用户名: 密码: 验证码:
环保型BaTiO_3基陶瓷介质的掺杂与介电性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以具有钙钛矿结构的BaTiO_3基陶瓷作为研究对象,分别研究了Sm_2O_3掺杂对(BaxSr1-x)TiO_3、Ba(Sn_xTi_(1-x))O_3和Ba(ZrxTi1-x)O_3陶瓷微观结构与介电性能的影响,以及Y_2O_3和NiO掺杂对(Ba_xSr1-x)TiO_3陶瓷微观结构与介电性能的影响。通过对试样微观结构和介电特性的研究,揭示了Sm_2O_3、Y_2O_3和NiO在BaTiO_3基陶瓷中的掺杂机理。研究结果发现:
     Sm_2O_3和Y_2O_3在(Ba_xSr_(1-x))TiO_3陶瓷中,随着掺杂量的增加,Sm~(3+)和Y~(3+)有一个优先取代位置,也就是在它们掺杂的起始阶段,Sm~(3+)和Y~(3+)主要进入晶格A位位置,而在其掺杂量超过某个量之后,则以进入晶格B位位置为主,这种优先取代结果导致试样晶胞参数a随掺杂量的增加先减小后增大,试样介电常数先增大后减小。两者都能使试样介电损耗得到改善,尤其是当Y~(3+)掺杂量为1.0 mol%时,试样介电损耗降低到0.0015。两者掺杂结果的显著不同在于Y~(3+)掺杂使试样表现出了弥散相变特性,而Sm~(3+)掺杂却没有。
     当NiO被添加到(BaxSr1-x)TiO_3陶瓷中时,只有一少部分Ni~(2+)离子进入晶格的B位取代Ti4+离子,导致试样晶格参数轻微增加,之后NiO主要在晶界附近聚集,形成BST/NiO复合材料。试样介电常数随NiO掺杂量的增加而下降,介电温谱显示含Ni试样具有弥散相变特性,且随掺杂量的增加,效果越明显,这也使试样介电温谱得到了很大改善。
     Sm_2O_3的加入并不改变BTS10和BZT20陶瓷的主晶相结构,与空白试样相比,掺杂微量Sm~(3+)会使晶粒尺寸下降。随着Sm_2O_3掺杂量的增加,BTS10和BZT20陶瓷试样介电常数先增大后减小,当试样介电常数最大时,其介电损耗也最高。BTS10和BZT20陶瓷试样Tm和Sm_2O_3掺杂量之间的变化规律大致相似,不同点在于BTS10陶瓷的Tm在Sm_2O_3掺杂起始阶段并不改变。
     掺杂Sm_2O_3的BTS10和BZT20陶瓷试样均具有弥散相变特性,但二者有两点明显不同,其一,BTS10空白试样本身并不具有弥散相变特性,而BZT20空白试样即具有弥散相变特性。其二,随Sm_2O_3掺杂量的增加,BTS10陶瓷试样弥散特性一致增强,而BZT20陶瓷试样弥散特性却是先变弱后增强。这种差别说明,在Sm_2O_3掺杂起始阶段,一部分Sm~(3+)进入了BTS10陶瓷晶格B位位置,而在BZT20陶瓷中却没有,而两者试样Tm在Sm_2O_3掺杂起始阶段变化的差异性也说明了这一点。
The effects of Sm_2O_3, Y_2O_3 and NiO on microstructure and dielectric properties in BaTiO_3-based ceramics are investigated, respectively. Based on the effects of Sm~(3+), Y~(3+), and Ni~(2+) on the microstructure and dielectric properties, the substitution mechanism of Sm~(3+), Y~(3+), and Ni~(2+) in BaTiO_3-based ceramics is also investigated and discussed, respectively. The research achievements are as follows:
     There is an alternation of substitution preference of Sm~(3+) and Y~(3+) for the host cations in perovskite lattice, that is, Sm~(3+) and Y~(3+) enter the A site in perovskite lattice at first, then they enter the B site when the additive amount of Sm~(3+) and Y~(3+) exceed some value. Owing to the substitution preference, the crystal cell a and dielectric constant rise at first, if the amount continues increasing, they will decrease. Both Sm~(3+) and Y~(3+) can improve the dissipation factor, especially, the optimized dissipation factor is 0.0015 for 1.0 mol%-Y~(3+)-doped samples, making it a superior candidate material for applications. There is an obvious distinction for the effects on dielectric properties between Sm~(3+) and Y~(3+), that is, the Y~(3+), not Sm~(3+), makes the BST ceramics exhibit the diffuse phase transition.
     It is also found that Ni~(2+) can enter the B site in ABO_3 perovskite at first, making the crystal cell a rise, whereafter, Ni~(2+) ions most segregate on the grain boundaries to inhabit the grain growth, forming the BST/NiO composites. Due to the decrease of grain size and the impurity, the dielectric constants are decreased. It is concluded that the diffuse phase transition is linked to the adulteration of Ni~(2+), and the diffuse phase transition increases with the doping level increasing, leading to that the peaks of dielectric constants become slower and flatter.
     The results indicate that the crystal structures are perovskite phase for all of the examined samples in BTS10 and BZT20 ceramics, however, contrasting to the blank sample, the grain size of the sample with Sm_2O_3 addition is decreased. Owing to the substitution of Sm~(3+), the dielectric constant rises at first, if the amount continues increasing, it will decrease, in the mean time, the dissipation factor also comes to its maximum when the dielectric constant is the highest. The relation between Tm and the concentration of Sm_2O_3 has some similarity except that Tm does not move in BTS10 ceramics at first, resulting from a handful of Sm~(3+) entering into the B site.
