用户名: 密码: 验证码:
三自由度并联角台机构运动性能的理论分析及仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代机构学研究的主要任务,是对适应现代化生产的新机构进行有效的理论分析,从而为其应用提供明确的目标,减少新机构创新的盲目性。用已有特定性能的机构制造新机器,可以有效地开发资源、利用资源,为社会生产和生活服务。本文在国家自然科学基金的支持下,主要进行了三自由度并联角台机构的运动性能分析及仿真研究,对其中典型的3-RPS并联角台机构和3-(RP)S并联角台机构进行了分析和仿真,包括以下几个方面:
     首先分析了3-RPS并联角台机构具有三个转动自由度:初始位置时具有绕确定轴的瞬时转动,以及离开初始位置后绕不确定轴的连续转动,且三个转动轴线在空间不相交。判断了机构输入选取的合理性。建立了角台机构的反解方程,通过确定结构约束和齐次变换矩阵,解得角台机构的三个移动副输入参数。角台机构和其他并联机构一样,正解是难点。根据空间几何条件并通过变量代换,确定了机构角台的位置和姿态。给出数值算例求得机构在给定条件下的正、反解。
     把平面卡当(CARDAN)运动进行推广,定义这种三维空间中类似于小齿轮在大齿轮内表面的运动为空间卡当运动。从空间解析几何的角度,详细分析了3-RPS角台机构在卡当运动过程中,动角台各特征点的运动轨迹。文中分析、证明了3-RPS并联角台机构能实现空间三维卡当运动,其三维卡当运动在空间的运动轨迹为三坐标方向的椭圆簇。
     用MATLAB对3-RPS角台机构的运动进行了仿真,结果表明:3-RPS并联角台机构是众多并联机构中较特殊的一种,该机构能实现空间的卡当运动和沿主对角线的螺旋运动;由于机构的三个转动轴线不相交,加工、制造较三个转动轴线交于一点的球面并联机构容易;由于转动的轴线不固定,因此适用于大角度、绕不确定轴转动的场合。
     引进了虚拟机构法,成功地建立了3-(RP)S角台机构的Jacobian矩阵。基于二次曲线和二次曲面分解理论,对3-(RP)S角台机构的瞬时运动进行了分析,识别了该机构在三种位形下的主螺旋。研究了在每种位形下输出运动螺旋的节距与输入速度之间的关系以及具有相同节距的所有运动螺旋轴线在每种位形下的空间分布。并得出结论:此机构在起始位置和三杆等距伸长时属于第一种特殊的螺旋三系,在一般位形下属于Hunt提出的一般螺旋三系,且在任意位形下对应于相同节距的所有螺旋轴线都分布在同一个单叶双曲面上。上述分析有助于从整体上把握3-(RP)S角台机构的瞬时运动特性,为进一步研究其它角台机构的运动规律,促进该类机构的应用奠定了良好的基础。
The modern mechanics plays a dominating role in analyzing new machines applicable for the modernization production, which is useful for clear orientation of the applications and innovations. The new machines are often made of mechanisms with inherent and specific features, which is favorable to develop resources so as to better serve the social life. In the paper, the kinematic performance of 3-DOF parallel pyramid mechanisms, especially the 3-RPS and 3-(RP)S pyramid mechanisms are analyzed and simulated under the support of National Nature Science Foundation. The main contents of this paper are as follows:
     In this paper, the mobility of the 3-RPS pyramid mechanism is firstly analyzed. This mechanism has three rotations, the axes of which are fixed under the initial displacement while that is always mutative under any other configuration. The paper also judges the rationality of input selection. Then it builds the equations for inverse problem and obtains the three input parameters according to the structure constraints and homogeneous transforming matrixes. Similar to other parallel mechanisms, it is also difficult to get the direct problem of the 3-RPS pyramid mechanism. The orientation is successfully determined by coordinate transformations in terms of the special geometric conditions. Furthermore, the numerical values of direct and inverse problems under certain condition are calculated.
     The paper extends the plane CARDAN motion which is similar to the inside mesh movement of two gears. The kinematic loci of the representative points are analyzed in detail. It is proved that the 3-RPS pyramid mechanism also has the three-dimensional CARDAN motion and the kinematic trajectory is an ellipse cluster.
     The motions of the 3-RPS pyramid mechanism are simulated using MATLAB, which indicates that this mechanism is the special one among diverse mechanisms. The 3-RPS pyramid mechanism has three-dimensional CARDAN and helical motions and its workspace is larger than that of the platform manipulator. Since the axes of three rotations are not intersecting, it is comparatively easy to be manufactured than that of the spherical parallel mechanisms. In addition, the mechanism can be applied to lange-angle rotations because of the various axes of motions.
