用户名: 密码: 验证码:
小麦应答农杆菌转化相关基因的筛选及TaUGT在小麦与农杆菌互作过程中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是目前世界上主要的粮食作物之一,小麦的产量与品质直接关系到粮食安全。转基因技术是目前小麦基因改良的重要方法之,其效率高低直接影响小麦遗传改良进程。备受关注的小麦基因枪转化法容易引发转基因高嵌合度、多位点整合及诱发转基因沉默等问题,农杆菌介导转化法则可很好地解决或缓解上述问题,但农杆菌介导转化小麦的效率亟待提高。本研究从小麦与农杆菌互作的分子机制出发,探索影响农杆菌介导转化小麦转化效率的功能基因,取得了如下主要结果:
     1、利用抑制性差减杂交、蛋白质组学、数字化表达谱测序来筛选小麦对农杆菌侵染的应答基因,分别得到20、90和4,889个差异表达基因。其中,数字化表达谱测序灵敏度最高。差别基因聚类分析表明,参与物质代谢途径的基因所占比例最大,其次是次生代谢物质合成通路。其中,超过3%的差异表达基因参与到目前已经明确的植物-病原体互作通路,而在生物素合成通路、花生四烯酸代谢通路、光合作用生物通路差异表达基因定位最少。
     2、KEGG通路分析表明,小麦UDP葡萄糖基转移酶(TaUGT)编码基因主要参与抗坏血酸代谢通路和药物代谢-细胞色素P450通路。而这两条通路都与植物抗病相关。Real-time PCR分析显示,TaUGT在小麦受到农杆菌侵染12小时后,表达量大幅上调,并随着共培养时间延伸而逐渐下降。表明该基因是在农杆菌侵染小麦细胞的初期起了较重要的调控作用。
     3、基因结构分析表明,TaUGT为真核生物中少见的不存在内含子的核编码功能基因之一,与二倍体祖先种的同源性极高,进化上十分保守。经Southern杂交分析及将TaUGT基因序列向GrainGenes数据库的已定位小麦EST数据库进行blastn比对,推测TaUGT在小麦基因组中存在9个拷贝,在A、B、D基因组上各存在3个拷贝。亚细胞定位显示,TaUGT定位在细胞膜上,可跨膜发挥功能。
     4、TaUGT功能分析发现,过表达TaUGT的拟南芥及小麦幼胚,农杆菌介导的GUS基因瞬时表达能力明显降低。电镜观察结果表明,过表达TaUGT后减少了农杆菌在小麦幼胚细胞表面附着的数量。利用农杆菌介导再次转化过表达TaUGT的烟草植株,转化效率明显降低。利用基因枪介导抑制小麦成熟胚愈伤组织中TaUGT的表达,增加了农杆菌侵染后小麦成熟胚愈伤组织的分化能力,但没有提高最终转化率。此外,体外真核表达的TaUGT并不影响农杆菌的生长。
     综上所述,很多参与小麦正常代谢途径的基因都与小麦防御农杆菌侵染有关。TaUGT在农杆菌对小麦的侵染阶段,从农杆菌吸附小麦细胞表面到T-DNA转入小麦细胞的过程中调节小麦对农杆菌的防御反应。
Wheat is one of most important food crops worldwide, which yield and qulity affects the foodsecurity directly. Genetically modified (GM) technology is of great significance to wheat geneticalimprovement. A common limitation in wheat biotechnological breeding is the low transformationefficiency. Remarkably, gene gun-mediated transformation in wheat often triggers many seriousproblems like high degree of chimeric, multiple integration sites for foreign genes, and transgenesilencing. Howerver, Agrobacterium-mediated transformation can effectively avoid or alleviate thesedrawbacks. Still, Agrobacterium-mediated transformation efficiency in wheat needs to be improved.This study intends to screen and characterize the genes responsible for the transformation efficiencyfrom the view of molecular mechanisms underlying the interactions between wheat andAgrobacterium cells during their co-cultivation. The main results achieved in this study were asfollows:
     1. According to the results of suppression subtractive hybridization (SSH), proteomics andRNA-seq,20,90, and4,889differential expressed genes were got in response to the Agrobacteriuminfection in wheat, respectively. Of the three methods above, RNA-seq is the most effective, accurate,and suitable for screening differential transcripts on the whole. Based on clustering analysis, most ofthe differential transcripts were involved in metabolic pathways; the second is in secondarymetabolism. Of those,3%participated in plant-pathogenic interaction pathway known so far.However, few were found in biotin synthesis pathway, arachidonic acid metabolism pathway, andphotosynthesis pathway.
     2. KEGG pathway analysis indicated that wheat UDP-glucosyltransferase encoded gene (TaUGT)was mainly involved in ascorbic acid metabolic pathway and drug metabolism-cytochrome P450pathway. And these two pathways were related to the process of plant disease resistance. qRT-PCRshowed the expression of TaUGT upregulated at12h after Agrobacterium infection and decreasedgradually following the time span of co-culture in wheat. It inferred that TaUGT played a regulatingfactor in the initial stage of infection by Agrobacterium.