     All of the samples exhibit the diffuse phase transition with Sm_2O_3 addition, however, there are two obvious distinction among BTS10 and BZT20 ceramics. First, the blank sample of BTS10 has no diffuse phase transition in nature, the samples of BTS10 can exhibit diffuse phase transition only when the Sm~(3+) ions are added, on the contrary, the blank sample of BZT20 possesses the diffuse phase transition in nature. Second, the diffuse phase transition congruously increases with the level of the Sm~(3+) doping increasing in BTS10 ceramics, however, the diffuse phase transition lowers in the beginning in BZT20 ceramics, if the amount continues increasing, it will increase, which demonstrated that a handful of Sm~(3+) ions have entered into the B site in BTS10 ceramics but not in BZT20 ceramics in the beginning, proved by the distinction of the relation between Tm and the concentration of Sm_2O_3 at first.
引文
[1]干福熹,信息材料,天津:天津大学出版社,2000,527
    [2]范福康,丘泰,功能陶瓷现状与发展动向,硅酸盐通报,1995,14(4):29~36
    [3] Li Wen Chu, Kuraganti Niranjan Prakash, Men-Tsuan Tsai, Dispersion of nano-sized BaTiO3 powders in nonaqueous suspension with phosphate ester and their applications for MLCC, Journal of the European Ceramic Society, 2008, 28(6): 1205-1212
    [4]王少洪,周和平,陈克新,低温合成ZnO-Li2O-B2O3-SiO2系陶瓷材料,无机材料学报,2004,19(2):433~438
    [5] Tao Hu, Tim. J. Price, The effect of Mn on microstructure and properties of BaSrTiO3 with B2O3-LiCO3, Journal of the European Ceramic Society, 2005, 25(12): 2531~2535
    [6]曲远方,环境陶瓷材料,硅酸盐通报,2003,22(6):3~6
    [7]曲远方,功能陶瓷及应用,北京:化学工业出版社,2003,160~321
    [8]叶超群,徐政,严彪,电子陶瓷材料介电功能应用研究现状与前瞻,江苏陶瓷,2004,37(2):15~19
    [9]陈志武,程璇,张颖,铁电陶瓷材料在交变电场作用下疲劳研究进展,稀有金属材料与工程,2004,33(7):674~678
    [10]李德修,王佩军,铁电陶瓷及其应用,物理,1995,24 (12):711~715
    [11] Jean-Richard Gomah-pettry, Senda Sai.d, Pascal Marchet, Sodium-bismuth titanate based lead-free ferroelectric materials, Journal of the European Ceramic Society, 2004, 24(6): 1165~1169
    [12] C.B. Samantary, M.L. Nanda Goswami, D. Bhattacharya, Photoluminesence properties of Eu3+-doped barium strontium titanate (Ba, Sr)TiO3 ceramics, Materials Letters, 2004, 58(17-18): 2299~2301
    [13] O. P. Thakur, Chandra Prakash, Dielectric behavior of Ba0.95S0.05TiO3 ceramics sintered by microwave, Materials Science and Engineering B, 2002, 96 (3): 221~225
    [14]李晓雷,曲远方,冯亚青,Ni/BaTiO3陶瓷复合材料的制备及其PTC效应,电子元件与材料,2005,24(7):17~20
    [15]樊慧庆,PLZT透明光电陶瓷的无压烧结制备工艺研究,光电子技术与信息,2004,17(1):18~20
    [16]李靓,姚熹,张良莹,非制冷热释电薄膜红外探测器热绝缘结构的研制,半导体学,2004,25(7):847~851
    [17]赵明磊,王矜奉,王春雷,溶胶-凝胶法制备锰掺杂(Bi0.5Na0.5)0.94Ba0.06TiO3无铅陶瓷的压电特性,功能材料与器件学报,2005,11(1):43~46
    [18] Tadashi Takenaka, Hajime Nagata, Current status and prospects of lead-free piezoelectric ceramics, Journal of the European Ceramic Society, 2005, 25(12): 2693~2700
    [19] Chune Peng, Jing-feng Li, Wen Gong, Preparation and properties of (Bi1/2Na1/2)TiO3-Ba(Ti, Zr)O3 lead free piezoelectric ceramics, Materials Letters, 2005, 59(12): 1576~1580
    [20] Helmi Abdelkefi, Hamadi Khemakhem, Dielectric properties of ferroelectric ceramics derived from the system BaTiO3-NaNbO3-based solid solutions, Solid State Sciences, 2004, 6(12): 1347~1351
    [21] Yiping Guo, Ken-ichi Kakimoto, Hitoshi Ohsato, (Na0.5K0.5)NbO3-LiTaO3 lead free piezoelectric ceramics, Materials Letters, 2005, 59(2-3): 241~244
    [22] Annie Simon, Jean Ravez, New lead-free non-stoichiometric perovskite relaxor ceramics derived from BaTiO3, Solid State Sciences, 2003, 5(11-12): 1459~1464
    [23]肖定全,赁敦敏,朱建国, Bi0.5Na0.5TiO3基A位多重复合无铅压电陶瓷的研制,高技术通讯, 2005,25(5):54~57
    [24] L. Benziada-Tai·bi, H. Kermoun, Structural and nonlinear dielectric properties in fluoride containing SrTiO3 or BaTiO3 ceramics, Journal of Fluorine Chemistry, 1999, 96(1): 25~29
