用户名: 密码: 验证码:
镁合金AZ31辉光等离子表面耐蚀合金层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁是结构材料中最轻的金属材料,镁合金具有高的比强度和比刚度、弹性模量低、减震性好、加工性能优良、尺寸稳定性好、磁屏蔽、原料丰富以及可回收等诸多优点,被认为是21世纪最具开发和应用前景的“绿色工程材料”,在汽车、计算机、航空、通讯、运动器械、手动工具和家用电器等领域具有十分广阔的应用前景。但由于镁及镁合金耐蚀性较差,严重阻碍了其优势的发挥。因此,运用现代表面工程技术对镁合金材料进行表面处理以提高其耐蚀性,对发挥镁及镁合金的性能优势有着重要的现实意义。
     本文利用辉光等离子表面合金化技术在镁合金AZ31表面制备Al-Mg、Al-Cr-Fe、Ni-Cr-Mo-Cu耐蚀合金层。采用透射电镜、X射线衍射和扫描电镜分析方法对合金层的显微组织、化学成分及相组成进行了综合分析,结果表明:合金层具有特殊的微观结构,即由最外层表面的非晶层及次外层表面的纳米晶层组成。采用电化学方法对表面改性层在3.5%NaCl溶液中的耐蚀性能进行测定,三种非晶/纳米晶耐蚀合金层的自腐蚀电位低于镁合金AZ31,维钝电流密度则相反,随着电位的变化,电流密度保持在1μA/cm2以下。
     采用辉光离子合金化技术单阴极放电(自溅射)模式,在纯Fe表面制备非晶/纳米晶薄膜,以研究其形成非晶的机制。在Ar+轰击作用下,大量纳米尺寸的非晶相从表面溅射出来,在随后的驰豫过程中等效冷却速率高达1014℃/s,薄膜或固体物质从远离平衡态到达某个平衡态或亚稳态从而使薄膜或材料表面发生结构或组织的变化,形成非晶。这不符合Inoue提出的制备大块非晶态合金的经验规律。证明辉光离子合金化技术是一种制备大块非晶态合金层的新方法。
Magnesium is the lightest metal used in engineering. Magnesium alloys have advantageous properties including high specific strength, high specific toughness, low elastic module, excellent damping characteristics, good machinability and dimensional stability, electromagnetic shielding, abundant in resource as well as easy to be recycled. So magnesium alloys have found a wide applications in such area as automobile, computer, electronics, aeronautics and astronautics, sporting goods, handhold tools and household equipment, et al., and been regarded as“green engineering material”with greet potential development in 21st century. However, magnesium and its alloys have several drawbacks including poor resistance to corrosion and wear, poor creep resistance and high chemical reactivity, which restrict their extensive application in many industry fields.
     In this dissertation, Al-Mg, Al-Cr-Fe, Ni-Cr-Mo-Cu film is prepared by double glow plasmas technique, and there microstructure and corrosion behavior are investigated. The film consists of two different regions, i.e., an amorphous layer on outmost surface and an underlying lamellar nanocrystalline layer with a grain size of less than 10 nm. The corrosion behavior of amorphous/nanocrystalline film in 3.5% NaCl solution is investigated using an electrochemical polarization measurement. Compared with the AZ31 magnesium alloy, the amorphous/nanocrystalline film exhibits more positive corrosion potentials and lower corrosion current densities than that of AZ31 magnesium alloy.
     In present study, we have found that the novel technique—glow discharge used for making amorphous and nanocrystal film, which break through empirical rules for the achievement of large glass-forming. In the double cathode mode, both target cathode and substrate cathodes are subject to Ar ion sputter by glow discharge. As a result, a large number of nano particles escapes from the surface of one cathode materials and deposit on the surface of the other cathode materials surface. In the mono-cathode mode, due to a stronger ion sputter effect at a higher electrode voltage, the crystalline order on the surface of the electrode was destroyed by the Ar ion attack, leading to atomic displacement and the transformation from a crystalline state to an amorphous state. Meanwhile, a large amount of nanosize amorphous particles by glow discharge sputtering are redeposited on the workpiece surface. Likely, the two mechanisms can be proposed to explain the unique structure of the film formed on the pure iron by mono-cathode glow discharge.
引文
[1] Y. Kojima. Platform Science and Technology for Advanced Magnesium Alloys[J]. Mater. Sci. Forum, 2000, 350-351: 3-18.