     3. Structural analysis revealed that TaUGT in wheat was representative of those nuclear encodedwithout intron available in eukaryote, which showed high identity with its wild relative-orginatedspecies in evolution. Inferiring that there are nine copies were present in wheat genome based onSouthern blot analysis and the wheat mapped expression sequence tags (EST) in GrainGenes database.And each three copies are located on genome A, B, and D of wheat, respectively. Furthermore,according to the result of subcellular localization, TaUGT located on cytomembrane and function wellthrough transmembrane.
     4. Functional identification of TaUGT showed that overexpression of TaUGT inhibited transientexpression of GUS in Arabidopsis and wheat after Agrobacterium infection, reduced theAgrobacterium population attaching to the surface of wheat cells, and decreased the Agrobacterium mediated transformation efficiency in tobacco. On ther other hand, inhibition of TaUGT expressioncan increase the amount of regeneration seedlings but not the transformation efficiency in theAgrobacterium mediated transformation using wheat mature embryo derived callus as target tissues.Besides, in vitro eukaryotic expression of TaUGT had no effect on the growth of Agrobacterium.
     In conclusion, many genes involved in wheat normal metabolism pathway all showed highrelevance to the resistance to Agrobacterium infection in wheat. TaUGT played a defensive role in theprocess of Agrobacterium infection before T-DNA integrating into genomic DNA of wheat.
引文
1.董金皋,韩建民.植物与病原物互作中的活性氧代谢及其作用.沈阳农业大学学报,2000.31(5):427-431.
    2.顾之中,江绍玫,熊友发,龚学明,傅世耀.水稻愈伤组织发生褐变的影响因素研究.江西农业大学学报,1992.14(3):206-211.
    3.韩德俊,袁本威,胡甘,陈耀锋,李振岐.农杆菌介导的油菜遗传转化研究进展.西北农林科技大学学报,2005.33(11):18-22.
    4.冀瑞琴,宋倩,辛喜凤,周雪,冯辉.抑制差减杂交法研究复等位基因遗传的大白菜核雄性不育分子机制.中国农学通报,2011.27(22):167-171.
    5.林凡云,陆琼娴,徐剑宏,史建荣.两个与盐和赤霉病菌胁迫相关的小麦糖基转移酶基因的克隆与表达.遗传,2008.30(12):1608-1614.
    6.刘峰,刘贯山,张芊,王卫锋,丁昌敏,吕婧,路铁刚,王元英.烟草激活标签突变体库的创制和突变表型的初步鉴定.生物技术通报,2012.(10):180-185.
    7.卢合全,沈法富,刘凌霄,孙维方.植物蔗糖合成酶功能与分子生物学研究进展.中国农学通报,2005.21(7).34-37.
    8.马俊彦,杨汝德,敖利刚.植物苯丙氨酸解氨酶的生物学研究进展.现代食品科技,2007.23(7):71-75.
    9.欧阳学智,许耀,李宝健.小麦悬浮培养细胞与根癌农杆菌相互作用的亚显微生物学研究中山大学学报,1989.4:260-265.
    10.蒲志刚,王平,张志勇,蔡平钟,阎文昭,向跃武,张志雄.应用抑制差减杂交技术分离水稻早衰差异表达基因的初步研究.西南农业学报,2012.25(2):360-364.
    11.谭放军,徐泽安,尹文雅,丁杏芝. Harpin蛋白研究及其应用.湖南农业科学,2004.(6):38-40.
    12.田敏,饶龙兵,李纪元.植物细胞中的活性氧及其生理作用.植物生理学通讯,2005.41(2):235-241.
    13.王军,侯丙凯.植物小分子化合物的糖基化与糖基转移酶.植物生理学通讯,2008.44(5):997-1003.
    14.王利军,战吉成,黄卫东.水杨酸与植物抗逆性.植物生理学通讯,2002.38(6):619-624.
    15.王艳丽,叶兴国,刘艳鹏,杜丽璞,徐惠君.农杆菌敏感小麦基因型的筛选研究.麦类作物学报,2006.25(6):6-10.
    16.王永勤,张爱民.农杆菌介导的小麦遗传转化几个影响因素的研究.遗传学报,2002.29(3):260-265.
    17.严金平,杨华.泛素化修饰与植物免疫应答.生物技术通报,2011.(2):18-22.
    18.姚秋林,林拥军.一个水稻根时空差异表达启动子的克隆及功能分析.农业生物技术学报,2011.19(2):214-220.
    19.张彬,赵明,贾栋,高志强,马建军.小麦基因型对根癌农杆菌菌株敏感性研究.山西农业大学学报:自然科学版,2006.26(2):135-137.
    20.张国庆,廖杰,于力方.双向电泳技术在蛋白质组研究中的应用.标记免疫分析与临床,2003.10(3):171-173.
    21.张洪,丁可,裴国亮,郭军,康振生.小麦条锈菌胞质游离钙离子动态检测方法的建立.菌物学报,2010.29(1):64-67.
    22.赵东平,杨文钰,陈兴福.阿魏酸的研究进展.时珍国医国药,2008.19(8):1839-1841.
    23.赵翔宇,谢洪涛,陈祥彬,王帅帅,张宪省.小麦TaYAB2基因的过量表达造成转基因拟南芥叶片近轴面特征趋向远轴面.作物学报,2012.38(11):2042-2051.