    [25] Shi-fang Liu, Isaac Robin Abothu, Sridhar Komarneni, Barium titanate ceramics prepared from conventional and microwave hydrothermal powders, Materials Letters, 1999, 38(5): 344~350
    [26] V. Buscaglia, M. Viviani, M. T. Buscaglia, Nanostructured barium tatanate ceramics, Powder Technology, 2004, 148(1): 24~27
    [27] Madona Boulos, Sophie Guillemet-Fritsch, Francois Mathieu, Hydrothermal synthesis of nanosized BaTiO3 powders and dielectric properties of corresponding ceramics, Solid State Ionics, 2005, 176(13-14): 1301~1309
    [28]赵世玺,刘韩星,Bi2O3和Fe2O3掺杂对BaTiO3陶瓷显微结构的影响,武汉理工大学学报,2001,23(4):1~4
    [29]蒲永平,宁叔帆,陈维,Dy2O3掺杂对BaTiO3陶瓷结构与性能的影响,西安交通大学学报,2004,38(4):424~427
    [30]栾伟玲,高廉,郭景坤,细晶粒BaTiO3陶瓷的微结构及介电性能测试,无机材料学报,2000,15(6):1043~1049
    [31]郝俊红,曹全喜,SrTiO3片式化压敏-电容双功能元件研究,压电与声光,2005,27(3):235~239
    [32] Seong-ho Kim, Ho-won Seon, Hyo-tae Kim, Effect of MnO addition on the electrical properties of Nb-doped SrTiO3 varistor, Materials Science and Engineering B, 1999, 56(1): 12~20
    [33]徐云龙,余蓉蓉,钱秀珍,烧结工艺对纳米SrTiO3陶瓷介电性能的影响,电子元件与材料,2005,24(2):16~19
    [34] P. Lu, Q.X. Jia, A.T. Findikoglu. Effects of homo-epitaxial LaAlO3 layer on microstructural properties of SrTiO3 films grown on LaAlO3 substrates, Thin Solid Films, 1999, 348(1-2): 38~43
    [35]李红耘,熊西周,SnO2掺杂对SrTiO3环形压敏电阻性能的影响,电瓷避雷器,2004,4:39~43
    [36]李标荣,无机电介质,武汉:华中科技大学出版社,1995,67
    [37] Helmi Abdelkefi, Hamadi Khemakhem, Dielectric properties and ferroelectric phase transitions in BaxSr1-xTiO3 solid solution, Journal of alloys and compounds, 2005, 399(1-2): 1~6
    [38] H.V. Alexandru, C. Berbecaru, F. Stanculescu, Ferroelectric solid solutions (Ba, Sr)TiO3 for microwave applications, Materials Science and Engineering B, 2005, 118(1-3): 92~96
    [39]梁晓峰,吴文彪,孟中岩,顺电态下掺铝钛酸锶钡陶瓷微结构和介电调谐性能,无机材料学报,2003,18(6):1240~1244
    [40] M.W. Cole, P.C. Joshi, M.H. Ervin, The influence of Mg doping on the materials properties of Ba1-xSrxTiO3 thin films for tunable device applications, Thin Solid Films, 2000, 374(1): 34~41
    [41]阳生红,李辉遒,张曰理,Ba0.9Sr0.1TiO3薄膜的椭偏光谱研究,无机材料学报,2001,16(2):305~310
    [42]卢艳,梁辉,黄欣,掺杂Y3+,Dy3+的BaTi0.91Sn0.09O3陶瓷系统介电性能研究,硅酸盐通报,2002, 21(5): 8~11
    [43] Ryu-hong Liang, Xian-lin dong, Ying Chen, Effect of La2O3 doping on the tunable and dielectric properties of BST/MgO composite for microwave tunable applications, Materials Chemistry and Physics, 2006, 95(2-3): 222~228
    [44]杨春霞,周红庆,刘敏,稀土掺杂的BSTO/MgO铁电移相材料,电子元件与材料,2004,23(9):6~8
    [45]曲远方,李远亮,刘超,掺杂Y2O3对BaSrTiO3介质瓷性能的影响,电子元件与材料,2005,24(11):19~21
    [46] Yuanliang Li, Yuanfang Qu, Substitution preference and dielectric properties of Y3+-doped Ba0.62Sr0.38TiO3 ceramics, Materials Chemistry and Physics, 2008, 110(1): 155-159
    [47] Chen Zhang, Yuanfang Qu, Shicai Ma, Dielectric properties of Sb2O3-doped Ba0.672Sr0.32Y0.008TiO3, Materials Letters, 2007, 61( 4-5):1007-1010
    [48] Chen Zhang, Yuanfang Qu, Shicai Ma, Structural and dielectric properties of Sb2O3-doped (Ba0.992?xSrxY0.008)TiO3.004 ceramics, Materials Science and Engineering B, 2007, 136(2-3): 118-122
    [49] X.X. Wang, K.H. Lam, X.G. Tang, Dielectric characteristics and polarization response of lead-free ferroelectrics (Bi0.5Na0.5) 0.94Ba0.06TiO3–P (VDF-TrFE) 0–3 composites, Solid State Communications, 2004, 130(10): 695~699
    [50] B.V. Bahuguna Saradhi, K. Srinivas, G. Prasad, Impedance spectroscopic studies in ferroelectric (Na0.5Bi0.5) TiO3, Materials Science and Engineering B, 2003, 98(1): 10~16
    [51] H. Nagata, T. Takenaka. Bi0.5Na0.5TiO3-based lead-free piezoelectric ceramics, Society of Non-Traditional Technology, Proceedings of the 3rd International Conference on Ecomaterials, Tsukuba, Japan: Society of Non-Traditional Technology, 1997, 79~82.
