用户名: 密码: 验证码:
高分子复合材料的界面研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
界面在高分子复合材料中占有很大比例,界面相互作用力的强弱决定着高分子复合材料的性能和应用,因此高分子复合材料的界面改性研究有着十分重要的意义。
     本论文首先开展了对有机填料型高分子复合材料-木质素/酚醛树脂的界面改性研究。第一种方法,通过两步磺化法提高了木质素中磺酸根的含量,增强了填料的极性,进而增强了界面粘结力。第二种方法通过酚化法增加了木质素中酚羟基的数量,改性后的木质素可与基底形成更多的共价键。两种方法都提高了产品的产率、耐热、耐光等性质。针对无机填料型高分子复合材料-碳酸钙/聚酯原位制备困难,碳酸钙分散差,界面作用力弱等问题,我们采用了聚乙二醇磷酸酯进行界面改性。由于这一高分子表面活性剂在无机粒子和基底之间形成了共价键桥,界面化学键的增加有助于产品性能的改善。实验表明产品的分散性、粘度、耐热等性质都得到改善。除此之外,我们还研究了高分子表面活性剂聚乙二醇磷酸酯对碳酸钙的界面诱导生长作用。结果表明在粒子生长过程中,高分子表面活性剂与无机粉体在界面的相互作用以及表面活性剂之间的相互作用,都对碳酸钙的结构和性质有影响。
Interface research has an important effect on the properties and application of the polymer composites. More and more people pay their attention to this area.
     This paper studies the interface of lignin/phenol formaldehyde(PF), CaCO3/poly (ethylene terephthalate) (PET), and CaCO3/polyethylene glycol phosphate (PGP).
     The first chapter describes two routes for improving the potential for partially replacing phenol with lignin in PF resin. The first method is the refinement of ligninsulphonate. The product prepared by the two-step sulfonation has a higher sulfonation degree, purity, and lower sugar content. The number of the polar function groups of lignin is increased, so it has the stronger interaction with PF. In the second method, phenolation and three-step polymerization were combined to increase the reactivity of black liquor lignin. The number of covalent bonds is increased between PF resin and lignin. Temperature stability, infrared and ultraviolet radiation resistances of the resins prepared by the two methods are both improved.
     Due to the reaction of CaCO3 with terephthalic acid (TPA), the interaction of CaCO3 and PET in the compound prepared by the in-situ polymerization is weak. PGP solves the main problems: the reaction of CaCO3 with TPA, the agglomeration of CaCO3 nanoparticles, and the morphology control of CaCO3 nanoparticles. PGP provides a large of hydroxy groups which can form covalent bonds with carboxyl groups of PET during the polymerization, enabling CaCO3 nanoparticles to attach to PET matrix via the covalent bond. Based on these researches, stearic acid (SA) was modified on the surface of PGP-CaCO3 nanoparticles by the post-treatment, and the hydrophobic CaCO3 is obtained. This kind of the hydrophobic CaCO3 has the better compatibility with the polymer, which can be filled in PET at the process of polycondensation. The two kinds of nanocomposite exhibite a better dispersion of small primary nanoparticles, a higher polymerization degree, a better thermal stability and lower carboxyl end group content.
     In the third chapter, the interface of PGP and CaCO3 is studied. PGP is modified on calcite surface via chemical bond,which controls and tunes the growth of CaCO3. The nanoparticles have a better dispersion in ethylene glycol. We discuss the influence of the experimental conditions on the dispersion. Based on this, hydrophobic CaCO3 was prepared at room temperature via a carbonization route in the presence of SA and PGP. FTIR demonstrates that SA and PGP are modified on CaCO3 surface via chemical bonds. The effects of the additives on the surface hydrophobicity of CaCO3 are examined. The cooperative interaction of SA and PGP at the interface plays a key role in the formation of the hydrophobic CaCO3. The modified CaCO3 with the contact angle of 106°is used to steady the emulsion of water and n-hexanol. We discuss the influence of the surfactant, time and the electrolyte on the stability of the Pickering emulsion.
引文
[1]伍章健.复合材料界面和界面力学[J].应用基础与工程科学学报,1995, 3(3): 302-313.