    [2] H. Kuwahara, Y. Al-Abdullat, M. Ohta, et al. Surface Reaction of Magnesium in Hank's Solutions[J]. Mater. Sci. Forum, 2000, 350-351: 349-358.
    [3]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社, 2000. 9-10.
    [4] International Magnesium Association. The Markets for Magnesium[C]. Magnesium The Metal for Today, 1998: 4-8.
    [5]刘正,王越,王中光.镁基轻质材料的研究与应用[J].材料研究学报, 2000, 14(6): 449.
    [6]张九红.上百亿产业群体即将出现[N].新材料周刊, 2000-01-15.
    [7]师昌绪,李恒德,王淀佐,等.加速我国镁工业发展的建议[J].材料导报, 2001, 15(4): 5.
    [8]陆树孙,顾开道,郑来苏.有色铸造合金及熔炼[M].北京:国防工业出版社, 1983.
    [9]崔昆.钢铁材料及有色金属材料[M].北京:机械工业出版社, 1986.
    [10]曹荣昌,柯伟,徐永波. Mg合金的最新进展及应用前景[J].金属学报, 2001, 37(7): 673.
    [11]樊昱,吴国华,高洪涛.镁合金腐蚀的研究现状及发展趋势[J].铸造技术, 2004(12): 941.
    [12]梁永政,郝远,张汉茹.镁合金表面技术的研究近况[J].铸造设备研究, 2003(10): 48-51.
    [13]余刚,刘跃龙,李瑛,等. Mg合金的腐蚀与防护[J].中国有色金属学报, 2002, 6(12):1087, 1090-1093.
    [14]刘新宽,向阳辉,等.镁合金化学镀镍磷研究[J].宇航材料工艺, 2001 (4): 21-25.
    [15]薛方勤,韩夏云.镁及镁合金表面化学镀Ni-P合金新工艺[J].材料保护, 2002, 35(9): 33.
    [16]A.K. Sharma, M.R. Suresh, Hbhojraj. Electroless Nickel Plating on Magnesium Alloy [J]. Metal Finishing, 1998(3): 10-18.
    [17]Hillis J.E. Surface Engineering of Magnesium alloys, ASM Hand Book Volume[M]. ASM International, Materials Park, OH 1994.
    [18]张永君,严川伟,王福会,等. Mg及其合金的阳极氧化技术进展[J].腐蚀科学与防护技术, 2001, 13(4): 214-217.
    [19]张永君,严川伟,王福会,等.镁及镁合金环保型阳极氧化电解液及其工艺[J].材料保护, 2002, 35(3): 39.
    [20]曹建春,郭忠诚,周晓龙.镁合金表面耐蚀涂层研究进展[J].云南冶金, 2003, 12: 28-32.
    [21]David Hawkeq, Albright D.L. A Phosphate-Permanganate Conversion Coating for Magnesium[J]. Metal Finishing, 1995, (10): 34-38.
    [22]Gonzalez M.A, Nunez C.A-LOPEZ. A Non-chromae Conversion Coating for Magnesium Alloys and Magnesium-Based Matrix Composites[J]. Corros. Sci., 1995, 37(11): 1736-1772.
    [23]Amy L.R, Carmel B.B. Corrosion Protection Afforded by Rare Earth Conversion Coatings Applied to Magnesium[J]. Corros. Sci., 2000, 42: 275-288.
    [24]Gonzalez-Nunez M.A, Skeldon P, Thomposon G.E., et al. Development of a Nochromate Conversion Coating for Magnesium Alloys and Magnesium-Metal Matrix Composites[J]. Corrosion, 1999, 55(12): 113-143.
    [25]P. Ross, J. Mac. Cullich, C. Clapp, et al. The Mechanical Properties of Anodized Magnesium Die Castings[M]. Detroit: SAE International Congress and Exposition, 1999.
    [26]张津,孙智富. AZ91D镁合金表面热喷铝涂层研究[J].中国机械工程, 2002, 23: 2057-2058.
    [27]韦春贝,张春霞,田修波.镁合金表面耐蚀改性技术[J].轻合金加工技术, 2004, 32(6): 6.
    [28]Koutsomichalis A, Saettas L, Badekas H, et al. Laser Treatment of Magnesium[J]. Mater. Sci., 1994, 29: 6543-6547.
