用户名: 密码: 验证码:
TC4钛合金热加工用防氧化自剥落无铅玻璃—陶瓷涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在对钛合金进行热加工时,钛合金的氧化是一个很严重的问题。目前,多种防氧化涂层已经被广泛应用于减少在热加工过程中其表面的氧化情况。不幸的是,在热加工过程中,现有的防氧化涂层为钛合金基体提供的防氧化保护温度区间相对都比较窄。而且,为了达到低温及软化的效果,通常在涂层组分中含有一定量的对环境有害的铅元素。
     本文研究和制备了一种能为钛合金基体提供更宽的防氧化温度范围的热加工用防氧化自剥落玻璃-陶瓷涂层,该涂层使用方法很简单可以通过常规的浸涂方法制备在钛合金表面。用于制备涂层的初始氧化物组分为SiO_2,Al_2O_3,H_3BO_3,CaCO_3,Na_2CO_3,K_2CO_3,MoO_3,Li_2CO_3,TiO_2和MgO粉末,通过烧结法制备玻璃-陶瓷涂层的粉末。
     在考察涂层的防氧化效果时,将有涂层保护的和无涂层保护的Ti-6Al-4V试样置于箱式电阻炉中,在大气环境下分别于500、700、900和1000℃保温2h。借助金相显微镜观察钛合金断面金相试样的α污染层厚度;通过测量断面上沿钛合金表层至心部方向上的维氏显微硬度值来衡量氧化层厚度,并且借助扫描电子显微镜附带的能谱仪对O元素和Ti元素沿钛合金表面至心部方向进行线扫描,通过对比各方面性能来得出涂层的防氧化效果。通过对在不同温度保温2h的涂层进行XRD分析,比较涂层在不同温度下热处理后的结晶度,从而检测涂层的自剥落效果;通过TG分析了涂层在从室温加热到1000℃过程中质量的变化。结果表明,在大气环境下,本涂层在不含有害元素铅的前提下,可以在500~1000℃的温度区间为钛合金提供良好的防氧化保护,同时具有在热处理完成后的冷却过程中从钛合金表面自剥落的能力。
The oxidation is a serious problem during the heat processing of titanium alloys in air. Nowadays a variety of oxidation-resistant coatings have been widely used in reducing surface oxidation of Ti alloys. Unfortunately, conventional oxidation-resistant coatings can only provide a relatively narrow protection temperature range, and usually contain a considerable amount of lead, which is environmentally harmful.
     In present study, a lead-free self-spalling glass-ceramic coating with wider protection temperature range was developed to protect Ti-6Al-4V alloy from oxidation via a common dip-coating route. The starting materials for preparing dip-coating slurry are SiO_2, Al_2O_3, H_3BO_3, CaCO_3, Na_2CO_3, K_2CO_3, MoO_3, Li_2CO_3, TiO_2 and MgO powders.
     The oxidation-resistant effect was evaluated by comparing the Ti-6Al-4V specimens with and without protective coating, holding at different temperatures for 2 h in air. The metallographs of cross-sections were observed, and the depths of oxidized layers were determined by microhardness analysis. The changes of crystalline phase in coating at various soaking temperatures were investigated by means of XRD. The results show that the present glass-ceramic coating can provide not only the oxidation-resistant effect over the temperature range of 500~1000℃in ambient air, but also the capability of self-spalling from Ti alloy surface during cooling process after heat processing, with an environmentally friendly lead-free coating composition.
引文
[1]罗国珍,周廉,邓炬.中国钛的研究和发展[J].稀有金属材料与工程, 1997, 126(5): 1~6.
    [2] C. leyens, M. Schmidt, M. Peters, et al. Sputtered intermetallic Ti-Al-X coatings: Phase formation and oxidation behavior [J]. Materials Science Engineering, 1997, 239: 680~687.
    [3] C. Sauer, G. Luetjering. Thermo-mechanical processing of high strengthβ-titanium alloys and effects on microstructure and properties [J]. Journal of Materials Processing Technology, 2001, 117(3): 311~317.
