. Lett., 1986, 57: 3097-3100.
    [35] A. Aharony. Crossover from linear to nonlinear resistance near percolation [J]. Phy. Rev. Lett., 1987, 58:2726-2729.
    [1] Y. Yagil, G. Deutscher, D. J .Bergman. Electrical breakdown measurements of semicontinuous metal films [J]. Phys. Rev. Lett., 1992, 69(9): 1423-1426.
    [2] Y. Yagil, G. Deutscher. Third-harmonic generation in semicontinuous metal films [J]. Phys. Rev. B, 1992, 46(24):16155-16121.
    [3] C. D. Mukherjee, K. K. Bardhan, M. B. Heaney. Predictable electrical breakdown in composites [J]. Phys. Rev. Lett., 1999, 83(6): 1215-1218.
    [4] L. Lamaignere, F. Carmona, D. Sormette. Experimental realization of critical thermal fuse rupture [J]. Phys. Rev. Lett., 1996, 77(13):2738-2741.
    [5]周丽春,陈国华.导电复合材料电击穿行为研究进展[J] .华侨大学学报. 2008, 29:321-326.
    [6] C. Unger, W. Klein. Nucleation theory near the classical spinodal [J]. Phys. Rev. B, 1984, 29:2698-2708.
    [7] C. Unger, W. Klein. Initial-growth modes of nucleation droplets [J]. Phys. Rev. B, 1985, 31: 6127 - 6130.
    [8]M.Sahimi, S. Arbabi. Scaling laws for fracture of heterogeneous materials and rock[J].Phys. Rev. Lett., 1996,77:3689 -3692.
    [9]S. Zapperi, P. Ray, H. E Stanley, et al.. First-order transition in the breakdown of disordered media [J]. Phys.Rev. Lett., 1997,78:1408 - 1411.
    [10] C. D. Mukherjee, K. K. Bardhan. Critical behavior of thermal relaxation near a breakdown point [J]. Phys. Rev. Lett., 2003, 91(2):0257021-0257024.
    [11]L.C. Zhou, J. S. Lin, H. F. Lin, et al.. Electrical-thermal switching effect in high-density polyethylene/graphite nanosheets conducting composites [J]. J. Mater. Sci., 2008, 43: 4886-4991.
    [12]U. N. Nandi, C. D. Mukherjee, K. K. Bardhan. Transport at large fields in composites [J]. Physica B, 2000, 279: 72-74.
    [13] K. K. Bardhan. Nonlinear conduction in composites above percolation threshold-beyond the backbone [J]. Physica A, 1997, 241(1): 267-277.
    [14] W. Lu, D. J .Wu, C. L .Wu, et al.. Nonlinear DC response in high-density polyethylene/graphite nanosheets composites [J] . J. Mater. Sci., 2006, 41(6): 1785-1790.
    [15] G. H. Chen, J. R. Lu, D. J. Wu. PTC effect of polyethylene/foliated graphite nanocomposites [J]. J. Mater. Sci., 2005, 40 (18): 5041-5043.
    [16]李荣群,李威,苗金玲等.高分子PTC材料的一种新理论模型[J].高分子材料科学与工程, 2003, 19:42-49.
    [17] M. B. Heaney. Resistance-expansion-temperature behavior of a disordered conductor–insulator composite [J]. Appl. Phys. Lett., 1996, 69:2602-2607.
    [18]张向武,潘颐,沈烈等.聚乙烯/碳黑导电复合材料的功率特性[J].材料工程, 1998, 12:25-34.
    [19] M. Ghosh, B. K. Chakrabarti, K. K. Majumdar, et al. Relaxation study in percolating solids [J]. Phys. Rev. B, 1990, 41:731 -739.
    [20]江磊,沈烈,郑强.聚合物的热膨胀功能材料[J].功能材料,2004, 2:142-145.
    [21]宋义虎,益小苏. HDPE/CB导电复合材料电—热平衡态电学行为.功能高分子学报[J]. 2003,13(1): 37-40.
    [22] K. K. Bardhan. Nonlinear conduction in composites above percolation threshold-beyond the backbone [J]. Physica A, 1997, 241(1): 267-277.
    [23]郑强,沈烈等.导电粒子填充HDPE复合材料的非线性导电特性与标度行为[J].科学通报. 2004, 49(22) :2257-2266.
    [24] J. R. Lu, W. G. Weng, D J Wu, et al.. Novel piezoresistive material from directed shear-induced assembly of Graphite Nanosheets in Polyethylene [J]. Adv.Func. Mater., 2005, 15(8): 1358-1363.
    [25] C. Pennetta, E. Alfinito. Non-Gaussianity of resistance fluctuations near electrical breakdown [J].Comput. Mater. Sci., 2004, 19:164-166.
    [26] S. S. Manna, B. K. Chakrabarti. Dielectric breakdown in the presence of random conductors [J]. Phys. Rev. B, 1987, 36(7): 4078-4081.