    [52] Hajime Nagata, Tadashi Takenaka. Additive effects on electrical properties of (Bi0.5Na0.5) TiO3 ferroelectric ceramics, Journal of the European Ceramic Society, 2001, 21(10~11): 1299-1302
    [53]初宝进,李国荣,江向平, Bi1/2Na1/2TiO3-BaTiO3系陶瓷压电及弛豫相变研究,无机材料学报,2002,15(5):815~821
    [54] G.A. Smolensky, V.A. Isupov, New ferroelectrics of comple composition, Soviet Physics Solid State, 1961, 2(11): 2651~2654
    [55] T. Takenaka, K. Sakata, Dielectric, piezoelectric and pyroelectr properties of (Bi1/2Na1/2)TiO3- based ceramics, Ferroelectrics, 1989, 95(1): 153~156
    [56] P.R. Gomah, S. Sad, P. Marchet, Sodium-bismuth titanate based lead-free ferroelectric materials, Journal of the European Ceramic Society, 2004, 24(6): 1165~1169
    [57] T. Takenaka, K.I. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Japanese Journal of Applied Physics, 1991, 30(9B): 2236~2239
    [58] T. Takenaka, Piezoelectric properties of some lead-free ferroelectric ceramics, Ferroelectrics, 1999, 230(1): 87~98
    [59] T. Takenaka, T. Okuda, K. Takegahara, Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3 -NaNbO3, Ferroelectrics, 1997, 196(1): 175~178
    [60] T. Wada, K. Toyoike, Y. Imanaka, Dielectric and piezoelectric properties of (A0.5Bi0.5)TiO3-ANbO3 (A=Na, K) systems, Japanese Journal of Applied Physics, 2001, 40(9B): 5703~5705
    [61] H. Nagata, N. Koizumi, T. Takenaka, Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-BiFeO3 system, Key Engineering Materials, 1999,169-170: 37~40
    [62] H. Nagata, T. Takenaka, Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3- 1/2(Bi2O3·Sc2O3) system, Japanese Journal of Applied Physics, 1997, 36(9B): 6055~6057
    [63] K. Sakata, Y. Masuda, Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5)TiO3- SrTiO3 solid solution ceramics, Ferroelectrics, 1974, 7(1): 347~349
    [64] A. Herabut, A. Safari, Processing and electromechanical properties of (Bi0.5Na0.5)(1-1.5x)-LaxTiO3 ceramics, Journal of the American Ceramic Society, 1997, 80(11): 2954~2958
    [65] Lin Yuanhua, Zhao Shujin, Cai Ning, Effects of doping Eu2O3 on the phase transformation and piezoelectric properties of Na0.5Bi0.5TiO3-based ceramics, Materials Science and Engineering B, 2003, 99(1-3): 449~452
    [66]鄢洪建,赁敦敏,肖定全,铌酸盐系无铅压电陶瓷的研究与进展—无铅压电陶瓷20年发明专利分析之四,功能材料,2003,34(6):615~618
    [67] Shiming Huang, Chude Feng, Lidong Chen, Dielectric properties of SrBi2-xPrxNb2O9 ceramics (x=0, 0.04 and 0.2), Solid State Communications, 2005, 133(6): 375~379
    [68] Minoru Osada, Masaru Tada, Masato Kakihana, Observation of ferroelectric domains in bismuth-layer-structured ferroelectrics using Raman spectroscopy, Materials Science and Engineering B, 2005, 120(1-3): 95~99
    [69] Rintaro Aoyagi, Hiroaki Takeda, Soichiro Okamura, Ferroelectric and piezoelectric properties of bismuth layered-structure ferroelectric (Sr,Na,Bi)Bi2Ta2O9 ceramics, Materials Science and Engineering B, 2005, 116(2): 156~160
    [70] Rintaro Aoyagi, Hiroaki Takeda, Soichiro Okamura, Synthesis and electric properties of sodium bismuth niobate Na0.5Bi0.5Nb2O9, Materials Research Bulletin, 2003, 38(1): 25~32
    [71]黄平,徐廷献,孙清池,铋层状化合物Sr0.3Ba0.7Bi4-xLaxTi4O15陶瓷材料的介电性能,硅酸盐学报,2004,32(7):808~811
    [72]张丽娜,赵苏串,郑嘹赢,复合层状Bi7Ti4NbO21铁电陶瓷的结构与介电和压电性能研究,物理学报,2005,54(5):2347~2351
    [73] Atsushi Yokoi, Hirotaka Ogawa, Crystal structure and ferroelectric properties of mixed bismuth layer-structured Bi7Ti4+x/2Nb1?xWx/2O21 ceramics, Materials Science and Engineering B, 2006, 129(1-3): 80-85
    [74] D. Mercurio, G. Trolliard, T. Hansen, J. P. Mercurio, Crystal structure of the ferroelectric mixed Aurivillius phase Bi7Ti4NbO21, International Journal of Inorganic Materials, 2000, 2(5): 397-406
    [75] X. Duan, W. Luo, W. Wu, et al, Dielectric response of ferroelectric relaxors, Solid State Communication, 2000, 114(11): 597~600
    [76] Sanjiv Kumar, V. S. Raju, T. R. N. Kutty, Investigations on the chemical states of sintered barium titanate by X-ray photoelectron spectroscopy, Applied Surface Science, 2003, 206(1-4): 250~261
    [77] T.J. Bastow, H J. Whitfield, Ba and Ti NMR: Electric Field Gradients in Noncubic phases of BaTiO3, Solid State Communications, 2001, 117(8): 483~488
    [78]徐廷献,沈继跃,薄占满,电子陶瓷材料,天津:天津大学出版社,1993,138
    [79]杨飞宇,燕青芝,赵浩峰,钛酸钡粉体制备方法研究进展,粉末冶金工业,2003,13(6):28~32
    [80]郭靖,胡曰博,熊育飞,TiCl4共沉淀法合成钛酸钡超细粉体,四川有色金属,2004,2:29~33
    [81]蒲永平,陈寿田,水热法合成四方相超细BaTiO3粉体的研究进展,材料导报,2003,17(11): 44~46
    [82]朱启安,谭仪文,电子陶瓷材料钛酸钡的共沉淀合成方法研究,湘潭大学自然科学学报,2001,23(2):60~64
    [83]栾伟玲,高廉,郭景坤,溶胶-凝胶法制备纳米BaTiO3粉体的影响因素,无机材料学报,1999,14(6):861~865
    [84] Sakabe Ken-ichi, Ferroelectric characteristics of Y-doped barium zirconium titanate ceramics, Ceramics International, 2002, 28(6): 657~661