     The instantaneous motions of the 3-(RP)S pyramid mechanism are analyzed and the principal screws under three different configurations are identified by means of the conic section and the quadric degenerating theory, respectively. The relations between the pitches of the output twists and hree velocity inputs are described, and the spatial distribution of the axes of all the twists with the same pitch is illustrated under each configuration. It is concluded that the motions of this mechanism belong to the first special three-system under the first two configurations, while it belongs to a general third-order screw system under a general configuration. The axes of all the screws with the same pitch lie in a hyperboloid. The above study helps us comprehend the instantaneous kinematic property of the 3-(RP)S pyramid mechanism on the whole, and lays a foundation of the research on the kinematic laws and applications of other pyramid mechanisms.
引文
1最新的机器人研究与发展国际评估报告. world technology evaluation center: http://wtec.org
    2 http://www.stcsm.gov.cn/learning/lesson/course
    3 http://www.ryanbyrd.net/rambleon
    4机器人发展简史.环球科学. 2007.2. http://www.sciam.com.cn
    5 http://www.robogame.org
    6 http://www.rta.org.cn
    7 http://www.bk.51player.com/view/2788.htm
    8汪劲松,段广洪,杨向东.虚拟轴机床的研究进展-兼谈在清华大学研制成功的VAMT1Y型原型样机.科技导报, 1998, (10): 32-34
    9 http://www.cetin.net.cn/storage/dongtai/xw/2001/04/2001f-4-29-4.htm
    10 http://publish.it168.com/2005/1230/20051230014715.shtml
    11 http://www.robotsky.com
    12 D. Stewart. A Platform with Six Degrees of Freedom. IMechE, 1965, 180(15): 371-386
    13 http://www.roboticfan.com/Article/HTML/507.shtml
    14 http://www.roboticfan.com/Article/HTML/357.shtml
    15 M. Washizu. Manipulation of Biological Objects Mechanical Structures. IEEE Micro Mechanical Systems, Germany, 1992: 196-201
    16 T. Tanikawa, T. Arai, P. Ojala, et al. Two Finger Micro Hand. IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995, (2): 1674-1679
    17 T. Dohi. Computer Aided Surgery and Micro Machine. Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1993: 21-24
    18 K. W. Grace, J. E. Colgate. A Six Degree of Freedom Micromanipulator for Ophthalmic Surgery. IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1993: 630-635
    19 J. P. Merlet. Optimal Design for the Micro Parallel Robot MIPS. IEEE International Conference on Robotics and Automation, Washington, 2002: 1149-1154
    20杨宜民.仿生型步进式直线驱动器的研究.机器人, 1994: 140-143
    21安辉.压电陶瓷驱动六自由度并联微动机器人的研究. [哈尔滨工业大学工学博士学位论文].1995: 63-76
    22毕树生,王守杰,宗光华.串并联微动机构的运动学分析.机器人, 1997, 19(4): 259-264
    23熊光明,赵涛,龚建伟等.服务机器人发展综述及若干问题探讨.机床与液压, 2007, 35(3): 212-215
    24肖雄军,蔡自兴.服务机器人的发展.自动化博览, 2004, 21(6): 10-13
    25马骏骑.服务机器人.昆明理工大学学报, 1997, 22(3): 32-36
    26 http://www. takanishi.mech.waseda.ac.jp/research/parallel/index.htm
    27 http://www.arting365.com/htmldata/2005_08/25/27/article_9420_1.html
    28 L. W. Tsai. The Enumeration of a Class of Three-DoF Parallel Manipulators. The Tenth World Congress on The Theory of Machines and Mechanisms, Finland, 1999: 1123-1126
    29 J. M. Hervé, F. Sparacino. Structural Synthesis of Parallel Robots Generating Spatial Translation. 5th IEEE Int. Conference on Advanced Robotics, 1991, Pisa: 808-813
    30 M. Karouia, J. M. Hervé. A Three-DoF Tripod for Generating Spherical Rotation. J. Lenar?i? and M. M. Stani?i?, Advances in Robot Kinematics, Kluwer Academic Publishers, 2000: 395-402
    31 M. Karouia, J. M. Hervé. A Family of Novel Orientational 3-DoF Parallel Robots. Ro. Man. Sy 2002, 14th CISM-IFToMM Symposium, Udine, Italy, 2002: 359-368
    32 F. Pierrot, O. Company. H4: A New Family of 4-DoF Parallel Robots, Proceedings of IEEE/ASM- E International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, 1999: 508-513