    24.邹智.农杆菌vir基因诱导因子研究进展.中国生物工程杂志,2011.31(7):126-132.
    25. Aderem A., Ulevitch R. J. Toll-like receptors in the induction of the innate immune response.Nature,2000.406(6797):782-787.
    26. Altabe S., de Iannino N. I., De Mendoza D., Ugalde R. Expression of the Agrobacteriumtumefaciens chvB virulence region in Azospirillum spp. Journal of Bacteriology,1990.172(5):2563-2567.
    27. Anand A., Krichevsky A., Schornack S., Lahaye T., Tzfira T., Tang Y., Citovsky V., Mysore K. S.Arabidopsis VIRE2interacting protein2is required for Agrobacterium T-DNA integration inplants. The Plant Cell,2007.19(5):1695-1708.
    28. Asada K. Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants. PhysiologiaPlantarum,1992.85(2):235-241.
    29. Audic S., Claverie J.M. The significance of digital gene expression profiles. Genome Research,1997.7(10):986-995.
    30. Bako L., Umeda M., Tiburcio A. F., Schell J., Koncz C. The VirD2pilot protein ofAgrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclearprotein kinase in plants. Proceedings of the National Academy of Sciences,2003.100(17):10108-10113.
    31. Ballas N.,Citovsky V. Nuclear localization signal binding protein from Arabidopsis mediatesnuclear import of Agrobacterium VirD2protein. Proceedings of the National Academy ofSciences of the United States of America,1997.94(20):10723-10728.
    32. Benjamini Y., Yekutieli D. The control of the false discovery rate in multiple testing underdependency. Annals of Statistics,2001.29(4):1165-1188.
    33. Bhattacharya A., Sood P., Citovsky V. The roles of plant phenolics in defence andcommunication during Agrobacterium and Rhizobium infection. Molecular Plant Pathology,2010.11(5):705-719.
    34. Bińka A., Orczyk W., Nadolska-Orczyk A. The Agrobacterium-mediated transformation ofcommon wheat (Triticum aestivum L.) and triticale (x Triticosecale Wittmack): role of the binaryvector system and selection cassettes. Journal of Applied Genetics,2012.53(1):1-8.
    35. Blume B., Nürnberger T., Nass N., Scheel D. Receptor-mediated increase in cytoplasmic freecalcium required for activation of pathogen defense in parsley. The Plant Cell,2000.12(8):1425-1440.
    36. Bolwell G. P., Bindschedler L. V., Blee K. A., Butt V. S., Davies D. R., Gardner S. L., Gerrish C.,Minibayeva F. The apoplastic oxidative burst in response to biotic stress in plants: athree-component system. Journal of Experimental Botany,2002.53(372):1367-1376.
    37. Brencic A., Winans S. C. Detection of and response to signals involved in host-microbeinteractions by plant-associated bacteria. Microbiology and Molecular Biology Reviews,2005.69(1):155-194.
    38. Cangelosi G., Martinetti G., Leigh J. A., Lee C.C., Theines C., Nester E. Role for Agrobacteriumtumefaciens ChvA protein in export of beta-1,2-glucan. Journal of Bacteriology,1989.171(3):1609-1615.
    39. Chen I., Christie P. J., Dubnau D. The ins and outs of DNA transfer in bacteria. Science,2005.310(5753):1456-1460.
    40. Cheng G. W., Breen P. J. Activity of phenylalanine ammonia-lyase (PAL) and concentrations ofanthocyanins and phenolics in developing strawberry fruit. Journal of the American Society forHorticultural Science,1991.116(5):865-869.
    41. Cheng M., Fry J. E., Pang S., Zhou H., Hironaka C. M., Duncan D. R., Conner T. W., Wan Y.Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology,1997.115(3):971-980.
    42. Cheng M., Fry Joyce E, Shengzhi P, Huaping Z, Hironaka Catherine M, Duncan David R,Conner Timothy W, Yuechun. W. Genetic transformation of wheat mediated by Agrobacteriumtumefaciens. Plant Physiology,1997.115(3):971-980.
    43. Chong J., Baltz R., Schmitt C., Beffa R., Fritig B., Saindrenan P. Downregulation of apathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletinglucoside accumulation, enhances oxidative stress, and weakens virus resistance. The Plant Cell,2002.14(5):1093-1107.
    44. Collinge D. B., Kragh K. M., Mikkelsen J. D., Nielsen K. K., Rasmussen U., Vad K. Plantchitinases. The Plant Journal,1993.3(1):31-40.
    45. D'Alessio J. M., Gerard G. F. Second-strand cDNA synthesis with E.coli DNA polymerase I andRNase H: the fate of information at the mRNA5' terminus and the effect of E.coli DNA ligase.Nucleic Acids Research,1988.16(5):1999-2014.
    46. Després C., Chubak C., Rochon A., Clark R., Bethune T., Desveaux D., Fobert P. R. TheArabidopsis NPR1disease resistance protein is a novel cofactor that confers redox regulation ofDNA binding activity to the basic domain/leucine zipper transcription factor TGA1. The PlantCell,2003.15(9):2181-2191.