    [85]郝素娥,王进福,氧化钆对钛酸钡陶瓷结构和介电性能的影响,稀土,2003,24(1):68~69
    [86]靳正国,戴维迪,Dy2O3和La2O3掺杂对BaTiO3铁电陶瓷介电特性的影响,硅酸盐学报,2001,29(5):397~401
    [87]刘静波,王智民,铈、镧掺杂BaTiO3基纳米晶的合成与表征,功能材料,2000,31(1):69~71
    [88] W.G. Cady, Piezoelectricity, New York: McGraw-Hill Book Co, 1946, 57
    [89]方俊鑫,殷之文,电介质物理学,北京:科学出版社,2000,1~11
    [90] J.E. Huber, N.A. Fleck, C.M. Landis, A constitutive model for ferroelectric polycrystals, Journal of the Mechanics and Physics of Solids, 1999, 4(8): 1663~1697
    [91] Jingquan Cheng, Biao Wang, Shanyi Du. A statistical model for predicting effective electroelastic properties of polycrystalline ferroelectric ceramics with aligned defects, International Journal of Solids and Structures, 2000, 37(35): 4763~4781
    [92] Chunlei Wang, David R Tilley, Model for a simple order-disorder ferroelectric superlattice, Solid State Communications, 2001, 118(7): 333~338
    [93] O.E. Kvyatkovskii, Theory of isotope effect in displacive ferroelectrics, Solid State Communications, 2001, 117(8): 455~459
    [94] G. Borstel, R.I. Eglitis, E.A. Kotomin, Modeling of defects and surfaces in perovskite ferroelectrics, Journal of Crystal Growth, 2002, 237-239(part 1): 687~693
    [95] Vincent Meyer, Jean-Michel Sallese, Pierre Fazan, Modeling the polarization in ferroelectric materials: a novel analytical approach, Solid State Electronics, 2003, 47(9): 1479~1486
    [96] G. Arlt, D. Hennings, Dielectric properties of fine-grained barium titanate ceramics, Journal of Applied Physics, 1985, 58(4): 1619~1625
    [97]艾树涛,蔡元贞,与相变潜热有关的铁电-顺电相界动力学及其尺寸效应,物理学报,2006,55(7):3721~3724
    [98]侯识华,宋世庚,马远新,铅过量PLZT铁电薄膜的制备及其电学性能研究,材料科学与工程,2001,19(3):43~47
    [99]催斌,高秀华,高武,半化学法制备PMW-PNN-PT粉体的反应机理研究,无机化学学报,2005,21(6):900~904
    [100]崔斌,屈绍波,田长生,Pb(Fe2/3W1/3)O3的制备及其介电性能研究,材料科学与工程,2002,20(3):371~374
    [101]王伟,朱骏,毛翔宇,SrBi4Ti4O15铁电陶瓷A位掺杂改性研究,中国材料科技与设备,2006,3(1):41~43
    [102]周宗辉,程新,杜丕一,原位制备钛酸锶钡/铌酸锶钡复相陶瓷的研究,无机化学学报,2005,21(6):873~878
    [103]刘鹏,姚熹,(PbBa)(Zr,Sn,Ti)O3反铁电/驰豫型铁电相界陶瓷的相变与介电、热释电性质,物理学报,2002,51(7):1628~1633
    [104]张孝文,陈克丕,驰豫铁电材料在准同型相界附近结构和性能研究的最新进展,无机材料学报,2002,17(3):385~391
    [105] G. Chandramouli, Srinivas Reddy, Koduri Ramam, Electromechanical studies of Ce-doped lead barium niobate (PBN60) ceramics, Scripta Materialia, 2008, 59(2): 235-238
    [106] J.C. Bruno, T.C. Boni, A.A. Cavalheiro, Structural characterization of 0.5PbMg1/3Nb2/3O3–0.5BaxPb(1?x)TiO3 powders, Materials Research Bulletin, 2008, 43(2): 297-304
    [107] L. Khemakhem, A. Kabadou, A. Maalej, New relaxor ceramic with composition BaTi1?x(Zn1/3Nb2/3)xO3, Journal of Alloys and Compounds, 2008, 452(2): 451-455
    [108] A.J. Paula, A.A. Cavalheiro, J.C. Bruno, A homovalent doping in PMN ceramics by using lithium and scandium cations, Materials Chemistry and Physics, In Press
    [109] Supattra Wongsaenmai, Xiaoli Tan, Supon Ananta, Dielectric and ferroelectric properties of fine grains Pb(In1/2Nb1/2)O3–PbTiO3 ceramics, Journal of Alloys and Compounds, 2008, 454(1-2): 331-339
    [110] Hiroshi Maiwa, Seung-Hyun Kim, Temperature dependence of electrical and electromechanical properties of Pb(Mg1/3Nb2/3)O3–Pb(Ni1/3Nb2/3)O3–Pb(Zr,Ti)O3 thin films, Ceramics International, 2008, 34(4): 961-965
    [111] X.L. Zhong, L. Lu, M.O. Lai, Growth of highly orientated 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 films by pulsed laser deposition, Surface and Coatings Technology, 2005, 198(1-3): 400-405
    [112] C.V. do Carmo, R.N. de Paula, J.M. Póvoa, Phase evolution and densification behavior of PBN ceramics, Journal of the European Ceramic Society, 1999, 19(6-7): 1057-1060
    [113] Yue Ming Li, Liang Cheng, Xing Yong Gu, Piezoelectric and dielectric properties of PbNb2O6-based piezoelectric ceramics with high Curie temperature, Journal of Materials Processing Technology, 2008, 197(1-3): 170-173
    [114] P. Kantha, K. Pengpat, P. Jarupoom, Phase formation and electrical properties of BNLT–BZT lead-free piezoelectric ceramic system, Current Applied Physics, 2009, 9(2): 460-466
    [115] R. Wongmaneerung, R. Yimnirun, S. Ananta, Effect of two-stage sintering on phase formation, microstructure and dielectric properties of perovskite PMN ceramics derived from a corundum Mg4Nb2O9 precursor, Materials Chemistry and Physics, In Press
    [116] A. Slodczyk, Ph. Colomban, M. Pham-Thi, Role of the TiO6 octahedra on the ferroelectric and piezoelectric behaviour of the poled PbMg1/3Nb2/3O3–xPbTiO3 (PMN–PT) single crystal and textured ceramic, Journal of Physics and Chemistry of Solids, 2008, 69(10): 2503-2513
    [117] Romain Herdier, M. Detalle, David Jenkins, Piezoelectric thin films for MEMS applications-A comparative study of PZT, 0.7PMN-0.3PT and 0.9PMN-0.1PT thin films grown on Si by r.f. magnetron sputtering, Sensors and Actuators A: Physical, 2008,148(1): 122-128