    [2]姜再兴,黄玉东,刘丽,孙宝华.界面化学反应对炭纤维/聚芳基乙炔复合材料界面性能的影响[J].固体火箭技术,2007, 30(6): 537-540.
    [3] AGHDAM M M, Falahatgar S R. Micromechanical modeling of interface damage of metal matrix composites subjected to transverse loading [J]. Compos Struct, 2004, 66: 415-420.
    [4] GUO L C, WU L Z, MA L. The interface crack problem under a concentrated load for a functionally graded coating - substrate composite system [J]. Compos Struct, 2004, 63: 397-406.
    [5]许并社.材料界面的物理与化学[M].北京:化学工业出版社,2006.
    [6]薛奇.高分子复合材料界面结构研究[J].功能高分子学报,1992,5(2): 132-138.
    [7] BARUS S, ZANETTI M, BRACCO P, MUSSO S, CHIODONI A, TAGLIAFERRO A. Influence of MWCNT morphology on dispersion and thermal properties of polyethylene nanocomposites [J]. Polym Degrad Stab, 2010, 95(5): 756-762.
    [8] BALOGUN Y A, BUCHANAN R C. Enhanced percolative properties from partial solubility dispersion of filler phase in conducting polymer composites (CPCs) [J]. Compos Sci Technol, 2010, 70(6): 892-900.
    [9] DENISENKO V D, DUPANOV V O, PRIVALKO E G, USENKO A A, PRIVALKO V P, LEBEDEV E V, ISHCHENKO S S. Physical characterization of polyurethanes reinforced with the in situ-generated silica-polyphosphate nano-phase [J]. Compos Sci Technol, 2006, 66(16): 3132-3137.
    [10] MANZI-NSHUTI C, WILKIE C A. Ferrocene and ferrocenium modified clays and their styrene and EVA composites [J]. Polym Degrad Stab,2007, 92(10): 1803-1812.
    [11]段予忠.塑料填料与改性[M].河南:河南科学技术出版社, 1985.
    [12]肖品东.纳米沉淀碳酸钙工业化技术[M].北京:化学工业出版社,2004.
    [13] ZHANG C, ZHANG M, CAO H, ZHANG Z, WANG Z, GAO L, DING M. Synthesis and properties of a novel isomeric polyimide/SiO2 hybrid material [J]. Compos Sci Technol, 2007, 67: 380-389.
    [14]陆绍荣.环氧树脂/二氧化硅-二氧化钛纳米杂化材料的制备及其性能研究[D].湘潭大学, 2005.
    [15] HARGARTER N, FRIEDRICH K, CATSMAN P. Mechanical properties of glass fiber/talc/polybutylene-terephthalate composites as processed by the radlite technique [J]. Compos Sci Technol, 1993, 46(3): 229-244.
    [16] SUN Q, SCHORK J F, DENG Y. Water-based polymer/clay nanocomposite suspension for improving water and moisture barrier in coating [J]. Compos Sci Technol, 2007, 67(9): 1823-1829.
    [17] ZHANG Y, FU S, ROBERT K, LI Y, WU J, LI L, JI J, YANG S. Investigation of polyimide - mica hybrid films for cryogenic applications [J]. Compos Sci Technol, 2005, 65: 1743-1748.
    [18] SINGH S, MOHANTY A K. Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation [J]. Compos Sci Technol, 2007, 67(9): 1753-1763.
    [19]钱伯章.国内外碳纤维应用领域、市场需求以及碳纤维产能的进展(1)[J].高科技纤维与应用,2009,34(5): 38-42.
    [20] BUNSELL A R, BERGER M H. Inorganic fibres for composite materials [J]. Compos Sci Technol, 1994, 51(2): 127-133.
    [21] ANDERSONS J, JOFFE R, HOJO M, OCHIAI S. Glass fibre strength distribution determined by common experimental methods [J]. Compos Sci Technol,2002, 62(1):131-145.
    [22] TOREKI W, BATICH C D, SACKS M D, SALEEM M, CHOI G J, MORRONE A A. Polymer-derived silicon carbide fibers with low oxygen content and improved thermomechanical stability [J]. Compos Sci Technol, 1994,51(2): 145-159.
    [23]张扬,李占一.一种新型硼纤维/环氧复合材料的研制[J].高科技纤维与应用,2007, 32(3): 17-19.