    33 D. Zlatanov, C. M. Gosselin. A New Parallel Architecture with Four Degrees of Freedom, Proceedings of The 2nd workshop on Computational Kinematics, Seoul, 2001: 57-66
    34 M. K. Lee, K. W. Park. Kinematics and Dynamics Analysis of A Double Parallel Manipulator for Enlarging Workspace and Avoiding Singularities, IEEE Transaction on Robotics and Automation, 1999, 15(6): 1024-1034
    35 Z. Huang, Y. F. Fang. Kinematic Characteristics Analysis of 3-DoF in-Parallel Actuated Pyramid Mechanisms. Mechanism and Machine Theory, 1996, 31(8): 1009-1018
    36黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社, 1997: 188
    37黄真,赵铁石,李秦川.空间少自由度并联机器人机构的基础综合理论.第一届国际机械工程学术会议,上海, 2000, No.020215
    38赵铁石.空间少自由度并联机器人机构分析与综合的理论研究. [燕山大学工学博士论文]. 2000: 1-17
    39赵铁石,黄真.欠秩空间并联机构机器人输入选取的理论和应用.机械工程学报, 2000, 36(10): 81-85
    40 Q. Jin, T. L. Yang, A. X. Liu. Structure Synthesis of A Class of Five-DoF (Three Translation and Two Rotation) Parallel Robot Mechanisms Based on Single-Opened-Chain Units, Proceedings of ASME Design Engineering Technical Conferences, Pisttsburgh, 2001: DETC/DAC-21153
    41 Z. Huang, Q. C. Li. General Methodology for Type Synthesis of Lower-Mobility Symmetrical Parallel Manipulators and Several Novel manipulators, The International Journal of Robotics Research, 2002, 21(2): 131-145
    42 X. W. Kong, C. M. Gosselin. Type Synthesis of Linear Translational Parallel Manipulators, Proceedings of Advances in Robot Kinematics, Spain, 2002: 453-462
    43 X. W. Kong, C. M. Gosselin. Type Synthesis of 3-DOF Spherical Parallel Manipulators Based on Screw Theory, Proceedings of ASME Design Engineering Technical Conferences, Montreal, Canada, 2002: MECH-34259
    44 Z. Huang, Q. C. Li. Some Novel Lower-Mobility Parallel Mechanisms, Proceedings of ASME Design Engineering Technical Conferences, Montreal, Canada, 2002: MECH-34299
    45 Y. F. Fang, L. W. Tsai. Structure Synthesis of a Class of 4-DoF and 5-DoF Parallel Manipulators with Identical Limb Structures, The International Journal of Robotics Research, 2002, 21(9): 799-810
    46 L. W. Tsai. The Enumeration of a Class of Three-DOF Parallel Manipulators, Proceedings of The
    10th World Congress on the Theory of Machines and Mechanisms, Finland, 1999: 1123-1126
    47 Q. C. Li, Z. Huang, J. M. Hervé. Type Synthesis of 3R2T 5-DoF Parallel Manipulators Using the Lie Group of Displacements. IEEE Transactions on Robotics and Automation, 2004, 20(2): 173-180
    48朱思俊.少自由度并联机构运动学及五自由度并联机构相关理论. [燕山大学工学博士论文]. 2007: 1-16, 96-97
    49杨廷力.机械系统基本理论:结构学运动学动力学.北京:机械工业出版社, 1996: 401-405
    50杨廷力,金琼,刘安心等.基于单开链单元的三平移并联机器人机构型综合及分类.江苏石油化工学院学报, 2000, 12(4): 35-38
    51杨廷力,金琼,刘安心等.基于单开链单元的欠秩并联机器人机构型综合的一般方法.机械科学与技术, 2001, 20(3): 321-325
    52金琼,杨廷力,刘安心等.基于单开链单元的三平移一转动并联机器人机构型综合及机构分类.中国机械工程, 2001, 12(9): 1038-1043
    53杨廷力,金琼,刘安心等.基于单开链单元的三平移并联机器人机构型综合及其分类.机械工程学报, 2002, 38(8): 31-36
    54 Q. Jin, T. L. Yang. Synthesis and Analysis of a Group of 3-Degree-of-Freedom Decoupling Parallel Manipulators. ASME Design Engineering Technical Conferences, Montreal, 2002: MECH-34240
    55杨廷力.机器人机构拓扑结构学.北京:机械工业出版社, 2004: 10-14
    56 F. Gao, W. M. Li, X. C. Zhao, et al. New Kinematic Structures for 2-, 3-, 4-, and 5-DOF Parallel Manipulator Designs. Mechanism and Machine Theory, 2002, 37(11): 1395-1411
    57 D. E. Whitney. The Mathematics of Coordinated Control of Prosthetic Arms and Manipulators. Journal of Dynamic Systems, Measurement and Control Trans, 1972, 94(4): 303-330
    58 K. H. Hunt. Structural Kinematic of in-Parallel-Actuated Robot Arms, Journal of Mechanisms, Transmissions and Automation in Design, 1983, 105: 705-712
    59 E. F. Fichter. A Stewart Platform-Based Manipulator: General Theory and Practical Construction, The International Journal of Robotics Research, 1986, 5(2): 157-182