    [4] H. Privett III, S. Fujishiro. Coating studies for prevention of fretting fatigue in jet engine titanium compressor blade dovetails [C], in: Proceedings of the 1st international symposium on metallurgy and technology of practical titanium alloys, Chiba, Japan, 1993: 401~410.
    [5] Paul Allen. Titanium Alloy Development [J]. Advanced Materials& Process, 1996, 10: 35~41
    [6]金红.钛在民用领域中的开发应用现状及发展前景[J].稀有金属,1998, 22(6): 434~438.
    [7] A.D. Mcquillan, M.K. Mcquillan. Titanium [M]. London: Butterworths Scientific Publication, 1956: 3~6.
    [8]张喜燕,赵永庆,白晨光.钛合金及其应用[M].北京:化学工业出版社, 2005: 18~28.
    [9] R.G. Sogomonyan, V.N. Lobzhanide, G.P. Lebedeva. Protective coatings for carbon steels during heating [J]. Soviet Energy Technology, 1984, 5: 28~30.
    [10] V.N. Lobzhanide, R.G. Sogomonyan. Viscosity and protective capacity of temporary vitreous coatings [J]. Protection of Metals, 1983, 19(1): 132~136.
    [11] J.P. Kim, H.G. Jung, K.Y. Kim. Al+Y co-deposition using EB-PVD method for improvement of high-temperature oxidation resistance of TiAl [J]. Surface and Coatings Technology, 1999, 112(1): 91~97.
    [12]余金山,夏长清.涂层烧结及热处理工艺对GH202合金组织性能的影响[J].中南工业大学学报, 2000, 31(5): 448~450.
    [13] Z.L. Tang, F.H. Wang, W.T. Wu. Effect of Al2O3 and Enamel coatings on 900℃oxidation and hot corrosion behaviors gamma-TiAl [J]. Materials Science and Engineering, 2000, 276(1): 70~75.
    [14]雷廷权,傅家骐.热处理工艺方法300种(第二版)[M].北京:机械工业出版社, 1998: 18.
    [15] F. Bless. Application of high pressure gas quenching in vacuum heat treatment furnaces [J]. Heat treatment metals, 1986, 4: 95~98.
    [16]陈再良,张东晓,邹志良.从CTH’93看热处理设备和技术发展趋势[J].中国机械工程, 1994, 5(4): 56~58.
    [17]张振友.大型热锻模防氧化脱碳涂料的研制及应用[J].金属热处理, 1991, 4: 58~60.
    [18] K.K Biswas, S. Datta, S.K Das, et al. Glass-ceramic Coatings for steel and nimonic alloy [J]. Transactions of the Indian Ceramic Society, 1986, 45(2): 43~45.
    [19]覃昌瑶,梁逵,杨湄.一种新型高温热处理保护涂层[J].四川工业学院学报, 2001, 20(1): 61~63.
    [20] O.N. Tkacheva, Gorbatenko, A.G Tkachev. New method for producing glass matrices for heat-resistant glass-enamel coatings [J]. Glass and Ceramics, 1991, 47(5~6): 197~198.
    [21] F. Sun, D. Holland. Effect of iron diffusion into a glass-ceramic coating on mild steel: A bulk glass simulation [J]. Journal of the European Ceramic Society, 1989, 5(5): 269~281.
    [22] H.C. Bestwick. Heat Billet with molten glass [J]. The Iron Age, 1958, 182(7): 87.
    [23] M. Fromont. Turning of products during reheating for rolling [J]. Iron and Steel, 1968, 41(6): 241~244.
    [24] I.L Trubnikov, V.S Korchagin, Z.D Zusman. Physicochemical properties of protective vitreous enamel coatings [J]. Soviet Energy Technology, 1984, 1: 79~82.
    [25]郑有安.热处理保护涂料的应用[J].金属热处理, 1979, 9: 11~17.
    [26] R.G. Sogomonyan, Z.D. Zusman, A.A. Popova. Glass-ceramic coating for protective low-alloy steels against oxidation during their heat treatment [J]. Protection of Metals, 1986, 22(5): 648~649.