    [24]冈村,清人,权启朗.陶瓷纤维的制造方法及其在复合材料中的应用[J].兵器材料科学与工程, 1988, 57-64.
    [25]朱发坤,李智钢,舒文云.金属纤维在基托材料中作用的研究[J].口腔医学, 1999, 19(2): 77-78.
    [26] NORDIN L, VARNA J. Nonlinear viscoelastic behavior of paper fiber composites [J]. Compos Sci Technol, 2005, 65(10): 1609-1625.
    [27] MONEGO C J, BACKER S, QIU Y, MACHIDA K. Illustration of stress/strain behavior and yarn fragmentation in a pseudo-hybrid composite system [J]. Compos Sci Technol, 1994, 50(4): 451-456.
    [28]李兵,石宝山,周南桥,秦雪梅.木粉和发泡剂对PVC基木塑复合发泡材料性能的影响[J].塑料科技,2009, 37(5): 63-66.
    [29]李东风,王浩静,贺福,王心葵.碳纤维高温热处理技术进展[J].化工进展,2004, 23(8): 823-826.
    [30] NIHAT S C, NILGU L O. Use of organosolv lignin in phenol-formaldehyde resins,for particleboard production II. Particleboard production and propertiesInternational [J]. Int J Adhes Adhes, 2002, 22: 481-486.
    [31] MADALENO L, SCHJ?DT-THOMSEN J, PINTO J C. Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding [J]. Compos Sci Technol, 2010, 70(5): 804-814.
    [32] LEBEDEV E V, ISHCHENKO S S, DENISENKO V D, DUPANOV V O, PRIVALKO E G, USENKO A A, PRIVALKO V P. Physical characterization of polyurethanes reinforced with the in situ-generated silica-polyphosphate nano-phase [J]. Compos Sci Technol, 2006, 66(16): 3132-3137.
    [33] HINE P J, DAVIDSON N, DUCKETT R A, WARD I M. Measuring the fibre orientation and modelling the elastic properties of injection-moulded long-glass-fibre-reinforced nylon [J]. Compos Sci Technol, 1995, 53(2): 125-131.
    [34] DEAN J M, VERGHESE N E, PHAM H Q, BATES F S. Nanostructure toughened epoxy resins [J]. Macromolecules, 2003, 36(25): 9267–9270.
    [35] Habrard F, Ouisse T, Stéphan O. Conjugated polymer/molten salt blend optimization [J]. J Phys Chem B, 2006, 110(31): 15049–15051.
    [36]刘青喜,周兴平,解孝林,王春生,李承东.原位插层聚合制备PVC/蒙脱土纳米复合材料[J].聚氯乙烯, 2002, 2: 11-13.
    [37]王文军,刘金凤. LB膜的制备及其在光学中的应用[J].应用光学, 2004, 25(1): 52-54.
    [38] ZHOU Y, XIA Y. In situ strength distribution of carbon fibers in unidirectional metal-matrix composites-wires [J]. Compos Sci Technol, 2001, 61(14): 2017-2023.
    [39] HE F A, ZHANG L M. New polyethylene nanocomposites prepared by in-situ polymerization method using nickel a-diimine catalyst supported on organo-modified ZnAl layered double hydroxide [J]. Compos Sci Technol, 2007, 67: 3226-3232.
    [40] Spearing S M, Gregory J R. Nanoindentation of neat and in situ polymers in polymer–matrix composites [J]. Compos Sci Technol, 2005, 65: 595-607.
    [41] X Fan, L Lin, MESSERSMITH P B. Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator: A new route toward polymer–matrix nanocomposites [J]. Compos Sci Technol, 2006, 66(9): 1198-1204.
    [42]赵玉庭,姚希曾.复合材料基体与界面[M].上海:华东化工出版社,1991.
    [43]姚海.锚杆—锚固剂—岩体界面力学特性实验研究及其有限元分析[D].太原科技大学, 2008.
    [44]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社,1990.
    [45]徐涛,傅强.填料增强型高分子复合材料的界面作用及其表征技术研究进展[J].材料科学与工程学报, 2007, 125(12): 313-317.
    [46] STADTMUELLER L M, RATINAC K R, RINGER S P. The effects of intragallery polymerization on the structure of PMMA–clay nanocomposites [J]. Polymer, 2005, 46(23): 9574-9584.