    47. Diatchenko L., Lau Y., Campbell A. P., Chenchik A., Moqadam F., Huang B., Lukyanov S.,Lukyanov K., Gurskaya N., Sverdlov E. D. Suppression subtractive hybridization: a method forgenerating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings ofthe National Academy of Sciences of the United States of America,1996.93(12):6025-6030.
    48. Ditt R. F., Kerr K. F., de Figueiredo P., Delrow J., Comai L., Nester E. W. The Arabidopsisthaliana transcriptome in response to Agrobacterium tumefaciens. Molecular Plant-MicrobeInteractions,2006.19(6):665-681.
    49. Ditt R. F., Nester E. W., Comai L. Plant gene expression response to Agrobacterium tumefaciens.Proceedings of the National Academy of Sciences of the United States of America,2001.98(19):10954-10959.
    50. Djamei A., Pitzschke A., Nakagami H., Rajh I., Hirt H. Trojan horse strategy in Agrobacteriumtransformation: abusing MAPK defense signaling. Science,2007.318(5849):453-456.
    51. Edelmann M. J., Kessler B. M. Ubiquitin and ubiquitin-like specific proteases targeted byinfectious pathogens: Emerging patterns and molecular principles. Biochimica et BiophysicaActa-Molecular Basis of Disease,2008.1782(12):809-816.
    52. Falk A., Feys B. J., Frost L. N., Jones J. D., Daniels M. J., Parker J. E. EDS1, an essentialcomponent of R gene-mediated disease resistance in Arabidopsis has homology to eukaryoticlipases. Proceedings of the National Academy of Sciences of the United States of America,1999.96(6):3292-3297.
    53. Felix G., Duran J. D., Volko S., Boller T. Plants have a sensitive perception system for the mostconserved domain of bacterial flagellin. The Plant Journal,1999.18(3):265-276.
    54. Fellbrich G., Blume B., Brunner F., Hirt H., Kroj T., Ligterink W., Romanski A., Nürnberger T.Phytophthora parasitica elicitor-induced reactions in cells of Petroselinum crispum. Plant andCell Physiology,2000.41(6):692-701.
    55. Finer K.R, Finer J.J. Use of Agrobacterium expressing green fluorescent protein to evaluatecolonization of sonication-assisted Agrobacterium-mediated transformation-treated soybeancotyledons. Letters in Applied Microbiology,2000.30(5):406-410.
    56. Fujita M., Fujita Y., Noutoshi Y., Takahashi F., Narusaka Y., Yamaguchi-Shinozaki K., ShinozakiK. Crosstalk between abiotic and biotic stress responses: a current view from the points ofconvergence in the stress signaling networks. Current Opinion in Plant Biology,2006.9(4):436-442.
    57. Gao R.,Lynn D. G. Environmental pH sensing: resolving the VirA/VirG two-component systeminputs for Agrobacterium pathogenesis. Journal of Bacteriology,2005.187(6):2182-2189.
    58. Gao L., Wang A., Li X., Dong K., Wang K., Appels R., Ma W.,Yan Y. Wheat quality relateddifferential expressions of albumins and globulins revealed by two-dimensional difference gelelectrophoresis (2-D DIGE). Journal of Proteomics,2009.73(2):279-296.
    59. Gaspar Y.M., Nam J., Schultz C.J., Lee L.Y., Gilson P.R., Gelvin S.B., Bacic A. Characterizationof the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17mutant (rat1) that results in adecreased efficiency of Agrobacterium transformation. Plant Physiology,2004.135(4):2162-2171.
    60. Gelvin S.B. Agrobacterium-mediated plant transformation: the biology behind thegene-jockeying tool. Microbiology and Molecular Biology Reviews,2003.67(1):16-37.
    61. Gelvin S.B. Plant proteins involved in Agrobacterium-mediated genetic transformation. AnnualReview of Phytopathology,2010.48:45-68.
    62. Goodner B., Hinkle G., Gattung S., Miller N., Blanchard M., Qurollo B., Goldman B. S., Cao Y.,Askenazi M., Halling C. Genome sequence of the plant pathogen and biotechnology agentAgrobacterium tumefaciens C58. Science,2001.294(5550):2323-2328.
    63. Guo G., Ge P., Ma C., Li X., Lv D., Wang S., Ma W.,Yan Y. Comparative proteomic analysis ofsalt response proteins in seedling roots of two wheat varieties. Journal of Proteomics,2012.75(6):1867-1885.
    64. Guo M., Hou Q., Hew C. L., Pan S. Q. Agrobacterium VirD2-binding protein is involved intumorigenesis and redundantly encoded in conjugative transfer gene clusters. MolecularPlant-Microbe Interactions,2007.20(10):1201-1212.
    65. Guo M., Jin S., Sun D., Hew C. L., Pan S. Q. Recruitment of conjugative DNA transfer substrateto Agrobacterium type IV secretion apparatus. Proceedings of the National Academy of Sciencesof the United States of America,2007.104(50):20019-20024.
    66. Harwood W. A. Advances and remaining challenges in the transformation of barley and wheat.Journal of Experimental Botany,2012.63(5):1791-1798.
    67. Hichri I., Barrieu F., Bogs J., Kappel C., Delrot S., Lauvergeat V. Recent advances in thetranscriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany,2011.62(8):2465-2483.
    68. Hochstrasser M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation.Current Opinion in Cell Biology,1995.7(2):215-223.