    [27] P. M. Duxbury, P. L. Leath, P. D. Beale. Breakdown properties of quenched random systems: the random-fuse network [J]. Phys. Rev. B, 1987, 36(1): 367-380.
    [28] M. A. Dubson, Y. C. Hui, M. B. Weissman, et al.. Measurement of the fourth moment of the current distribution in two-dimensional random resistor networks [J]. Phys. Rev. B, 1989, 39: 6807 - 6815.
    [29] A. K. Gupta, A. K. Sen. Nonlinear dc response in composites: A percolative study [J] .Phys. Rev. B 1998, 57: 3375- 3388.
    [1] Y .Yagil, G. Deutscher, D. J. Bergman. Electrical breakdown measurements of semicontinuous metal films [J] . Phys. Rev. Lett., 1992, 69(9): 1423-1426.
    [2] L. Lamaignere, F. Carmona, D. Sormette. Experimental realization of critical thermal fuse rupture[J]. Phys. Rev. Lett.,1996, 77(13):2738-2741.
    [3] A .R. Duggal, F. G. Sun. The initiation of high current density switching in electrically conductive polymer composite materials [J]. J. Appl. Phys., 1998, 83(4): 2046-2051.
    [4] A. R. Duggal, L. M. Levinson. A novel high current density switching effect in electrically conductive polymer composite materials [J]. J. Appl. Phys.,1997, 82(11):5532-5539.
    [5] M. A. Duson, Y .C. Hui, M. B. Weissman. Measurement of the fourth moment of the current distribution in two-dimensional random resistor networks [J]. Phys. Rev. B, 1989, 39(10): 6807-6815.
    [6]林鸿飞,卢伟,陈国华.聚合物复合材料非线性导电行为研究进展[J].华侨大学学报, 2006, 27(3): 225-230.
    [7] P. M. Duxbury, P. L. Leath, P. D. Beale. Breakdown properties of quenched random systems: The random-fuse network [J]. Phys. Rev. B, 1987, 36(1): 367-380.
    [8] C. Unger and W. Klein. Nucleation theory near the classical spinodal [J]. Phys. Rev. B, 1984, 29: 2698-2708.
    [9] C. Unger, W. Klein. Initial-growth modes of nucleation droplets [J]. Phys. Rev. B, 1985, 31: 6127 -6130.
    [10] Y. Yagil, G. Deutscher. Third-harmonic generation in semicontinuous metal films [J] Phys. Rev. B, 1992, 46(24):16155-16121.
    [11] S. Zapperi, P. Ray, H. E. Stanley, et al.. First-Order Transition in the Breakdown of Disordered MediaPhys [J] . Phys. Rev. Lett., 1997,78:1408 -1411.
    [12] C. Pennetta, L. Reggiani, Gy. Trefán. Scaling and Universality in Electrical Failure of Thin Films [J]. Phys. Rev. Lett., 2000, 84:5006 - 5009.
    [13]C. Pennetta, L. Reggiani and Gy. Trefán. Scaling Law of Resistance Fluctuations in Stationary Random Resistor Networks [J]. Phys. Rev. Lett., 2000, 85:5238– 5241.
    [14] C. Vanneste, A. Gilabert, D. Sornette. Dynamics of rupture in thermal fuse models[J].J Phys. A,1990, 23:3591-3610.
    [15]C. Vanneste, D. Sornette. The dynamical thermal fuse model [J]. J. Phys. I, 1992, 2: 1621-1644.
    [16] M. Narkis, A .Ram, Z. Stein. Electrical properties of carbon black filled crosslinked polyethylene[J]. Polym. Eng. Sci., 1981, 21:1049-1054.
    [17] J .Fournier, G. Boiteux, G. Seytre. Positive temperature coefficient effect in carbon black/epoxy polymer composites [J]. J. Mater. Sci., 1997, 16:1677-1679.
    [18] G. Boiteux, J .Fournier, D .Issotier, et al.. Conductive thermoset composites: PTC effect [J]. Synth. Met., 1999, 102:1234-1235.
    [19]M. H. Bischoff, F. E Dolle. Electrical conductivity of carbon-polyethylene composites experimental evidence of the change of cluster connectivity in the PTC effect [J]. Carbon, 2001, 39: 375-382.
    [20] H. Tang, X .G. Chen, Y .X. Luo. Studies on the PTC/NTC effect of carbon black filled low density polyethylene composites [J]. Eur. Polym. J., 1997, 33:1383-1386.
    [21] J .Y. Feng, C. M. Chan. Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers [J]. Polymer, 2000, 41, 4559-4565.
    [22] G. H. Chen, J. R. Lu, D. J. Wu. PTC effect of polyethylene/foliated graphite nanocomposites [J]. J. Mater. Sci., 2005, 40 (18): 5041-5043.
    [23] J .Q. Qi, Q. Zhu, Y. L. Wang, et al.. Enhancement of positive temperature coefficient resistance effect of BaTiO3-based semiconducting ceramics caused by B2O3 vapor dopants[J]. Solid. State. Commun., 2001, 120, 505-508.