    [47]陈凯,何晓娜,方小兵,彭志勤,胡国樑.纳米CaCO3对聚丙烯酸乳液胶粘剂性能的影响[J].浙江理工大学学报, 2010, 27(1): 59-63.
    [48] CHEN C H, TENG C C, SU S F, WU W C, YANG C H. Effects of microscale calcium carbonate and nanoscale calcium carbonate on the fusion, thermal, and mechanical characterizations of rigid poly(vinyl chloride)/calcium carbonate composites [J]. J Polym Sci Part B: Polym Phys, 2006, 44: 451–460.
    [49] ZHANG A, ZHAO G, GUAN Y, CHEN G. Study on mechanical and flow properties of acrylonitrile-butadiene-styrene/poly(methyl methacrylate)/nano-calcium carbonate composites [J]. Polym Compos, 2010, in press.
    [50] Y ZHOU, S WANG, Y ZHANG, Y ZHANG, X JIANG, D YI. Rheological properties of pdms filled with CaCO3: the effect of filler particle size and concentration [J]. J Appl Polym Sci, 2006, 101(5): 3395-3401.
    [51] WANG W, WANG G, ZENG X, SHAO L, CHEN J. Preparation and properties of nano-caco3/acrylonitrile-butadiene-styrene composites [J]. J Appl Polym Sci, 2007, 107(6): 3609-3614.
    [52] HU Z,ZEN X, GONG J, DENG Y. Water resistance improvement of paper by superhydrophobic modification with microsized CaCO3 and fatty acid coating [J]. Colloids Surf A, 2009, 351: 65-70.
    [53]高延敏,浦建光,孟祥铃,袁清峰,李为立.不同硬脂酸盐修饰云母耐腐蚀性研究[J].全面腐蚀控制, 2009, 23(2): 12-14.
    [54]肖俊峰,刘可慰,黄文德,肖荔人,陈庆华.稀土偶联剂对CaCO3表面改性的研究[J].上海塑料, 2009, 1: 19-23.
    [55]刘涛,洪凤宏,武德珍.木粉表面处理对PVC/木粉复合材料性能的影[J].中国塑料, 2005, 19(1): 27-30.
    [56] RAY S S, BANDYOPADHYAY J, BOUSMINA M. Thermal and thermomechanical properties of poly[(butylenes succinate)-co-adipate] nanocomposite [J]. Polym Degrad Stab, 2007, 92(5): 802-812.
    [57] LU S R, ZHANG H L, ZHAO C X, WANG X Y. Studies on the properties of a new hybrid materials containing chain-extended urea and SiO2–TiO2 particles [J]. Polymer, 2005, 46(23): 10484-10492.
    [58] YU T, LIN J, XU J, CHEN T, LIN S. Novel polyacrylonitrile nanocomposites containing Na-montmorillonite and nano SiO2 particle [J]. Polymer, 2005, 46(15): 5695-5697.
    [59] XUE X, YANG X, XIAO Y, ZHANG Q, WANG H. Ethylene polymerization using nickelα-diimine complex supported on SiO2/MgCl2 bisupport [J]. Polymer, 2004, 45(9): 2877-2882.
    [60]孙丽红,李新平,陈德强.表面活化滑石粉加添对新闻纸性能的影响[J].中国造纸,2008,27(6): 23-25.
    [61] BENALI S, PEETERBROECK S, BROCORENS P, MONTEVERDE F, BONNAUD L, ALEXANDRE M, LAZZARONI R, DUBOIS P. Chlorinated polyethylene nanocomposites using PCL/clay nanohybrid masterbatches [J]. Eur Polym J, 2008, 44(6): 1673-1685,
    [62]王少会,刘佩珍,徐卫兵,任凤梅,周正发.超分散剂改性滑石粉填充PP复合材料的性能研究[J].塑料工业, 2008, 36(1): 53-62.
    [63] WU L, CHEN P, ZHANG J, HE J. Inhibited transesterification and enhanced fibrillation of TLCP by nano-SiO2 in polycarbonate matrix [J]. Polymer, 2006, 47(1): 448-456.
    [64] GAN D, LU S, SONG C, WANG Z. Mechanical properties and frictionalbehavior of a mica-filled poly(aryl ether ketone) composite [J]. Eur Polym J, 2001, 37(7): 1359-1365.