    [29]Galum R. Laser Surface Alloying of Magnesium Base Alloys to Improve the Corrosion and Wear Properties[A]. In: Proceedings of the 14th International Congresson Applications of Laser&Electro (ICAIEO5)[C], Orlando, 1996.
    [30]徐重,等.双层辉光离子渗金属技术[J],金属热处理学报, 1982, 6: 71.
    [31]Zhong Xu, et al. Plasma Surface Alloying[J], Surface Engineering, 1986, 2: 2.
    [32]Zhong Xu, et al. Method and Apparatus for Introducing Normally Solid Materials into Substrate Surfaces[P]. U.S. Patent, No.4,520,268, 1985.
    [33]Zhong Xu, et al. Method and Apparatus for Introducing Normally Solid Materials into Substrate Surfaces[P]. Japan Patent, No.4,731,539, 1988.
    [34]Zhong Xu, et al. Method and Apparatus for Introducing Normally Solid Materials into Substrate Surfaces[P]. U.K. Patent, No.2,150,602, 1987.
    [35]Zhong Xu, et al. Method and Apparatus for Introducing Normally Solid Materials into Substrate Surfaces[P]. Canada Patent, No.1,212,486, 1986.
    [36]Zhong Xu, et al. Method and Apparatus for Introducing Normally Solid Materials intoSubstrate Surfaces[P]. Australia Patent, No.580,734,1986.
    [37]Zhong Xu, et al. Method and Apparatus for Introducing Normally Solid Materials into Substrate Surfaces[P]. Sweden Patent, No.8,500,364-8, 1987.
    [38]徐重,等.锯切工具离子渗金属技术[P].中国专利: 871043580, 1987.
    [39]徐重,等.双层辉光离子渗金属炉[P].中国专利: 87104626.1, 1987.
    [40]徐重,等.双层辉光离子渗金属[A].见:全国热处理年会论文集[C].北京:机械工业出版社, 1985: 233-241.
    [41]W.D. Marbach. A Breakthrough in Making Metal Tougher[N]. Business Week, 7-24-1989.
    [42]Xiu-Yan Li, Pei-Qiang Wu, Bin Tang, et al. Fatigue behavior of plasma surface modified Ti-6Al-4V alloy[J], Vacuum, 2005, 79(1-2): 52-57.
    [43]H. Zhang, D.Y. Li. Effects of sputtering condition on tribological properties of tungsten coatings[J]. Wear, 2003, 255: 924-932.
    [44]Liu Xianghuai. Recent advance in surface treatment and its applications in China[J]. Surf. Coat. Technol., 2000, 131(1-3): 261-266.
    [45]徐重,等.双辉等离子表面冶金技术的新进展[J].中国工程科学, 2002, 4(2): 36-41.
    [46]徐重.等离子表面冶金技术的现状及发展[J].中国工程科学, 2005, 7(6): 73-78.
    [47]刘国勋.金属学原理[M].北京:冶金工业出版社, 1980.
    [48]J. Creus, A. Billard, F. Sanchette. Corrosion behaviour of amorphous Al-Cr and Al-Cr-(N) coatings deposited by dc magnetron sputtering on mild steel substrate[J]. Thin Solid Films, 2004, 466(1-2): 1-9.
    [49]杨德钧,等.金属腐蚀学[M].北京:冶金工业出版社, 1999. 323-328.
    [50]Guangling Song, Aanrej Atrens, Matthew Dargusch. Influence of Microstructure on the Corrosion of Die-cast AZ91D[J]. Corros. Sci., 1999, 41(2): 249-273.
    [51]R.S. Busk. Magnesium Products Design[M]. New York: Marcel Dekker, 1987: 498.
    [52]M. Pourbaix. Atlas of Electrochemical Equilibria in Aqueous Solutions[M]. Oxford: Pergamon, 1966: 139.
    [53]R.T. Foley et al. The Corrosion of the Light Metals[M]. New York: Wiley, 1967: 259.
    [54]R. Ambat, N.N. Aung, W. Zhou. Evaluation of microstructural effects on corrosion behavior of AZ91D magnesium alloy[J]. Corro. Sci.. 2000, 42: 1433.
    [55]徐江.双辉等离子表面冶金镍基合金及新型复合镀渗技术的研究[D].北京:北京科技大学, 2003.