    [24] K. Ohe, Y. Natio. A new resistor having an anomalously large PTC [J]. Jap. J. Appl. Phys., 1971, 10: 99-108.
    [25] J. Meyer. Glass transition temperature as a guide to selection of polymers suitable for PTC materials [J]. Polym. Eng. Sci., 1973, 13:462-468.
    [26] A .Voet. Temperature effect of electrical resistivity of CB filled polymers [J]. Rubber. Chem. Tech., 1981, 54:42-45.
    [27]卢金荣.聚乙烯/纳米石墨薄片复合材料在外场作用下电导非线性的研究[D].硕士论文,华侨大学,2005.
    [28]江磊,沈烈,郑强.聚合物的热膨胀[J] .功能材料,2004, 2:142-145.
    [29]李永祥,吴冲若.聚合物复合型PTCR材料的改性研究[J].东南大学学报(自然科学版),1994,24(5): 113-115.
    [30]张建峰,郑强,曹苏华等.电子束辐照交联CB/HDPE凝胶复合物的阻温特性[J].高等学校化学学报, 1999, 12(20):1974-1977.
    [1] R. K. Chakrabarty, K. K. Bardhan, A. Basu. Nonlinear I-V characteristics near the percolation threshold [J]. Phys. Rev. B, 1991, 44(13): 6773-6779.
    [2] Q. Zheng, Y. H. Song, G. Wu, et al. Reversible nonlinear conduction behavior for high-density polyethylene/graphite powder composites near the percolation threshold [J]. J.Polym. Sci., Part B: Polym. Phys., 2001, 39(22): 2833-2842.
    [3] Y. Gefen, W. H. Shih, R .B. Laibowitz, et al. Nonlinear behavior near the percolation metal-insulator transition [J]. Phys. Rev. Lett., 1986, 57:3097-3100.
    [4] W. Lu, D. J .Wu, C. L. Wu, et al. Nonlinear DC response in high-density polyethylene/graphite nanosheets composites [J]. J. Mater. Sci., 2006, 41(6): 1785-1790.
    [5] T. Prasse, K. Schulte, W. Bauhofer. In situ observation of electric field induced agglomeration of carbon black in epoxy resin [J]. Appl. Phys. Lett., 1998, 72, 2903-2906.
    [6] Y. H. Song, Y. Pan, Q. Zheng, et al. The electric self-Heating behavior of Graphite-filled High-Density Polyethylene composites [J]. J. Polym. Sci., Part B: Polym, Phys., 2000, 38, 1756-1763.
    [7] A. Celard, E. McRae, G. Furdin, et al. Conduction mechanisms in some graphite-polymer composites: the effect of a direct-current electric field [J]. J. Phys.: Condens. Mater., 1997, 9:2225-2237.
    [8] F. El-Tantawy, K.Kamada, H. Ohnabe. Novel way of enhancing the electrical and thermal stability of conductive epoxy resin-carbon black composites via the Joule heating effect for heating-element applications [J]. J. Appl. Polym. Sci. A, 2003, 87: 97-109.
    [9] M.B.Heaney. Resistance-expansion-temperature behavior of a disordered conductor-insulator composite [J]. Appl. phys. Lett., 1996, 69(17):2602-2604.
    [10] G. H. Chen, J. R. Lu, D.J. Wu. PTC effect of polyethylene/foliated graphite nanocomposites [J]. J. Mater. Sci., 2005, 40 (18): 5041-5043.
    [11] L.C.Zhou, J. S. Lin, H. F.Lin, et al. Electrical- thermal switching effect in high-density polyethylene/graphite nanosheets conducting composites [J]. J. Mater. Sci., 2008, 43:4886-4991.
    [12]宋义虎,益小苏. HDPE/CB导电复合材料电—热平衡态电学行为.功能高分子学报[J].2003,13(1):37-40.
    [13] W. L, H. F. Lin, G.H. Chen. Voltage -induced Resistivity Relaxation in HDPE/Graphite Nanosheet Composite [J].J. Polym. Sci. Part B: Polym. Phys., 2007, 45:860-863.
    [14] A .R. Duggal, F. G. Sun. The initiation of high current density switching in electrically conductive polymer composite materials [J]. J. Appl. Phys., 1998, 83(4): 2046-2051.
    [15] A. R. Duggal, L. M. Levinson. A novel high current density switching effect in electrically conductive polymer composite materials [J]. J. Appl. Phys., 1997, 82(11):5532-5539.
    [16] F. G. Sun and A. R. Duggal. The voltage dependence of switching in a polymer current limiter device [J]. J. Appl. Phys., 1998, 84:5720 -5740.
    [17] C .Pennetta, L. Reggiani, G. Trwfan. Resistance and resistance fluctuations in random resistor networks under biased percolation [J]. Phys. Rev. E, 2002, 65:066119-066129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700