    69. Hu T., Metz S., Chay C., Zhou H., Biest N., Chen G., Cheng M., Feng X., Radionenko M., Lu F.Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) usingglyphosate selection. Plant Cell Reports,2003.21(10):1010-1019.
    70. Hwang H. H., Gelvin S. B. Plant proteins that interact with VirB2, the Agrobacteriumtumefaciens pilin protein, mediate plant transformation. The Plant Cell,2004.16(11):3148-3167.
    71. Jabs T., Tsch pe M., Colling C., Hahlbrock K., Scheel D. Elicitor-stimulated ion fluxes andO2-from the oxidative burst are essential components in triggering defense gene activation andphytoalexin synthesis in parsley. Proceedings of the National Academy of Sciences of the UnitedStates of America,1997.94(9):4800-4805.
    72. Jiang H., Doerge R., Gelvin S. B. Transfer of T-DNA and Vir proteins to plant cells byAgrobacterium tumefaciens induces expression of host genes involved in mediatingtransformation and suppresses host defense gene expression. The Plant Journal,2003.35(2):219-236.
    73. Jin S., Roitsch T., Ankenbauer R., Gordon M., Nester E. The VirA protein of Agrobacteriumtumefaciens is autophosphorylated and is essential for vir gene regulation. Journal ofBacteriology,1990.172(2):525-530.
    74. Jirage D., Tootle T. L., Reuber T. L., Frost L. N., Feys B. J., Parker J. E., Ausubel F. M.,Glazebrook J. Arabidopsis thaliana PAD4encodes a lipase-like gene that is important forsalicylic acid signaling. Proceedings of the National Academy of Sciences of the United States ofAmerica,1999.96(23):13583-13588.
    75. Jones J.D., Dangl J.L. The plant immune system. Nature,2006.444(7117):323-329.
    76. Kanehisa M., Araki M., Goto S., Hattori M., Hirakawa M., Itoh M., Katayama T., Kawashima S.,Okuda S., Tokimatsu T. KEGG for linking genomes to life and the environment. Nucleic AcidsResearch,2008.36(Database issue): D480-D484.
    77. Kasprzewska A. Plant chitinases-regulation and function. Cellular and Molecular Biology Letters,2003.8(3):809-824.
    78. Khanna H.K., Daggard G. Agrobacterium tumefaciens-mediated transformation of wheat using asuperbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Reports,2003.21(5):429-436.
    79. Khanna H.K., Paul J.Y., Harding R.M., Dickman M.B., Dale J.L. Inhibition ofAgrobacterium-induced cell death by antiapoptotic gene expression leads to very hightransformation efficiency of banana. Molecular Plant-Microbe Interactions,2007.20(9):1048-1054.
    80. Kim M. C., Panstruga R., Elliott C., Müller J., Devoto A., Yoon H. W., Park H. C., Cho M. J.,Schulze-Lefert P. Calmodulin interacts with MLO protein to regulate defence against mildew inbarley. Nature,2002.416(6879):447-451.
    81. Kovalsky Paris M. P., Schweiger W., Hametner C., Stückler R., Muehlbauer G., Varga E., KrskaR., Berthiller F.,Adam G. Zearalenone-16-O-Glucoside: A new masked mycotoxin. Journal ofAgricultural and Food Chemistry,2014.62(5):1181-1189
    82. Kopp E. B.,Medzhitov R. The Toll-receptor family and control of innate immunity. CurrentOpinion in Immunology,1999.11(1):13-18.
    83. Kumar D., Klessig D. F. High-affinity salicylic acid-binding protein2is required for plant innateimmunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academyof Sciences of the United States of America,2003.100(26):16101-16106.
    84. Kunkel B. N., Brooks D. M. Cross talk between signaling pathways in pathogen defense. CurrentOpinion in Plant Biology,2002.5(4):325-331.
    85. Lamb C., Dixon R. A. The oxidative burst in plant disease resistance. Annual Review of PlantBiology,1997.48(1):251-275.
    86. Laurie S., McKibbin R. S., Halford N. G. Antisense SNF-1related (SnRK1) protein kinase generepresses transient activity of an α-amylase (α-Amy2) gene promoter in cultured wheat embryos.Journal of Experimental Botany,2003.54(383):739-747.
    87. Lee J., Klessig D. F., Nürnberger T. A harpin binding site in tobacco plasma membranes mediatesactivation of the pathogenesis-related gene HIN1independent of extracellular calcium butdependent on mitogen-activated protein kinase activity. The Plant Cell,2001.13(5):1079-1093.
    88. Li J., Ye X., An B., Du L., Xu H. Genetic transformation of wheat: current status and futureprospects. Plant Biotechnology Reports,2012.6(3):183-193.
    89. Li J. L., Sulaiman M., Beckett R. P., Minibayeva F. V. Cell wall peroxidases in the liverwortDumortiera hirsuta are responsible for extracellular superoxide production, and can displaytyrosinase activity. Physiologia Plantarum,2010.138(4):474-484.
    90. Li R., Yu C., Li Y., Lam T.W., Yiu S.M., Kristiansen K., Wang J. SOAP2: an improved ultrafasttool for short read alignment. Bioinformatics,2009.25(15):1966-1967.