    60黄真,曲义远.空间并联多环机构的特殊位形分析,第五届全国机构学学术讨论会论文集,庐山, 1987: 1-7
    61曲义远,黄真.空间六自由度多回路机构位置的三维搜索方法.机器人, 1989, 89(5): 25-29
    62 J. P. Merlet. Parallel Manipulators Part 2: Singular Configurations and Grassmann Geometry. Technology report. INRIA, Sophia Antipols, France, 1988: 66-70
    63 J. P. Merlet. Singular Configurations of Parallel Manipulators and Grassmann Geometry, International Journal of Robotics Research, 1989, 8(5): 45-56
    64 J. P. Merlet. Singular Configurations and Direct Kinematics of A New Parallel Manipulator. Proceedings of IEEE International Conference on Robotics and Automation, Nice, France, 1992: 320-325
    65 J. P. Merlet. On the Infinitesimal Motion of A Parallel Manipulator in Singular Configuration, Proceedings of IEEE International Conference on Robotics and Automation, Nice, France, 1992: 338-343
    66 C. L. Collins, J. M. MeCarthy. The Singularity Loci of Two Triangular Parallel Manipulators, Proceedings of IEEE 8th International Conference on Advanced Robotics, Monterey, USA, 1997: 473-478
    67 B. Monsarrat, C. M. Gosselin. Singularity Analysis of A Three-Leg Six-Degree-of-Freedom Parallel Platform Mechanism Based on Grassmann Line Geometry, The International Journal of Robotics Research, 2001, 20(4): 312-326
    68 D. A. Kumar, I. M. Chen, Y. S. Huat. Singularity-Free Path Planning of Parallel Manipulators Using Clustering Algorithm and Line Geometry, Proceedings of IEEE International Conference on Robotics and Automation, Taiwan, P. R. China, 2003: 761-766
    69 W. Alon, O. Erika, S. Moshe. Application of Line Geometry and Linear Complex Approximation to Singularity Analysis of the 3-DoF CaPaMan Parallel Manipulator, Mechanism and Machine Theory, 2004, 39(1): 75-95
    70 P. Ben-Horin, M. Shoham. Singularity Analysis of A Class of Parallel Robots Based on Grassmann-Cayley Algebra, Mechanism and Machine Theory, 2006, 41(8): 958-970
    71 Z. Huang, Y. S. Zhao, J. Wang. Kinematic Principle and Geometrical Condition of General-Linear-Complex Special Configuration of Parallel Manipulators, Mechanism and Machine Theory, 1999, 34(8): 1171-1186
    72黄真,杜雄. 3/6-SPT型Stewart机器人的一般线性丛奇异分析.中国机械工程, 1999, 10(9): 997-1000
    73 Z. Huang, L. H. Chen. Singularity Principle and Distribution of 6-3 Stewart Parallel Manipulator, Proceedings of ASME Design Engineering Technical Conferences, Montreal, Canada, 2002: MECH-34237
    74 Z. Huang, L. H. Chen, Y. W. Li. The Singularity Principle and Property of Stewart Parallel Manipulator, Journal of Robotic System, 2003, 20(4): 163-176
    75 Y. W. Li, Z. Huang, L. H. Chen. Singularity Loci Analysis of 3/6-Stewart Manipulator by Singularity-Equivalent Mechanism. Proceedings of IEEE International Conference on Robotics and Automation, Taiwan, 2003(2): 1881-1886
    76李艳文.几类空间并联机器人的奇异研究. [燕山大学工学博士学位论文]. 2005: 1-10
    77曹毅.六自由度并联机器人奇异位形的研究. [燕山大学工学博士学位论文]. 2005: 1-9
    78 J. Gallardo-Alvarado, J. M. Rico-Martinez, G. Alici. Kinematics and Singularity Analyses of A4-dof Parallel Manipulator Using Screw Theory, Mechanism and Machine Theory, 2006, 41(9): 1048-1061
    79 C. M. Gosselin, J. Angeles. Singularity Analysis of Closed-Loop Kinematic Chains, IEEE Trasactions on Robotics and Automation, 1990, 6(3): 281-290
    80 J. Sefrioui, C. M. Gosselin. Singularity Analysis and Representation of Planar Parallel Manipulators. Robotics and Autonomous System, 1992, (10): 209-224
    81 J. Sefrioui, C. M. Gosselin. On the Quadratic Nature of the Singularity Curves of Planar Three-degree-of-freedom Parallel Manipulators, Mechanism and Machine Theory, 1995, 30(4): 533-551
    82 C. M. Gosselin. Kinematic and Static Analysis of A Planar Two-degree-of-freedom Parallel Manipulator. Mechanism and Machine Theory, 1996, 31(2): 149-160