    [118] Dawnielle Farrar, James E. West, Ilene J. Busch-Vishniac, Fabrication of polypeptide-based piezoelectric composite polymer film, Scripta Materialia, 2008, 59(10): 1051-1054
    [119] S B Lang, Sourcebook of Pyroelectricity, New York: Gordon and Breach, 1974, 3~4
    [120] Wencheng Hu, Chuanren Yang, Wanli Zhang, Characteristics of Ba0.8Sr0.2TiO3 ferroelectric thin films by RF magnetron sputtering, Ceramics International, 2007, 33(7): 1299-1303
    [121] D.A. Hall, A. Steuwer, B. Cherdhirunkorn, Micromechanics of domain switching in rhombohedral PZT ceramics, Ceramics International, 2008, 34(4): 679-683
    [122] J. Petzelt, E. Buixaderas, A. V. Pronin, Infrared dielectric response of ordered and disordered ferroelectric Pb(Sc1/2Ta1/2)O3 ceramics, Materials Science and Engineering B, 1998, 55(1-2): 86-94
    [123] Liu. S. B, Liu. M. D, Jiang. S. L, Fabrication of SiO2-doped Ba0.85Sr0.15 TiO3 glass-ceramics films and the measurement of their pyroelectric coefficient, Materials Science and Engineering B, 2003, 99(1-3): 511-515
    [124]李标荣,王筱珍,张绪礼,无机电介质,武汉:华中理工大学出版社,1995,66
    [125] Wu L, Chen Y, ChenN L, Preparation and microwave characterization of (Ba1-xSrx) TiO3 ceramics, Japanese Journal of Applied Physics, 1999, 38(9): 5612~5615
    [126] Liqin Zhou, P.M. Vilarinho, J.L. Baptista, Dielectric properties of bismuth doped Ba1-xSrxTiO3 ceramics, Journal of the European Ceramics Society, 2001, 21(4): 531-534
    [127]薛卫东,李言荣,钛酸锶钡精细结构的理论计算,原子与分子物理学报,2004(增刊):383~385
    [128] P. Ayyub, V.R. Palkar, Y.S. Chattopadhya, Effect of crystal size reduction on lattice symmetry and cooperative properties. Physical Review B: Condensed M atter, 1995, 51(9): 6135~6140
    [129] Y.S. Chattopadhya, P. Ayyub, V.R. Palkar, Finite size effects in antiferroelectrlc PbZrO3 nanoparticles, Journal of Physics: Condens Matter, 1996, 9(38): 8135~8145
    [130] L. Zhang, W.L. Zhong, C L. Wang, Finite size effects in ferroelectric solid solution (Ba1-x Srx)TiO3 , Journal of Physics D: Applied Physics, 1999, 32(5): 546~551
    [131] W.L. Zhong, B. Liang, P.L. Zhang, Phase transition in PbTiO3 ultrafine particles of different sizes, Journal of Physics: Condens Matter, 1993, 5(16): 2619~2624
    [132] L. Zhang, W.L. Zhong, Y.G. Wang, Dielectric properties of Ba0.7Sr0.3TiO3 ceramcis with different grain size, Phys Status Solidi(a): Applied Research, 1998, 168(2): 543~548
    [133] W.R. Buessem, L.E. Cross, A. K. Goswami, Phenomenological theory of high permittivity in fine-grained barium titanate, Journal of the American Ceramic Society, 1966, 49(1): 33~36
    [134] Wilber, D. William, Apparatus and method for reducing the temperature sensitivity of ferroelectric microwave devices, US Patent, 6160524, 2000-12-12
    [135] A. Beitollahi, S.A. Mortazavi, Effect of the Level of Addition of Nb2O5 /Co2O3 and Ba(Nb2 /3Co1/3)O3 on the Structure, Microstructure, and Dielectric Properties of BaTiO3, Journal of Materials Science: Material in Electronics, 2003, 14(3): 129~134.
    [136] Wang Sea-fue, O.D. Gordon, Dielectric Properties of Fine Grained Barium Titanate Based X7R Materials, Journal of the American Ceramic Society, 1999, 82(10): 2677~2682
    [137] Kim Kyoung Tae, Structure and dielectric properties of La-doped Ba0.6Sr0.4TiO3 thin films fabricate by sol-gel method, Microeletric Engeering, 2003, 66(1-4): 835~841
    [138] M.W. Co le, P.C. Joshi, M.H. Ervin, La doped (Ba1-xSrx)TiO3 thin films for tunable device application, Journal of Applied Physics, 2001, 89(11): 6336~6340
    [139] Ki Hyun Yoon, Jae Chan Lee, Jihoon Park, Electrical properties of Mg doped Ba0.5Sr0.5TiO3 thin films , Japanese Journal of Applied Physics, 2001, 40(9B): 5497~5500
    [140] Jeon Young Ah, Seo Tae Such, Yoon Soon Gil, Effect of Ni doping on improvement of the tunability and dielectric loss of Ba0.5Sr0.5TiO3 thin films for microwave tunable device, Japanese Journal of Applied Physics, 2001, 40(11): 6496~6500
    [141]鲍军波,任天令,刘理天,Mn掺杂BST薄膜的制备与表征,压电与声光,2002,24(5):389~391
    [142] Ketaro Imai, Shiro Takeno, Keuro Nakamura, Effect of Fe doping of thin (Ba, Sr)TiO3 films on increase in dielectric constant , Japanese Journal of Applied Physics, 2002, 41(10): 6060~6064
    [143]郝素娥,韦永德,Sm2O3掺杂BaTiO3陶瓷的结构与电性能研究,无机材料学报,2003,18(5):1069~1073
    [144]齐建全,李龙土,朱青,Sm2O3掺杂的BaTiO3陶瓷的PTCR效应,压电与声光,2001,23(3):218~220
    [145]周焕福,黄金亮,殷镖,Sm2O3掺杂Bi2O3–ZnO-Nb2O5基陶瓷的结构与性能,2005,功能材料与器件学报,11(2):215~218
    [146]杨文,常爱民,杨邦朝,晶粒尺寸对Ba0.80Sr0.20TiO3陶瓷介电铁电特性的影响,硅酸盐学报,2002,30(3):390~392
    [147] S.B. Herner, F.A. Selmi, V.V. Varadan, The effect of various dopants on the dielectric properties of Barium Strontium Titanate, Materials Letters, 1993, 15 (5-6): 317~324.