    [27] Albert G. Tobin, N.Y. Smithtown. Oxidation Protection Method for Titanium [P]. USA Patent. 5,776,266, 1998.
    [28] Albert G. Tobin, N.Y. Smithtown. Oxidation Protection Method for Titanium [P]. USA Patent. 5,672,436, 1997.
    [29] Roland T. Girard, Scotia, George A. Rice, et al. Protective Coating to Inhibit Oxidation And/Or Carburization of Metallic Surfaces [P]. USA Patent. 3,677,796, 1972.
    [30] Cressie E. Holcombe, Jr., Knox County, Lloyd R. Chapman. Paintable Composition for Protecting Metals and Ceramics During Thermal Treatment [P]. USA Patent. 4,898,618, 1990.
    [31]齐大衡,于家斗,顾昆,等.钛合金铸锭锻造加热保护涂层的研究[J].稀有金属材料与工程, 1987, 1: 17~20.
    [32] C.C.索采夫, A.T.图曼诺夫.金属加热用保护涂层[M].北京:机械工业出版社, 1979: 27~36.
    [33]王承遇,陶瑛,等.玻璃成分设计与调整[M].北京:化学工业出版社, 2006: 72~89.
    [34]饶东升,硅酸盐物理化[M].冶金工业出版社, 1991: 56~78.
    [35]程金树,李宏,汤李缨,等.微晶玻璃[M].北京:化学工业出版社, 2006: 78~93.
    [36]蔡作乾,王琏,杨根.陶瓷材料辞典[M].北京:化学工业出版社, 2002: 51~54.
    [37]肖汉宁,彭文琴,邓春明.微晶陶瓷的制备技术、性能及用途[J].中国陶瓷, 2000, 36(5): 31~33.
    [38]熊兆贤.无机材料的研究方法-合成制备、分析表征与性能检测[M].厦门:厦门大学出版社, 2001: 92.
    [39] O.N. Tkacheva, Gorbatenko, A.G. Tkachev. New method for producing glass matrixes for heat-resistant glass-enamel coatings [J]. Glass and Ceramics, 1991, 47(5~6): 197~198.
    [40] A.I. Kileeva, D.I. Potoskueva, V.S. Sagarardze. Prevention of decarburization with enamel coating [J]. Metal Science and Heat Treatment, 1975, 17(9~10): 890~892.
    [41] I.L Trubnikov, V.S Korchagin, Z.D Zusman. Physicochemical properties of protective vitreous enamel coatings [J]. Soviet Energy Technology, 1984, 1: 79~82.
    [42] D.F. Roeper, D. Chidambaram, C.R. Clayton, et al. Development of an environmentally friendly protective coating for the depleted uranium-0.75 wt.% titanium alloy Part I. Surface morphology and electrochemistry [J]. Electrochimica Acta, 2005, 50: 3622~3633.
    [43] Ilhan A. Aksay, Carl E. Hoge, and Joseph A. Pask. Wetting under chemicalequilibrium and nonequilibrium conditions [J]. The journal of Physical Chemistry. 1974, 78(12): 1178~1183.
    [44] Joseph A. Pask, Richard M. Fularth. Fundamentals of glass-to-metal bonding:Ⅷ, Nature of wetting and adherence [J]. Journal of American Ceramic Society, 1962, 45(12): 592~596.
    [45] N. Eustathopoulos, D. Chatain, L. Coudurier. Wetting and interfacial chemistry in liquid metal-ceramic systems [J]. Materials Science& Engineering A, 1991, 135(1~2): 83~88.
    [46] Joseph A. Pask. From Technology to the science of glass/metal and ceramic/metal sealing [J]. Ceramic Bulletin, 1987, 66(11): 1587~1592.
    [47] Kiyoshi Nogi, Nobuya Iwaamoto, Kazumi Ogino. Wetting phenomena at high temperature (PartⅡ) [J]. Transaction JWRI, 1992, 21(2): 1~8.
    [48] Weirauch Douglas A. Jr., Lazaroff Jerold E., Ownby P. Darrell. Wetting in an electronic package ceramic system:Ⅱ,wetting of alumina by a silicate glass melt under controlled by O2 [J]. Journal of the American Ceramic Society, 1995, 78(11): 2923~2928.