    91. Lim E. K., Bowles D. J. A class of plant glycosyltransferases involved in cellular homeostasis.The EMBO Journal,2004.23(15):2915-2922.
    92. Liu G., Sheng X., Greenshields D. L., Ogieglo A., Kaminskyj S., Selvaraj G., Wei Y. Profiling ofwheat class III peroxidase genes derived from powdery mildew-attacked epidermis revealsdistinct sequence-associated expression patterns. Molecular Plant-Microbe Interactions,2005.18(7):730-741.
    93. Ma L, Yi S., Cao A., Qi Z., Xing L., Chen P., Liu D., Wang X. Molecular cloning andcharacterization of an up-regulated UDP-glucosyltransferase gene induced by DON fromTriticum aestivum L. cv. Wangshuibai. Molecular Biology Reports,2010.37(2):785-795.
    94. Madala N. E., Molinaro A., Dubery I. A. Distinct carbohydrate and lipid-based molecularpatterns within lipopolysaccharides from Burkholderia cepacia contribute to defense-associateddifferential gene expression in Arabidopsis thaliana. Innate Immunity,2012.18(1):140-154.
    95. Mantis N. J., Winans S. C. The chromosomal response regulatory gene chvI of Agrobacteriumtumefaciens complements an Escherichia coli phoB mutation and is required for virulence.Journal of Bacteriology,1993.175(20):6626-6636.
    96. Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T.,Earle E. D., Tanksley S. D. Map-based cloning of a protein kinase gene conferring diseaseresistance in tomato. Science,1993.262:1432-1436.
    97. Matros A., Mock H.P. Ectopic expression of a UDP-glucose: phenylpropanoidglucosyltransferase leads to increased resistance of transgenic tobacco plants against infectionwith Potato Virus Y. Plant and Cell Physiology,2004.45(9):1185-1193.
    98. Matthysse A. G., Yarnall H., Boles S. B.,McMahan S. A region of the Agrobacteriumtumefaciens chromosome containing genes required for virulence and attachment to host cells.Biochimica et Biophysica Acta,2000.1490(1):208-212.
    99. Metzker M. L. Sequencing technologies-the next generation. Nature Reviews Genetics,2010.11(1):31-46.
    100. Miao Y., Zentgraf U. The antagonist function of Arabidopsis WRKY53and ESR/ESP in leafsenescence is modulated by the jasmonic and salicylic acid equilibrium. The Plant Cell,2007.19(3):819-830.
    101. Mortazavi A., Williams B. A., McCue K., Schaeffer L., Wold B. Mapping and quantifyingmammalian transcriptomes by RNA-Seq. Nature Methods,2008.5(7):621-628.
    102. Mukhtar M. S., Nishimura M. T., Dangl J. NPR1in plant defense: it's not over 'til it's turned over.Cell,2009.137(5):804-806.
    103. Mysore K.S., Nam J., Gelvin S.B. An Arabidopsis histone H2A mutant is deficient inAgrobacterium T-DNA integration. Proceedings of the National Academy of Sciences of theUnited States of America,2000.97(2):948-953.
    104. Nürnberger T., Brunner F. Innate immunity in plants and animals: emerging parallels between therecognition of general elicitors and pathogen-associated molecular patterns. Current Opinion inPlant Biology,2002.5(4):318-324.
    105. Nagalakshmi U., Wang Z., Waern K., Shou C., Raha D., Gerstein M., Snyder M. Thetranscriptional landscape of the yeast genome defined by RNA sequencing. Science,2008.320(5881):1344-1349.
    106. Nam J., Mysore K., Zheng C., Knue M., Matthysse A., Gelvin S. Identification of T-DNA taggedArabidopsis mutants that are resistant to transformation by Agrobacterium. Molecular andGeneral Genetics,1999.261(3):429-438.
    107. Nair G. R., Liu Z., Binns A. N. Reexamining the role of the accessory plasmid pAtC58in thevirulence of Agrobacterium tumefaciens strain C58. Plant Physiology,2003.133(3):989-999.
    108. Pan D., He N., Yang Z., Liu H., Xu X. Differential gene expression profile in hepatopancreas ofWSSV-resistant shrimp (Penaeus japonicus) by suppression subtractive hybridization.Developmental&Comparative Immunology,2005.29(2):103-112.
    109. Parrott D. L., Anderson A. J., Carman J. G. Agrobacterium induces plant cell death in wheat(Triticum aestivum L.). Physiological and Molecular Plant Pathology,2002.60(2):59-69.
    110. Pompella A., Visvikis A., Paolicchi A., Tata V. D., Casini A. F. The changing faces of glutathione,a cellular protagonist. Biochemical Pharmacology,2003.66(8):1499-1503.
    111. Poppenberger B., Berthiller F., Lucyshyn D., Sieberer T., Schuhmacher R., Krska R., Kuchler K.,Gl ssl J., Luschnig C., Adam G. Detoxification of the Fusarium mycotoxin deoxynivalenol by aUDP-glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry,2003.278(48):47905-47914.
    112. R hrig H., Schmidt J., Miklashevichs E., Schell J., John M. Soybean ENOD40encodes twopeptides that bind to sucrose synthase. Proceedings of the National Academy of Sciences of theUnited States of America,2002.99(4):1915-1920.