    [56]Akito Takasaki, K.F. Kelton. High-pressure hydrogen loading in Ti45Zr38Ni17 amorphous and quasicrystal powders synthesized by mechanical alloying[J]. Alloy. Compd., 2002, 347: 295.
    [57]Inoue A, Zhang T, Nishiyama N, et al. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy[J] Mater. Trans. JIM, 1993, 34: 1234.
    [58]Y. He, R.B. Schwarz, J.I. Archuleta. Bulk glass formation in the Pd-Ni-P system[J]. Appl. Phys. Lett., 1996, 69(13): 1861.
    [59]肖帆,韩明,王小祥.块状非晶合金的研究进展[J].材料科学与工程学报, 1999, 17(2): 76.
    [60]Matsubara E, Tamura T, Waseda Y, et al. Structural study of amorphous Mg50Ni30La20 alloy by the anomalous X-ray scattering (AXS) method [J]. Mater. Trans. JIM, 1990, 31: 228.
    [61]王一禾,等.非晶态合金[M].北京:冶金工业出版社, 1989.
    [62]司鹏程,饶雄,李细江,等.大块非晶合金形成的控制因素与制备技术[J].材料工程, 1998, 11: 3.
    [63]Peker A, Johoson W. L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Appl. Phys. Lett., 1993, 63(17): 2342.
    [64]E. Jartych, K. Pekala, P. Jas′kiewicz, et al. Structural and magnetic properties of bulk amorphous alloys Fe-Al-Ga-P-B-Si[J]. Alloy. Compd., 2002, 343: 211.
    [65]Wang Yu, Chen Min, Gao Jiaping, et al. Study on Amorphous Ionic Conductors of AgI-Ag2WO4 Material[J]. Rare Metal Materials and Engineering, 2001, 30(1): 5.
    [66]郝雷,陈学定,袁子洲,等.大块非晶合金的研究进展[J].材料导报, 2004, 18(8): 22-24.
    [67]Klement W, Willens R.H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187(4740): 869.
    [68]Zhang Tao, Inoue A, Masumoto T. Amorphous Zr-Al-TM(TM=Co, Ni-Cu) alloys with significant supercooled liquid region of over 100K[J]. Mater. Trans. JIM, 1991, 32(11): 1005.
    [69]Inoue A. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region[J]. Mater. Trans. JIM, 1990, 31: 171.
    [70]Peker A, W. L. Johnson. A highly processable metallic glass: Zr41Ti14Cu12.5Ni10Be22.5[J].Appl. Phys. Lett., 1993, 63: 2342.
    [71]Inoue A. High strength bulk amorphous alloy with low critical cooling grates[J]. Mater. Trans. JIM, 1995, 36(7): 866.
    [72]Inoue A. Bulk amorphous and nanocrystalline alloys with high function properties[J]. Mater. Sci. Eng., 2001, A304-306:1.
    [73]Inoue A, Zhang Tao, Takaomi I, et al. New Fe-Co-Ni-Zr-B amorphous alloys with wide supercooled liquid regions and good soft magnetic properties[J]. Mater. Trans. JIM, 1997, 38(4): 359.
    [74]Inoue A. Bulk amorphous alloys with soft and hard magnetic properties[J]. Mater. Sci. Eng., 1997, A226-228: 357.
    [75]Choi-Yim, Johnson W. L. Bulk metallic glass matrix composites[J]. Appl. Phys. Lett., 1997, 71(26): 3808.
    [76]Takapmi I, Inoue A. Soft magnetic of Co-based amorphous alloys with wide supercooled liquid region[J]. Mater. Trans. JIM, 1998, 39(7): 762.
    [77]Inoue A. Bulk amorphous alloys (practical characteristics and application)[M]. Switzerland: Trans Tech Publication Ltd, 1999. 141.
    [78]Erik B, Kent J, Martin C, et al. Interdiffusion in CoFe/Cu multilayers and its application to spin-valve structures for date storage[J]. Appl. Phys., 2003, 94(2): 1001.
    [79]Zhang Yong, Ming Panxiang, Zhao Deqian, et al. Formation of Zr-Based bulk metallic glasses from low purity of materials by yttrium addition[J]. Mater. Trans. JIM, 2000, 41(11):1410.
    [80]肖华星,陈光.大块非晶晶化研究的现状和动态[J].兵器材料科学与工程, 2003, 26: 65.
    [81]李福山. Fe基软磁非晶态合金的研究[J].郑州大学学报, 2002, 23(4): 30.