    [148] F. Batllo, E. Duverger, J.C. Jules, Dielectric and EPR studies on Mn-doped Barium Titanate, Ferroelectrics, 1990, 109(1): 113~118.
    [149] N. Michiura, T. Tatekawa, Y. Higuchi, Role of donor and acceptor ions in the dielectric loss tangent of (Zr0.8Sr0.2)TiO4 dielectric resonator material, Journal of the American Ceramic Society, 1995, 78(3): 793~796
    [150] D.W. Kim, K.H. Ko, D.K. Kwon, Origin of microwave dielectric loss in ZnNb2O6-TiO2, Journal of the American Ceramic Society, 2002, 85 (5): 1169~1172
    [151]李标荣,王筱珍,张绪礼,无机电介质,武汉:华中理工大学出版社,1995,96~98
    [152]吴建锋,徐晓虹,(MgO·Y2O3)稳定ZrO2的研究,硅酸盐学报,1999,18(5):69~71
    [153] Yong Hoon SONG, Jin Hyun HWANG, Young Ho HAN, Effects of Y2O3 on temperature stability of acceptor-doped BaTiO3, Japanese Journal of Applied Physics, 2005, 44(3): 1310~1313
    [154] Zhi Jing, Chen Ang, Zhi Yu, Dielectric properties of Ba(Ti1-yYy)O3 ceramics, Journal of Applied Physics, 1998, 84(2): 983~986
    [155] D. Shan, Y.F. Qu, J.J. Song, Dielectric properties and substitution preference of yttrium doped barium zirconium titanate ceramics, Solid State Communications, 2007,141(2): 65~68
    [156] JI HUN JEONG, MYUNG GYU PARK, YOUNG HO HAN, Defect chemistry of Y doped BaTiO3, Journal of Electroceramics, 2004, 13(1-3): 805~809
    [157] M.T. Buscaglia, M. Viviani, V. Buscaglia, Incorporation of Er3+ into BaTiO3, Journal of the American Ceramic Society, 2002, 85(6): 1569~1574
    [158]杨南如,无机非金属材料测试方法,武汉:武汉工业大学出版社,2001,17
    [159]孟中岩,姚熹,电介质理论基础,北京:国防工业出版社,1979,357~363
    [160]孟中岩,姚熹,电介质理论基础,北京:国防工业出版社,1979,223
    [161] G.S. Fulcher, Analysis of recent measurements of the viscosity of glasses, Journal of the American Ceramic Society, 1925, 8(6): 339~355
    [162] L. Szymczak, Z. Ujma, J. Ha?derek, J. Kapusta, Sintering effects on dielectric properties of (Ba,Sr)TiO3 ceramics, Ceramics International, 2004, 30(6): 1003~1008
    [163] S.K. Rout, E. Sinha, S. Panigrahi, Dielectric properties and diffuse phase transition in Ba1?xMgxTi0.6Zr0.4O3 solid solutions, Materials Chemistry and Physics, 2007, 101(2-3): 428~432
    [164] Wei-Chun Yang, Chen-Ti Hu, I-Nan Lin, Effect of Y2O3/MgO Co-doping on the electrical properties of base-metal-electroded BaTiO3 materials, Journal of the European Ceramic Society, 2004, 24(6): 1479~1483
    [165]关振铎,张中太,焦金生,无机材料物理性能,北京:清华大学出版社,1992,335~345
    [166]李小兵,李玲霞,吴霞宛,稀土氧化物Er2O3对钛酸钡基瓷料介电性能的影响,电子元件与材料,2001,20(6):15~16
    [167] W. Zhu, C.C. Wang, S.A. Akbar, Fast sintering of hydrotherm ally synthesized BaTiO3 powders and their dielectric properties, Journal of Materials Science, 1997, 32(16): 4303~4307
    [168] S.M. Rhim, H. Bak, S. Hong, Effect of heating rate on the sintering behavior and the dielectric propertiesof ceramics prepared by boron-containing liquid-phase sintering, Journal of the American Ceramic Society, 2000, 83(12): 3009
    [169] Luan Weiling,Gao Lian, Guo Jingkun, Study on microstructure and dielectric properties of fine-grained barium titanate ceramics, Chinese Journal of Inorgan Materials, 2000, 15(6): 1043~1049
    [170] Andrey V. Ragulya, Valeriy V. Skorokhod, Synthesis and sintering of nanocrystalline barium titanate powder under nonisothermal conditions. Part V. Nonisothermal sintering of barium titanate powders of different dispersion, Powder Metallurgy and Metal Ceramics2000, 39(7-8): 395~402
    [171] Bin Zhang, Xi Yao, Liangying Zhang, Effect of sintering condition on the dielectric properties of (Ba,Sr)TiO3 glass-ceramic, Ceramics International, 2004, 30(7): 1773-1776.