    83 J. Wang, C. M. Gosselin. Singularity Loci of a Special Class of Spherical 3-DOF Parallel Mechanisms with Prismatic Actuators. Journal of Mechanical Design, 2004, (126): 319-326
    84 H. Li, C. M. Gosselin, M. J. Richard. Determination of Maximal Singularity-free Zones in the Workspace of Planar Three-degree-of-freedom Parallel Mechanisms, Mechanism and Machine Theory, 2006, 41(10): 1157-1167
    85 H. R. Mohammadi Daniali, P. J. Zsombor-Murray, J. Angeles. Singularity Analysis of Planar Parallel Manipulators, Mechanism and Machine Theory, 1995, 30(5): 665-678
    86 J. G. Wang, C. M. Gosselin. Kinematic Analysis and Singularity Loci of Spatial Four-Degree-of- Freedom Parallel Manipulators, Proceedings of ASME Design Engineering Technic al Conferences, California, USA, 1996: MECH-1006
    87 J. G. Wang, C. M. Gosselin. Kinematic Analysis and Singularity Representation of Spatial Five- Degree-of-Freedom Parallel Mechanisms, Journal of Robotic Systems, 1997, 14(12): 851-869
    88 B. M. St-Onge, C. M. Gosselin. Singularity Analysis and Representation of the General Gough- Stewart Platform, The International Journal of Robotics Research, 2000, 19(3): 271-288
    89 H. D. Li, C. M. Gosselin, J. R. Marc. Analytic Form of the Six-Dimensional Singularity Locus of the General Gough-Stewart Platform, Proceedings of ASME Design Engineering Technical Conferences, Utah, USA, 2004: MECH-57135
    90 M. L. Husty, P. Zsombor-Murry. A Special Type of Singular Stewart Gough Platform.Kluwer Academic Publishers, 1994: 439-449
    91 Ma, J. Angeles. Architecture Singularities of Platform Manipulators. Proceedings of IEEE International Conference of Robotics and Automation, Sacramento, California, 1991: 1542-1547
    92 Y. Takeda, H. Funabashi, Y. Sasaki. Analysis of Working Space and Motion Transmissibility of Spherical in Parallel Actuated Mechanism, ASME International Journal Series C, 1995, 39(1): 85-93
    93 G. Z. Wang. Singularity Analysis of A Class of the 6/6 Stewart Platforms, Proceedings of ASME Design Engineering Technical Conferences, Atlanta, USA, 1998: 389-401
    94 X. W. Kong. Generation of 6-SPS Parallel Manipulators, Proceedings of ASME Design Engineering Technical Conferences, Atlanta, USA, 1998: 431-440
    95 X. W. Kong, C. M. Gosselin. Uncertainty Singularity Analysis of Parallel Manipulators Based on the Instability Analysis of Structure, The International Journal of Robotics Research, 2001, 20(11): 847-856
    96 D. G. Raffaele. Forward Problem Singularities of Manipulators which Become PS-2RS or 2PS-RS Structures when the Actuators Are Locked, Proceedings of ASME Design Engineering Technical Conferences, Chicago, USA, 2003: DAC-48821
    97黄真.空间机构学.北京:机械工业出版社, 1991: 198-225
    98 H. Bruyninckx. Forward Kinematics for Hunt-Primrose Parallel Manipulators, Mechanism and Machine Theory, 1999, 34(4): 657-664
    99 R. D. Gregorio. Kinematics of the 3-UPU Wrist, Mechanism and Machine Theory, 2003, 38(3): 253-263
    100 M. Thomas, D. Tesar. Dynamic Modeling of Serial Mechanism Arms, Journal of Dynamic System Measure and Control, 1982, 104(9): 218-227
    101 Z. Huang. Modeling Formulation of Six-DOF Multi-Loop Parallel Manipulator: Part 1-Kinematic Influence Coefficients. Proceedings of 4th IFToMM International Symposium on Linkage and Computer Aided Design Methods. Bucharest, Romania, 1985: 155-162
    102 Z. Huang. Modeling Formulation of Six-DOF Multi-loop Parallel Manipulator Part-2: Dynamic Modeling and Example, Proceedings of 4th IFToMM International Symposium on Linkage and Computer Aided Design Methods, Bucharest, Romania, 1985: 163-170
    103 R. J. Schilling. Fundamentals of Robotics: Analysis and Control, NJ: Prentice-Hall, Englewoods, 1990: 101-123