    [65]生瑜,朱德钦,王剑峰,张丽珍,朱振榕. CaCO3表面包覆改性及其对填充PP力学性能的影响[J].高分子学报, 2008, 8: 813-817.
    [66] MA X, LIU Y, YU Y, LEI H, LV X, ZHAO L, REN S, WANG Z. The influence of the different modifying agents on the synthesis of poly(methylmethacrylate)-calcium carbonate nanocomposites via soapless emulsion polymerization [J]. J Appl Polym Sci, 2008, 108: 1421-1425.
    [67] KIM S H, KWAK S Y, SUZUKI T. Photocatalytic degradation of flexible PVC/TiO2 nanohybrid as an eco-friendly alternative to the current waste landfill and dioxin-emitting incineration of post-use PVC [J]. Polymer, 2006, 47(9): 3005-3016.
    [68]左建华.滑石粉有机高分子化改性及在PVC中应用[J].现代塑料加工应用, 2005, 17(1): 8-11.
    [69] ZHOU X P, XIE X L, YU Z Z, MAI Y W. Intercalated structure of polypropylene/in situ polymerization-modified talc composites via melt compounding [J]. Polymer, 2007, 48(12): 3555-3564.
    [70]马晓坤.无机纳米粒子的表面修饰及功能性无机/有机复合微球的制备[D].吉林大学,2007.
    [71] GAO X, XU J, CHEN Z, DENG C, SHEN. Improved mechanical properties and structure of PP/nano-CaCO3 blends prepared by low-frequency vibration injection molding [J]. Polym Int, 2008, 57: 23–27.
    [72]余天石,黄志明,朱云新,汤继忠.氯乙烯-丙烯腈共聚物/二氧化硅纳米复合材料的制备[J].聚氯乙烯, 2008, 36(8): 8-10.
    [73]毋伟,陈建峰,卢寿慈.超细粉体表面修饰[M].北京:化学工业出版社, 2004.
    [74]陈亚东,张时魁,张慧波,张永春. PUR弹性体/超细滑石粉复合材料的结构及性能研究[J].工程塑料应, 2008, 36(9): 20-23.
    [75] GONZALEZ J, ALBANO C, ICHAZO M, DIAZ B. Effects of coupling agents on mechanical and morphological behavior of the PP/HDPE blend with two different CaCO3 [J]. Eur Polym J, 2002, 38: 2465–2475.
    [76] ZHOU B, JI X, SHENG Y, WANG L, JIANG Z. Mechanical and thermal properties of poly-ether ether ketone reinforced with CaCO3 [J]. Eur Polym J,2004, 40(10): 2357-2363.
    [77] HOJJATI B, SUI R, CHARPENTIER P A. Synthesis of TiO2/PAA nanocomposite by RAFT polymerization [J]. Polymer, 2007, 48(20): 5850-5858.
    [78] SUN S, LI C, ZHANG L, DU H L, BURNELL-GRAY J S. Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly(vinyl chloride) composites [J]. Eur Polym J, 2006, 42(7): 1643-1652.
    [79] KE Y C, WU T B, XIA Y F. The nucleation, crystallization and dispersion behavior of PET–monodisperse SiO2 composites [J]. Polymer, 2007, 48(11): 3324-3336.
    [80]张良均,童身毅,樊庆春,许志伟,田秀云.界面改性剂对PP/滑石粉形态结构和性能影响[J].现代塑料加工应用, 2004, 16(6): 34-36.
    [81]涂春潮,裴高林,米志安,黄艳华,赖亮庆.云母/硅橡胶复合材料的硫化特性研究[J].有机硅材料,2009, 23(1): 23~26.
    [82] L GHANNAM, M BACOU, GARAY H, SHANAHAN MER, FRAN?OIS J, BILLON L. Elastomer monolayers adsorbed on mica surfaces by nitroxide-mediated polymerization [J]. Polymer, 2004, 45: 7035–7045.
    [83] MANITIU M, HORSCH S, GULARI E, KANNAN R M. Role of polymer–clay interactions and nano-clay dispersion on the viscoelastic response of supercritical CO2 dispersed polyvinylmethylether (PVME)–Clay nanocomposites [J]. Polymer, 2009, 50(15): 3786-3796.