    [172] S. Tusseau-Nenez, J. P. Ganne, M. Maglione, BST ceramics: Effect of attrition milling on dielectric properties, Journal of the European Ceramic Society, 2004, 24(10-11): 3003-3011
    [173] L. Zhang, W.L. Zhong, C.L. Wang, Dielectric properties of Ba0.7Sr0.3TiO3 ceramics with different grain size, physica status solidi (a), 1998, 168(2): 543~548
    [174]王华,Pb(Zr0.52Ti0.48)O3铁电陶瓷烧结工艺及性能研究,电子元件与材料,2002,21(1):1~3
    [175] Seung-Beom Seo, Seung-Ho Lee, Chang-Bun Yoon. Low-temperature sintering and piezoelectric properties of 0.6Pb(Zr0.47Ti0.53)O3·0.4Pb(Zn1/3Nb2/3)O3 ceramics, Journal of the American Ceramic Society, 2004, 87(7): 1238~1243
    [176] H.T. Martirena, J.C. Burfoot, Grain-size effects on properties of some ferroelectric ceramics, Journal of Physics C: Solid State Physics, 1974, 7(17): 3182 ~3192
    [177]陆佩文,无机材料科学基础,武汉:武汉工业大学出版社,1996,308
    [178]石随林,张灵振,黄红军,NiO/BaTiO3陶瓷复合材料制备与介电性能研究,稀有金属材料与工程,2007,36(suppl.1):428~430
    [179]龙纪文,陈海龚,周飞,NiO掺杂对PMS-PZ-PT三元系陶瓷微结构和电性能的影响,无机材料学报,2004,19(2):319~323
    [180] A. Jana, T.K. Kundu, Microstructure and dielectric characteristics of Ni ion doped BaTiO3 nanoparticles, Materials Letters, 2007, 61(7):1544~1548
    [181] Y.C. Huang, W.H. Tuan, Exaggerated grain growth in Ni-doped BaTiO3 ceramics, Materials Chemistry and Physics, 2007, 105(2-3): 320~324
    [182]李标荣,王筱珍,张绪礼,无机电介质,武汉:华中理工大学出版社,1995,93~94
    [183] Xiaoyong Wei, Xi Yao, Preparation, structure and dielectric property of barium stannate titanate ceramics, Materials Science and Engineering B, 2007, 137(1-3): 184-188
    [184] V.A. Isupov, Cause of phase-transition broadening and the nature of dielectric polariztion relaxation in some ferroelectrics, Soviet Physics-Solid State, 1963, 5(1): 136-145
    [185] N. Setter, L. E. Cross, The contribution of structure disorder to diffuse phase transition in ferroelectrics, Journal of Materials Science, 1980, 15(11): 2478-2484
    [186] J. Chen, H.M. Chan, M.P. Harmer, Ordering structure and dielectric properties of undoped and La/Na-doped Pb(Mg1/3Nb2/3)O3, Journal of the American Ceramic Society, 1989, 72(4): 593-598
    [187] L.E. Cross, Relaxor ferroelectrics, Ferroelectrics, 1987, 76(1): 243-251
    [188] S. Markovi?, M. Mitri?, N. Cvjeti?anin, Preparation and properties of BaTi1?xSnxO3 multilayered ceramics, Journal of the European Ceramics Society, 2007, 27(2-3): 505-509
    [189]李标荣,王筱珍,张绪礼,无机电介质,武汉:华中理工大学出版社,1995,98~99
    [190] B. Su, T. W. Button, Microstructure and dielectric properties of Mg-doped barium strontium titanate ceramics, Journal of Applied Physics, 2004, 95(3): 1382~1385
    [191] Naohiko Yasuda, Hidehiro Ohwa, Shigeto Asano, Dielectric Properties and Phase Transitions of Ba(Ti1-xSnx)O3 Solid Solution, Japanese Journal of Applied Physics, 1996, 35(9B): 5099~5103
    [192] Zhi Yu, Chen Ang, Ruyan Guo, Dielectric properties and high tunability of BaTi0.7Zr0.3O3 ceramics under dc electric field, Applied Physics Letters, 2002, 81(7): 1285~1287
    [193] Jean Ravez, Cédric Broustera, Annie Simon, Lead-free ferroelectric relaxor ceramics in the BaTiO3-BaZrO3-CaTiO3 system, Journal of Materials Chemistry, 1999, 9(7): 1609~1614
    [194] B. Su, K. L. Choy, Structure and growth characteristics of BaZrO3 films produced using an electrostatic assisted aerosol-gel deposition method, Journal of Materials Chemistry, 1999, 9(7): 1629~1634
    [195] Ulrich Weber, Georg Greuel, Ulrich Boettger, Dielectric properties of Ba(Zr,Ti)O3-based ferroelectrics for capacitor applications, Journal of the American Ceramic Society, 2001, 84(4): 759-766
    [196] W. Dmowski, M. K. Akbas, T. Egami, Structure refinement of large domain relaxors in the Pb(Mg1/3Ta2/3)O3–PbZrO3 system, Journal of Physics and Chemistry of Solids, 2002, 63(1): 15-22
    [197] F. Moura, A.Z. Sim?es, B.D. Stojanovic, Dielectric and ferroelectric characteristics of barium zirconate titanate ceramics prepared from mixed oxide method, Journal of Alloys and Compounds, 2008, 462(1-2): 129-134
    [198] L.G.A. Marques, L.S. Cavalcante, A.Z. Sim?es,Temperature dependence of dielectric properties for Ba(Zr0.25Ti0.75)O3 thin films obtained from the soft chemical method, Materials Chemistry and Physics, 2007, 105(2-3): 293-297
    [199] X.G. Tang, K.-H. Chew, H.L.W. Chan, Diffuse phase transition and dielectric tunability of Ba(ZryTi1?y)O3 relaxor ferroelectric ceramics, Acta Materialia, 2004, 52(17): 5177-5183
    [200] X.G. Tang, J. Wang, X.X. Wang, Effects of grain size on the dielectric properties and tunabilities of sol-gel derived Ba(Zr0.2Ti0.8)O3 ceramics, Solid State Communications, 2004, 131(3-4): 163-168
    [201]唐新桂,刘秋香,王杰,锆钛酸钡陶瓷的电场诱导相变特性研究,物理学进展,2006,26(3-4):500~504

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700