    104 J. Yan, Z. Huang. Kinematical Analysis of Multi-loop Spatial Mechanism, Proceedings of 4th IFToMM International Symposium on Linkage and Computer Aided Design Methods, Bucharest, Romania, 1985, 13(4): 18-27
    105 S. A. Joshi, L.W. Tsai. Jacobian Analysis of Mobility-deficient Parallel Mechanisms, Proceedings of ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference, Montreal, Canada, 2002: MECH-34238
    106 Z. Huang, S. J. Zhu. Kinematic Analyses of 5-DOF 3-RCRR Parallel Mechanism. ASME 2005 DETC/CIE, September 24-28, 2005, Long Beach, California, USA, 2005: MECH-84462
    107 A. Hernández, O. Altuzarra, R. Avilés. Kinematic Analysis of Mechanisms via A Velocity Equation Based in A Geometric Matrix, Mechanism and Machine Theory, 2003, 38(12): 1413-1429
    108 Y. Lu. Using CAD Variation Geometry for Solving Velocity and Acceleration of Parallel Manipulators with 3-5 Linear Driving Limb, Journal of Mechanical Design, 2006, 128(4): 738-746
    109 D. J. Cox. The Dynamic Modeling and Command Signal Formulation for Parallel Multi-Parameter Robotic Devices. The Thesis Presented to the University of Florida, 1981: 23-35
    110 M. Thomas, H. C. Yuan-Chou, and D. Tesar. Optimal Actuator Sizing for Robotic Manipulators Based on Local Dynamic Criteria. Journal of Mecha., Trans., and Autom. In Design, 1985, 107(6): 163-169
    111 C. M. Gosselin, J. Sefrioui and M.J. Richard. On the Direct Kinematics of General Spherical 3-DOF Parallel Manipulator. Proc. of ASME Mech.Conf, 1992: 7-11
    112 C. M. Gosselin. On the Kniematic Design of Spherical 3-DOF Parallel Manipulators.Int.J. of Rob. Res, 1993, 12(4): 394-402
    113 C. M. Gosselin, S. Lemieux, and J. P. Merlet. A New Architecture of Planar Three-Degree-of- Freedom Parallel Manipulator. Proc. of 1996 IEEE: 3738-3743
    114 J. P. Merlet. Direct Kinematics of Planar Parallel Manipulators. Proc. of 1996 IEEE: 3744-3749
    115 H. R. M. Daniali, P. J. Zsombor-Muray, J. Angeles. Singularity Analysis of a General Class of Planar Parallel Manipulators. 1995 IEEE on Rob. & Auto: 1547-1542
    116 H.R.M. Daniali, P.J. Zsombor-Murray, J. Angles. The Isotropic Design of Two General Class of Planar Parallel Manipulators. Journal of Robotic Systems, 1995, 12(12): 795-805
    117 R. E. M. Ellis, Qin. Singular-Value and Finite-Element Analysis of Tactile Shape Recognition. 1994 IEEE: 2529-2535
    118 K. H. Hunt. Structural Kniematics of In-Parallel-Actuated Robot-Arms.J.of Mech. Trans. And Aut. In Des., 1983, 105: 705-712
    119 K. M. Lee, D.K. Shah. Kinematic Analysis of a Three-Degree-of Freedom In Parallel Actuated Manipulators. Proc. IEEE Int. Conf. Robotics and Automation,1987, 1: 345-350
    120 K. M. Lee, D. K. Shah. Kinematic Analysis of a Three-Degree-of Freedom in Parallel Actuated Manipulator. IEEE Journal of Robotics and Automation, 1988, 4(3): 354-360
    121 K. J. Waldron, M. Raghavan and B. Roth. Kinematics of a Hybrid Serial-Parallel Manipulation System. ASME J.of Dyn. Sys. Meas. And Cont, 1989, 111: 211-221
    122 G.. H. Pfreundschuh, T.G. Suger and V. Kumar. Design and Control of a 3-DOF In Parallel Actuated Manipulator. J. of Rob. Sys, 1994, 11(2): 103-115
    123 K. H. Lee, S. Arjuman. A 3-DOF Micro-motion In-Parallel Actuated Manipulator,IEEE Trans. on Robot and Automation, 1991, 7(5): 634-640
    124毕树生,宗光华,张体娟.并联微操作机构的研究与应用.高技术通讯, 2001, 19(2): 107-110
    125 S. M. Song, M. D. Zhang. A Study of Reactional Force Compensation Based on Three- Degree-of-Freedom Parallel Platforms. J. of Robotic System, 1995, 12(12): 783-794
    126 R. Clavel. A Fast Robot with Parallel Geometry. Proc. of the Int. Symp. on Industrial Rob., Switzerland, 1988: 91-100
    127 A. Codourey, R. Clavel, C. W. Burckhardt. Control Algorithm and Controller for The Direct Drive DELTA Robot, IFAC Robot Control, Vicnna, Austria, 1991: 543-549