    [84]潘琰,具有特殊形貌的碳酸钙材料的仿生合成及表征[D].吉林大学, 2007.
    [85]王成毓,功能性纳米碳酸钙的仿生合成及表征[D].吉林大学,2007.
    [86] ZHENG Z,HUANG B, MA H, ZHANG X, LIU M, LIU Z, WONG K W, LAU W M. Biomimetic growth of biomorphic CaCO3 with hierarchically ordered cellulosic structures [J]. Cryst Growth Des, 2007, 7(9): 1912-1917.
    [87]官叶斌.以有机基质为模板仿生合成碳酸钙[D].安徽师范大学,2007.
    [88]张春艳,谢安建,沈玉华,张丽.聚乙二醇对碳酸钙晶体生长影响的研究[J].安徽大学学报,2008, 32(1): 74-77.
    [89]赵丽娜.碳酸钙的形貌控制及表面改型研究[D].吉林大学, 2009.
    [90] MATAHWA H, RAMIAH V, SANDERSON R D. Calcium carbonate crystallization in the presence of modified polysaccharides and linear polymeric additives [J]. J Cryst Growth, 2008, 310: 4561–4569.
    [91] DENG S G, CAO J M, FENG J, GUO J, FANG B Q, ZHENG M B, TAO J. A bio-inspired approach to the synthesis of CaCO3 spherical assemblies in a solubleternary-additive system [J]. J Phys Chem B, 2005, 109: 11473-11477.
    [92] YANG XD, XU GY, CHEN YJ, WANG F, MAO HZ, SUI WP, BAI Y , GONG HJ. CaCO3 crystallization control by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer and O-(hydroxy isopropyl) chitosan [J]. J Cryst Growth, 2009, 311(21): 4558-4569.
    [93]李玲.表面活性剂与纳米技术[M].北京:化学工业出版社,2003.
    [1] LATEEF H, GRIMES S, KEWCHAROENWONG P, FEINBERG B. Separation and recovery of cellulose and lignin using ionic liquids: a process for recovery from paper-based waste [J]. J Chem Technol Biotechnol, 2010, in press.
    [2] RAJ A, REDDY M M K, CHANDRA R. Decolourisation and treatment of pulp and paper mill effluent by lignin-degrading Bacillus sp [J]. J Chem Technol Biotechnol, 2007, 82: 399-406.
    [3] SUPARNO O, COVINGTON A D, EVANS C S. Kraft lignin degradation products for tanning and dyeing of leather [J]. J Chem Technol Biotechnol, 2005, 80: 44-49.
    [4] SIERRA-ALVAREZ R LETTINGA G. The methanogenic toxicity of wastewater lignins and lignin related compounds [J]. J Chem Technol Biotechnol, 1991, 50: 443-455 .
    [5] BURANOV A U, MAZZA G. Lignin in straw of herbaceous crops [J]. Ind Crop Prod 2008, 28: 237–259.
    [6] EFFENDI A, GERHAUSER H, BRIDGWATER A V. Production of renewable phenolic resins by thermochemical conversion of biomass: A review [J]. Renew Sust Energ Rev, 2008, 12: 2092-2116.
    [7] CETIN N S, OZMEN N. Use of organosolv lignin in phenol–formaldehyde resins for particleboard production I. Organosolv lignin modified resins [J]. Int J Adhes Adhes, 2002,22: 477–480.
    [8] BROWN S A. Chemistry of Lignification: Biochemical research on lignins is yielding clues to the structure and formation of these complex polymers [J]. Science, 1961, 134: 305-313.
    [9] ALRIOLS M G, TEJADO A, BLANCO M, MONDRAGON I, LABIDI J. Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process [J].Chem Eng J, 2009, 148: 106–114.
    [10] HOONG Y B, PARIDAH M T, LUQMAN C A, KOH M P, LOH Y F. Fortification of sulfited tannin from the bark of Acacia mangium with phenol–formaldehyde for use as plywood adhesive [J]. Ind Crop Prod, 2009, 30: 416–421.
    [11] LEE W J, CHEN Y C. Novolak PF resins prepared from phenol liquefied cryptomeria japonica and used in manufacturing moldings [J].Bioresour Technol, 2008, 99: 7247–7254.