    [82]王庆,夏雷,肖学山,等.大块非晶合金的研究进展[J].自然杂志, 2001, 3: 145.
    [83]陈伟荣,王吉军,董闯.大块非晶态合金[J].大连大学学报, 2000, 21(6): 8.
    [84]Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta. Mater., 2000, 48: 279.
    [85]Wang W H, Wei Q, Wollenberger H, et al. Microstructure studies of Zr41Ti14Cu12.5Ni10Be22.5 amorphous alloy be electron diffusion intensity analysis[J]. Appl. Phys. Lett., 1997, 71(8): 1053.
    [86]汪卫华,王文魁,白海洋.新型Zr-Ti-Cu-Ni-Be-C大块非晶合金的形成[J].中国科学, A辑, 1998, 28(5): 443.
    [87]Wang W H, Wei Q, Friedrichs. Microstructure decomposition and crystallization in Zr11Ti11Cu12.5Ni10Be22.5 bulk metallic glass[J]. Phys. Rev. B, 1998, 57(14): 8211.
    [88]Inoue A. Bulk amorphous alloys-preparation and fundamental characteristics[M]. Trans. Techn. Publications Ltd, 1998.
    [89]ChoiYim, Johnson W L. Bulk metallic glass matrix composites[J]. Appl. Phys. Lett., 1997,71(26): 3808.
    [90]Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Mater.Trans. JIM. 1995, (36): 866.
    [91]Johnson W L. Bulk glass-forming metallic alloys: science and technology[J]. MRS Bull, 1999, 24(10): 42.
    [92]潘峰,曾飞,赵斌.离子束辅助沉积技术制备非晶合金薄膜[J].真空科学与技术, 2002年22卷,增刊: 1-4.
    [93]Pang S J, Zhang T, Hisamichi Kimura, et al. Corrosion Behavior of Zr2(Nb2) Al2Ni2Cu Glassy Alloys[J]. Mater. Trans., 2000, 41(11): 1490-1494.
    [94]F.X. Qin, H.F. Zhang, Y.F. Deng, et al. Corrosion resistance of Zr-based bulk amorphous alloys containing Pd[J]. Alloy. Compd., 375(2004): 318.
    [95]H. Alves, M.G.S. Ferreira, U. K?ster. Corrosion behavior of nanocrystalline (Ni70Mo30)90B10 alloys in 0.8 M KOH solution[J]. Corros. Sci., 2003, 45(8):1833-1845.
    [96]D. Szewieczek, J. Tyrlik-Held, Z. Paszenda. Corrosion investigations of nanocrystalline iron based alloy[J]. Mater. Process. Technol., 1998, 78: 171.
    [97]C.A.C. Souza, S.E. Kuri, F.S. Politti, et al. Corrosion resistance of amorphous and polycrystalline FeCuNbSiB alloys in sulphuric acid solution[J]. Non-Cryst. Solids., 1999,247: 69-73.
    [98]J. Musil, A.J. Bell, M. Cepera, et al. The structure of Cu-Al films prepared by unbalanced DC magnetron sputtering[J]. Surf. Coat. Technol. 1997, 96 (2-3): 359-363.
    [99]B.X. Liu, O. Jin. Formation and theoretical modeling of non-equilibrium alloy phases by ion mixing[J]. Phys. Status Solidi A, 1997, 161: 3-33.
    [100]B.X. Liu, W.L. Johnson, M-A. Nicolet, et al. Structural difference rule for amorphous alloy formation by ion mixing[J]. Appl. Phys. Lett., 1983, 42 (1): 45-47.
    [101]L.S. Hung, M. Nastasi, J. Gyulai, et al. Ion-induced amorphous and crystalline phase formation in Al/Ni, Al/Pd, and Al/Pt thin films[J]. Appl. Phys. Lett., 1983, 42 (8): 672-674.
    [102]Y.G. Chen, B.X. Liu. Metastable alloys synthesized by ion mixing in immiscible Ti-Nb and Ti-Ta systems[J]. Mater. Sci. Eng. B, 1998, 52 (1): 1-7.
    [103]B.X. Liu, W.S. Lai, Q. Zhang. Irradiation induced amorphization in metallic multilayers and calculation of glass-forming ability from atomistic potential in the binary metal systems [R]. Mater. Sci. Eng. R, 2000, 29(1-2): 1-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700