    128 A. Codourey. Dynamic Modeling and Mass Matrix Evaluation of The DELTA Parallel Robot for Axes Decoupling Control, IEEE, 1996: 1211-1218
    129 S. A. Joshi, L. M. Tsai. The Kinematics of A Class of 3-DOF:4-Legged Parallel Manipulators. ASME design Engineering Technical Conferences, Montreal, 2002: MECH-34236
    130 S. A. Joshi, L. M. Tsai. Jacobian Analysis of Limited-DOF Parallel Manipulators. ASME design Engineering Technical Conferences, Montreal, 2002: MECH-34238
    131 H. S. Kim, L. M. Tsai. Design Optimization of A Cartesian Parallel Manipulators. ASME design Engineering Technical Conferences, Montreal, 2002: MECH-34301
    132 Z. Huang, Y. F. Fang. Motion Characteristics and Rotational Axis Analysis of 3-DOF ParallelRobot Mechanisms. Proc. of IEEE Int. Conf. on Sys Man and Cyb. Vancouver, 1995, 1: 67-71
    133 Z. Huang, W.S. Tao and Y. F. Fang. Study on the Kinematic Characteristics of 3 DOF In-Parallel Actuated Platform Mechanisms. Mechanism and Machine Theory, 1996, 31(8): 999-1007
    134 Fang Y. F., Huang Z., Kinematics of a Three-degrees-of-Freedom In-parallel Actuated Manipulator Mechanism, Mechanism and Machine Theory, 1997, 32(7): 789-796
    135 R. S. Ball. The Theory of Screws. England:Cambridge University Press, 1900: 5-12
    136 K.H. Hunt. Kinematic Geometry of Mechanisms. Oxford: Claredon Press, 1978: 331-372
    137 J. R. Phillips. Freedom in Machinery. Cambridge University Press, 1990: 78-90
    138 Gibson, C. G., Hunt, K. H. Geometry of Screw Systems-1 Crews Genesis and Geometry. Mechanism and Machine Theory, 1990, 25(1): 1-10
    139 Gibson, C. G., Hunt, K. H. Geometry of Screw Systems-2 Classification of Screw Systems. Mechanism and Machine Theory, 1990, 25(1): 11-27
    140 Parkin, j. A. Co-ordinate Transformations of Screws with Applications to Screw Systems and Finite Twists. Mechanism and Machine Theory, 1990, 25: 689-699
    141 Martinez, J. M. R. and Duffy, J. Orthogonal Spaces and Screw Systems, Mechanism and Machine Theory, 1992, 27: 451-458
    142 Martinez, J. M. R, Duffy, J. Classification of Screw SystemsⅠOne - and Two - Systems. Mechanism and Machine Theory, 1992, 27: 459-470
    143 Martinez, J. M. R, Duffy, J. Classification of Screw SystemsⅡThree - Systems. Mechanism and Machine Theory, 1992, 27: 471-490
    144 Tsai, M. J. and Lee H. W. On the Special Bases of Two-and-Three Screw Systems. Trans. of the ASME, 1993, 115: 540-546
    145张文祥.螺旋二系的代数法研究.机械工程学报. 1996, 32(4): 83-89
    146张文祥.螺旋三系的代数构造.机械工程学报, 1997, 33(5): 25-30
    147 Zhang W X., Xu Z C. Algebraic Construction of the Three-System of Screws. Mechanism and Machine Theory. 1998, 33(7): 925-930
    148方跃法.少自由度并联机器人运动学特性研究. [博士后论文].燕山大学. 1996: 34-37
    149方跃法,黄真.三阶螺旋系主螺旋识别的解析方法.机械工程学报. 1997, 33(6): 8-12
    150王晶.欠秩三自由度并联机构瞬时运动的主螺旋分析. [燕山大学工学博士学位论文]. 2000: 1-15, 101-102
    151 Huang Z., Wang J.,“Kinematics of 3-DoF pyramid manipulator by principal screws,”Proc. of 2000 ASME DETC/MECH-14061
    152 Huang Z., Wang J.. Identification of principal screws of 3-DoF parallel manipulators by quadric degeneration. Mechanism and Machine Theory, 2001, 36(8): 893-911
    153 Huang Z., Wang J., Fang Y. F. Analysis of Instantaneous Motions of Deficient-Rank 3-RPS Parallel Manipulators. Mechanism and Machine Theory, 2002, 37(2): 229-240
    154 Wang J., Huang Z., Gosselin C. M. Analysis of the Kinematic Characteristics of 3-DOF Mechanisms. Proceedings of the 11th World Congress in Mechanism and Machine Science, ,. Tianjin, China, August, 2003: 153-157
    155李仕华.几种空间少自由度并联机器人机构分析与综合的理论研究. [燕山大学工学博士学位论文]. 2004: 71-102
    156黄真,赵永生,赵铁石.高等空间机构学,北京:高等教育出版社, 2006: 49-236
    157 L. W. Tsai. Multi-degree-of Freedom Mechanisms for Machine Tools and The Like. U. S. Patent Pending, 1995, No. 08/415, 851