    [12] JIN Y, CHENG X, ZHENG Z. Preparation and characterization of phenol–formaldehyde adhesives modified with enzymatic hydrolysis lignin [J]. Bioresour Technol, 2010, 101: 2046–2048.
    [13] ALONSO M V, OLIET M, RODRI′GUEZ F, ASTARLOA G, ECHEVERRI′A J M. Use of a methylolated softhreeod ammonium lignosulfonate as partial substitute of phenol in resol resins manufacture [J]. J Appl Polym Sci, 2004, 94: 643–650.
    [14] TEJADO A, KORTABERRIA G, PE?A C, BLANCO M, LABIDI J, ECHEVERRI′A J M, MONDRAGON I. Lignins for phenol replacement in novolac-type phenolic formulations. II. Flexural and compressive mechanical properties [J]. J Appl Polym Sci, 2008, 107: 159–165.
    [15] ALONSO M V, OLIET M, RODRIQUEZ F, GRACIA J, GILLARRANZ M A, RODRIQUEZ J J. Modification of ammonium lignosulfonate by phenolation for use in phenolic resins [J].Bioresour Technol, 2005, 96: 1013-1018.
    [16] MATSUSHITA Y, YASUDA S. Preparation of anion-exchange resins from pine sulfuric acid lignin, one of the acid hydrolysis lignins [J]. J Wood Sci, 2003, 49: 423–429.
    [17] GOSSELINK R J A, AB?CHERLI A, SEMKE H, MALHERBE R, K?UPER P, NADIF A, VAN DAMA J E G. Analytical protocols for characterisation of sulphur-free lignin [J]. Ind Crop Prod, 2004, 19: 271–281.
    [18] HATTALLIA S, BENABOURAA A, HAM-PICHAVANTB F, NOURMAMODEB A,CASTELLANB A. Adding value to Alfa grass (Stipa tenacissima L) soda lignin as phenolic resins 1. Lignin characterization [J].Polym Degrad Stab,2002,76: 259–264.
    [19] NADA A M A, EL-SAIED H, IBRAHEM A A, YOUSEF M A. Waste liquors from cellulosic industries. IV. Lignin as a component in phenol formaldehyde resol resin [J]. J Appl Polym Sci, 1987, 33: 2915–2924.
    [20] MI′CI′C M, JEREMI′C M, RADOTI′C K, MAVERS M, LEBLANC R M. Visualization of artificial lignin supramolecular structures [J]. Scanning, 2000, 22: 288–294.
    [1]李旭明,颜杰,唐楷,易家宝.单十二烷基磷酸酯合成工艺研究[J].云南大学学报, 2008, 30: 355~358.
    [2]强西怀,廖银念,刘琳琳,方银军,高慧.长链脂肪醇醚(5)磷酸酯合成新方法的研究[J].日用化学工业, 2005, 35 (6): 357-360.
    [3] E·埃塞尔博恩,S·西尔伯,A·g内贝尔坎普,E·路透,S·斯塔特米勒,T·博伊诺维茨,C·普西奥兹.磷酸酯及其作为分散剂的用途:中国,CN101096387 [P].2008-01-02.
    [4]张心亚,陈焕钦.磷酸酯表面活性剂在乳液形成中的应用[J].日用化学工业,2003,33(3): 147-152.
    [5]周大鹏,杜志平,赵永红,张广良,李莉,马东海.磷酸酯改性纳米氢氧化镁的研究[J].日用化学工业,2009, 39(4): 241-244.
    [6]赵丽娜,赵旭,任素霞,刘莹,王子忱.碳酸钙的原位合成及表面改性[J].物理化学学报, 2009, 25(1):47-52。
    [7]李明罡,功能型纳米氧化锌及其磷酸酯系列表面修饰剂的合成研究[D].吉林大学,2008.
    [8] TANG L, ZHOU B, TIAN Y, SUN F, LI Y, WANG Z. Synthesis and surface hydrophobic functionalization of ZnO nanocrystals via a facile one-step solution method [J]. Chem Eng J, 2008, 139: 642–648.
    [9] HUA W, LIU T. Preparation and properties of highly stable innocuous niosome in Span 80/PEG 400/H2O system [J]. Colloids Surf A, 2007, 302: 377-382.