    [49] Lazaroff Jerold E, Ownby P. Darrell, Weirauch Douglas A. Jr. Wetting in an electronic packaging ceramic system:Ⅰ,wetting of tungsten by glass in controlled oxygen partial pressure atmospheres [J]. Journal of the American Ceramic Society, 1995, 78(3): 539~544.
    [50] J.M. Howw. Bonding, structure, and properties of metal/ceramic interfaces: part 1. Chemical bonding, chemical reaction, and interfacial structure [J]. International Materials Reviews, 1993, 38(5): 233~256.
    [51] J.M. Howe. Bonding, structure, and properties of metal/ceramic interfaces: part 2. interface fracture behavior and property measurement [J]. International Materials Reviews, 1993, 38(5): 257~271.
    [52]尤国文,王勇,邬昌华.喷瓷管道用玻璃釉料润湿行为的研究[J].石油大学学报(自然科学版), 1998, 22(3): 74~76.
    [53] C.C Berndt. Failure processes within ceramic coatings at high-temperatures [J]. Journal Of Materials Science, 1989, 24(10): 3511~3520.
    [54] F. Bordeaux, C. Moreau, R.G Saintjacques. Acoustic-emission study of failure mechanisms in TiC thermal barrier coatings [J]. Surface and Coatings Technology,1992, 54(1-3): 70~76.
    [55] J.P. Singh, B.G. Nair, D.P. Renusch, et al. Damage evolution and stress analysis in zirconia thermal barrier coatings during cyclic and isothermal oxidation [J]. Journal of The American Ceramic Society, 2001, 84(10): 2385~2393.
    [56] R. Harris, E. Kelly, D.H. Leeds, et al. Process 3rd international conference on chemical vapor deposition [C]: Westerville, OH: American Ceramic Society, 1972: 183~192.
    [57]叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社, 1981: 18~99.
    [58]钱达兴.玻璃熔制时影响氧化硼挥发的若干因素[J].建筑材料学报, 1998, 1(02): 197~200.
    [59] A.E. Jenkins. The Oxidation of Titanium at High Temperatures in an Atmosphere of Pure Oxygen [J]. Journal of the Institute of Metals, 1953, 82: 213~221.
    [60] F.S. Pitt. Influence of Time, Temperature and Alloy on Oxygen Absorption in SPF Titanium [D]. Washington: University of Washington, 2000.
    [61] A.I. Kahveci and G. Welsch. Effect of Oxygen on the Hardness and Alpha/Beta Phase Ratio of Titanium-6Al-4V [J]. Scripta Metallurgica, 1986, 20(9): 1287~1290.
    [62] F. Pitt, M. Ramulu. Influence of Grain Size and Microstructure on Oxidation Rates in Titanium Alloy Titanium-6Al-4V Under Superplastic Forming Conditions [C]. ASM International AeroMat 2004 Conference and Exposition. Journal of Materials Engineering and Performance, Seattle, USA 2004: 727~734.
    [63]蒲正利,朱志庆,叶红川,等. TC4钛合金表面α污染层及金相检测方法[J].钛工业进展, 2002, 1: 38~40
    [64] L. Wang, C. Meng, C. Liu, et al. Glass-Ceramic Protective Coating for Titanium Alloys [J]. Journal of American Ceramic Society, 2002, 85(11): 2867~2869.
    [65] Y. Xiong, S. Zhu, F. Wang. The oxidation behavior and mechanical performance of Titanium60 alloy with enamel coating [J]. Surface and Coatings Technology, 2005, 190: 195-199.
    [66] Z. Liu, G.E. Welsch. Literature Survey on Diffusivities of Oxygen, Aluminum, and Vanadium in Alpha Titanium, Beta Titanium, and in Rutile [J]. Metallurgical and Materials Transactions A, 1988, 19A: 1121~1125.
    [67] G.F. VanderVoort. Metallography:‘Principles and Practices’[M]. USA: ASM International, Materials Park. 1999: 88~93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700