    158 L. W. Tsai. G. C. Walsh and R. E. Stamper. Kinematics of a Novel Three DOF Translational Platform. Proc. of Int. Conf. on Robotics and Automation. Minneapolis. Minnesota. April. 1996: 3346-3451
    159邹豪,王启义.并联机器人机床运动学正、逆解.东北大学学报(自然科学版), 1997, 18(4): 421-425
    160孔宪文.用连续法进行3-RPS并联机器人机构的位置正解.机械科学与技术, 1998, (1): 56-60
    161 C. W. Wampler, et al. Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics. ASME Journal of Mechanical Design, 1990, 112(1): 59~68
    162孔宪文,杨廷力.在复数域内进行平面机构的特殊位形分析.机械科学与技术, 1997, (3): 312-313
    163孔宪文,杨廷力.空间两弹簧系统的力逆解.机械科学与技术, 1997, (4): 392-394
    164孔宪文,黄真.3-RPS控制位置用并联机器人机构的位置反解.机械科学与技术, 1999, 18(3): 424-426
    165文福安,梁崇高,廖启征.并联机器人机构位置正解.中国机械工程, 1999, 10(9): 1011-1013
    166 J. E. Nethcry, M. W. Spong. Robotic: a Mathematic package for robot analysis. IEEE Robotic Automn Mag, 1994: 13-20
    167 D. Surdilovic. E. Lizama, J. Kirchhof. A toolbox for simulation of robotic systems. E. Breitenecker. I. Husinsky. EUROSIM’95 Simulation Congress, Vienna, Elsevier, Oxford. 1995: 693-698
    168 Vladimir Mostyn, Jiri Skarupa. Improving Mechanical Model Accuracy for Simulation Purposes. Mechatronics. 2004. 14: 777–787
    169薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用.北京:清华大学出版社, 2002: 192-249
    170 R. E. Stamper, L. W. Tsai and G.. C. Walsh. Optimization of a Three DoF Translational Platform for Well-Conditioned Workspace. IEEE International Conference on Robotics and Automation, Albuquerque, 1997: 3250-3255
    171 L. W. Tsai. Kinematics of a Three-DOF Platform With Extensible Limbs. J. Lenar?i? and V. Parenti-Castelli. Recent Advances in Robot Kinematics, Kluwer Academic Publishers, 1996: 401-410
    172 R. D. Gregorio. Closed-Form Solution of the Position Analysis of the Pure Translational 3-RUU Parallel Mechanism. the 8th Symposium on Mechanisms and Mechanical Transmissions, 2000, Timisoara: 119-124
    173 X. W. Kong, C. M. Gosselin. A Class of 3-DOF Translational Parallel Manipulators with Linear Input-Output Equations. Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Montreal, 2002: 25-32
    174 M. Carricato, V. Parenti-Castelli. Singularity-Free Fully-Isotropic Translational Parallel Mechanisms. International Journal of Robotics Research, 2002, 21(2): 161-174
    175 H. Asada, C. Granito. Kinematic and Static Characterization of Wrist Joints and Their Optimal Design. IEEE International Conference on Robotics and Automation, St Louis, 1985: 244-250
    176 C. M. Gosselin, J. Angeles. The Optimum Kinemaic Design of a Spherical 3-dof Parallel Manipulator. ASME Journal of Mechanisms, Transmissions and Automation in Design, 1989, 111(2): 202-207
    177 C. M. Gosselin, E. St-Pierre. Development and Experimentation of a Fast 3-dof Camara-Orienting Device. The International Journal of Robotics Research, 1997, 16(5): 619-630
    178 C. M. Gosselin, L. Perreault and Ch. Vaillancourt. Simulation and Computer-Aided Kinematic Design of Three-Degree-of Freedom Spherical Parallel Manipulators. Journal of Robotic Systems,1995, 12(12): 857-869
    179 C. M. Gosselin, J. Sefrioui and M. J. Richard. On the Direct Kinematics of Spherical Three-Degree-of-Freedom Parallel Manipulators with a Coplanar Platform. ASME Journal of Mechanical Design, 1994, 116(2): 587-593
    180 R. Di Gregorio. Kinematics of a New Spherical Parallel Manipulator with Three Equal Legs: the 3-URC Wrist. Journal of Robotic Systems, 2001, 18(5): 213-219
    181 R. Di Gregorio. The 3-RRS wrist: a New, Very Simple and not Overconstrained Spherical Parallel Manipulator. ASME Design Engineering Technical Conferences, Montreal, 2002: MECH-34344
    182 Rudolf A. Beyer. The Kinematic Synthesis of Mechanisms, Mcgraw Hill Book Company, Inc. New York San Francisco, 1963: 50-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700