    113. Raja N. I., Bano A., Rashid H., Chandhry Z., Ilyas N. Improving Agrobacterium-mediatedtransformation protocol for integration of XA21gene in wheat (Triticum aestivum L.). PakistanJournal of Botany,2010.42:3613-3631.
    114. Regensburg-Tuink A.J.G., Hooykaas P.J.J. Transgenic N. glauca plants expressing bacterialvirulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature,1993.363(6):69-71.
    115. Reichheld J.-P., Mestres-Ortega D., Laloi C., Meyer Y. The multigenic family of thioredoxin h inArabidopsis thaliana: specific expression and stress response. Plant Physiology andBiochemistry,2002.40(6):685-690.
    116. Rolke Y., Liu S., Quidde T., Williamson B., Schouten A., Weltring K. M., Siewers V., Tenberge K.B., Tudzynski B., Tudzynski P. Functional analysis of H2O2-generating systems in Botrytiscinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on Frenchbean, whereas a glucose oxidase (BCGOD1) is dispensable. Molecular plant Pathology,2004.5(1):17-27.
    117. Ross J., Li Y., Lim E.K., Bowles D. J. Higher plant glycosyltransferases. Genome Biology,2001.2(2):3004.3001-3004
    118. Ryals J. A., Neuenschwander U. H., Willits M. G., Molina A., Steiner H.-Y.,Hunt M. D.Systemic acquired resistance. The Plant Cell,1996.8(10):1809-1815.
    119. Saijo Y., Tintor N., Lu X., Rauf P., Pajerowska-Mukhtar K., H weker H., Dong X., Robatzek S.Schulze, Lefert P. Receptor quality control in the endoplasmic reticulum for plant innateimmunity. The EMBO Journal,2009.28(21):3439-3449.
    120. Schlumbaum A., Mauch F., V geli U., Boller T. Plant chitinases are potent inhibitors of fungalgrowth. Nature,1986.324(27):365-367.
    121. Schr der G.,Lanka E. The mating pair formation system of conjugative plasmids-a versatilesecretion machinery for transfer of proteins and DNA. Plasmid,2005.54(1):1-25.
    122. She M., Yin G., Li J., Li X., Du L., Ma W., Ye X. Efficient regeneration potential is closelyrelated to auxin exposure time and catalase metabolism during the somatic embryogenesis ofimmature embryos in Triticum aestivum L. Molecular Biotechnology,2013.54(2):451-460.
    123. Shin S., Torres-Acosta J. A., Heinen S. J., McCormick S., Lemmens M., Paris M. P. K.,Berthiller F., Adam G., Muehlbauer G. J. Transgenic Arabidopsis thaliana expressing a barleyUDP-glucosyltransferase exhibit resistance to the mycotoxin deoxynivalenol. Journal ofExperimental Botany,2012.63(13):4731-4740.
    124. Slaymaker D. H., Navarre D. A., Clark D., del Pozo O., Martin G. B.,Klessig D. F. The tobaccosalicylic acid-binding protein3(SABP3) is the chloroplast carbonic anhydrase, which exhibitsantioxidant activity and plays a role in the hypersensitive defense response. Proceedings of theNational Academy of Sciences of the United States of America,2002.99(18):11640-11645.
    125. Spoel S. H., Mou Z., Tada Y., Spivey N. W., Genschik P., Dong X. Proteasome-mediatedturnover of the transcription co-activator NPR1plays dual roles in regulating plant immunity.Cell,2009.137(5):860.
    126. Stachel S. E., Nester E. W. The genetic and transcriptional organization of the vir region of theA6Ti plasmid of Agrobacterium tumefaciens. The EMBO Journal,1986.5(7):1445-1451.
    127. Takakura Y., Che F. S., Ishida Y., Tsutsumi F., Kurotani K. I., Usami S., Isogai A.,Imaseki H.Expression of a bacterial flagellin gene triggers plant immune responses and confers diseaseresistance in transgenic rice plants. Molecular Plant Pathology,2008.9(4):525-529.
    128. Tang X., Frederick R. D., Zhou J., Halterman D. A., Jia Y.,Martin G. B. Initiation of plant diseaseresistance by physical interaction of AvrPto and Pto kinase. Science,1996.274(5295):2060-2063.
    129. Tao Y., Rao P. K., Bhattacharjee S., Gelvin S. B. Expression of plant protein phosphatase2Cinterferes with nuclear import of the Agrobacterium T-complex protein VirD2. Proceedings ofthe National Academy of Sciences of the United States of America,2004.101(14):5164-5169.
    130. Tapiero H., Tew K., Nguyen Ba G., Mathe G. Polyphenols: do they play a role in the preventionof human pathologies? Biomedicine&Pharmacotherapy,2002.56(4):200-207.
    131. Tenea G.N., Spantzel J., Lee L.Y., Zhu Y., Lin K., Johnson S. J., Gelvin S.B. Overexpression ofseveral Arabidopsis histone genes increases Agrobacterium-mediated transformation andtransgene expression in plants. The Plant Cell,2009.21(10):3350-3367.
    132. Tie W., Zhou F., Wang L., Xie W., Chen H., Li X., Lin Y. Reasons for lower transformationefficiency in indica rice using Agrobacterium tumefaciens-mediated transformation: lessons fromtransformation assays and genome-wide expression profiling. Plant Molecular Biology,2012.78(1-2):1-18.
    133. Tzfira T.,Citovsky V. Partners-in-infection: host proteins involved in the transformation of plantcells by Agrobacterium. Trends in Cell Biology,2002.12(3):121-129.
    134. Tzfira T., Li J., Lacroix B., Citovsky V. Agrobacterium T-DNA integration: molecules andmodels. Trends in Genetics,2004.20(8):375-383.
    135. Tzfira T., Vaidya M.,Citovsky V. VIP1, an Arabidopsis protein that interacts with AgrobacteriumVirE2, is involved in VirE2nuclear import and Agrobacterium infectivity. The EMBO journal,2001.20(13):3596-3607.
    136. Tzfira T., Vaidya M., Citovsky V. Increasing plant susceptibility to Agrobacterium infection byoverexpression of the Arabidopsis nuclear protein VIP1. Proceedings of the National Academyof Sciences of the United States of America,2002.99(16):10435-10440.
    137. Tzfira T., Vaidya M., Citovsky V. Involvement of targeted proteolysis in plant genetictransformation by Agrobacterium. Nature,2004.431(7004):87-92.
    138. van Attikum H., Bundock P.,Hooykaas P. J. Non-homologous end-joining proteins are requiredfor Agrobacterium T-DNA integration. The EMBO journal,2001.20(22):6550-6558.
    139. Vierstra R. D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life ofmany plant proteins. Trends in Plant Science,2003.8(3):135-142.
    140. von Saint Paul V., Zhang W., Kanawati B., Geist B., Faus-Kessler T., Schmitt-Kopplin P.,Sch ffner A. R. The Arabidopsis glucosyltransferase UGT76B1conjugates isoleucic acid andmodulates plant defense and senescence. The Plant Cell,2011.23(11):4124-4145.
    141. Wang Z.Y., Seto H., Fujioka S., Yoshida S.,Chory J. BRI1is a critical component of aplasma-membrane receptor for plant steroids. Nature,2001.410(6826):380-383.
    142. Wang Z., Gerstein M., Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. NatureReviews Genetics,2009.10(1):57-63.
    143. Winans S., Mantis N., Chen C. Y., Chang C. H.,Han D. C. Host recognition by the VirA, VirGtwo-component regulatory proteins of Agrobacterium tumefaciens. Research in Microbiology,
    1994.145(5):461-473.
    144. Wise A. A., Fang F., Lin Y.H., He F., Lynn D. G., Binns A. N. The receiver domain of hybridhistidine kinase VirA: an enhancing factor for vir gene expression in Agrobacterium tumefaciens.Journal of Bacteriology,2010.192(6):1534-1542.
    145. Wittstock U.,Gershenzon J. Constitutive plant toxins and their role in defense against herbivoresand pathogens. Current Opinion in Plant Biology,2002.5(4):300-307.
    146. Wood D. W., Setubal J. C., Kaul R., Monks D. E., Kitajima J. P., Okura V. K., Zhou Y., Chen L.,Wood G. E., Almeida N. F. The genome of the natural genetic engineer Agrobacteriumtumefaciens C58. Science,2001.294(5550):2317-2323.
    147. Xiong L.,Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulatedby an abscisic acid-inducible mitogen-activated protein kinase. The Plant Cell,2003.15(3):745-759.
    148. Yang C.W., González-Lamothe R., Ewan R. A., Rowland O., Yoshioka H., Shenton M., Ye H.,O'Donnell E., Jones J. D., Sadanandom A. The E3ubiquitin ligase activity of ArabidopsisPLANT U-BOX17and its functional tobacco homolog ACRE276are required for cell death anddefense. The Plant Cell,2006.18(4):1084-1098.
    149. Yao C., Wu Y., Nie H.,Tang D. RPN1a, a26S proteasome subunit, is required for innateimmunity in Arabidopsis. The Plant Journal,2012.71(6):1015-1028.
    150. Young J., Kuykendall L., Martinez-Romero E., Kerr A.,Sawada H. Classification andnomenclature of Agrobacterium and Rhizobium. International Journal of Systematic andEvolutionary Microbiology,2003.53(5):1689-1695.
    151. Yuan Z.C., Liu P., Saenkham P., Kerr K., Nester E. W. Transcriptome profiling and functionalanalysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions(pH5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions.Journal of Bacteriology,2008.190(2):494-507.
    152. Zhang J., Shao F., Li Y., Cui H., Chen L., Li H., Zou Y., Long C., Lan L., Chai J. A Pseudomonassyringae Effector Inactivates MAPKs to Suppress PAMP-Induced Immunity in Plants. Cell Host&Microbe,2007.1(3):175-185.
    153. Zheng Y., He X.W., Ying Y.H., Lu J.F., Gelvin S.B., Shou H.X. Expression of the Arabidopsisthaliana histone gene AtHTA1enhances rice transformation efficiency. Molecular Plant,2009.2(4):832-837.
    154. Zupan J. R., Zambryski P. Transfer of T-DNA from Agrobacterium to the plant cell. PlantPhysiology,1995.107(4):1041-1047.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700