    [10] AHN S, AHN S W, SONG S. Thermothickening modification of poly(ethylene glycol) and amino acid ester grafted polyphosphazenes by monomethyl end-capped poly(ethylene glycol) addition [J]. Colloids Surf A, 2009, 333(5): 82-90.
    [11] BUTTERWORTH M D, ILLUM L, DAVIS S S. Preparation of ultrafine silica- and PEG-coated magnetite particles [J]. Colloids Surf A, 2001, 179(1): 93-102.
    [12] BEDU-ADDO F K, HUANG L. Interaction of PEG with ionic surfactant SDS to form template for mesoporous material [J]. Colloids Surf A, 2005, 252(1): 71-77.
    [13] SHENG Y, ZHOU B, ZHAO X, WANG C, LIU Y, WANG Z. Template-assisted preparation of chainlike CaCO3 [J]. Mater Lett, 2006, 60(11): 1366-1368.
    [14] ZHANG Z, WANG C, YANG Z, CHEN C, MAI K. Crystallization behavior and melting characteristics of PP nucleated by a novel supported-nucleating agent [J]. Polymer, 2008, 49: 5137-5145.
    [15] WANG H, TANG L, WU X, DAI W, QIU Y. Fabrication and anti-frosting performance of super hydrophobic coating based on modified nano-sized calcium carbonate and ordinary polyacrylate [J]. J Appl Surf Sci 2007, 253: 8818-8824.
    [16] KISS A, FEKETE E, PUKáNSZKY B. Aggregation of CaCO3 particles in PP composites: effect of surface coating [J]. Compos Sci Technol, 2007, 67: 1574-1583.
    [17] RUDLOFF J, ANTONIETTI M, C?LFEN H, PRETULA J, KALUZYNSKI K, PENCZEK S. Double-hydrophilic block copolymers with monophosphate ester moieties as crystal growth modifiers of CaCO3 [J]. Macromol Chem Phys, 2002, 203: 627-635.
    [18] LAZZERIA A, ZEBARJADB S M, PRACELLAC M, CAVALIERD K, ROSAD R. Filler toughening of plastics. part 1- the effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites [J]. Polymer, 2005, 46: 827-844.
    [19] LIN Y, CHEN H, CHAN C, WU J. High impact toughness polypropylene/CaCO3 nanocomposites and the toughening mechanism [J]. Macromolecules, 2008, 41: 9204-9213.
    [20] MA C G, MAI Y L, RONG M Z, RUAN W H, ZHANG M Q. Phase structure and mechanical properties of ternary polypropylene/elastomer/nano-CaCO3 composites [J]. Compos Sci Technol, 2007, 67: 2997-3005.
    [21] LU M, ZHOU W, MAI K. Effect of nano-CaCO3 on polymorphic behavior in syndiotactic polystyrene for non-isothermal crystallization [J]. Polymer, 2006, 47:1661-1666.
    [22] BALA H, DING X, GUO Y, DENG Y, WANG C, LI M, WANG Z. Multigram scale synthesis and characterization of monodispersed cubic calcium carbonate nanoparticles [J]. Mater Lett, 2006, 60: 1515–1518.
    [23] AQUILANO D, CALLERI M, NATOLI E, RUBBO M, SGUALDINO G. The {1 0 4} cleavage rhombohedron of calcite: theoretical equilibrium properties [J]. Mater Chem Phys, 2000, 66: 159-163.
    [24] SHENG Y, ZHOU B, ZHAO J Z, TAO N N, YU K F, TIAN Y M, WANG Z C. Influence of octadecyl dihydrogen phosphate on the formation of active super-fine calcium carbonate [J]. J Colloid Interface Sci, 2004, 272: 326-329.
    [25] LOCHHEAD M J, LETELLIER S R, VOGEL V. Assessing the role of interfacial electrostatics in oriented mineral nucleation at charged organic monolayers [J]. J Phys Chem B, 1997,101: 10821-10827.
    [26] KAKARANIYA S, GUPTA A, MEHRA A. Reactive precipitation in gas-slurry systems: the CO2-Ca(OH)2-CaCO3 system [J]. Ind Eng Chem Res, 2007, 46: 3170-3179.
    [27] YANG X, LEE H Y, YOU S G, KI J. pH- and temperature-dependent release from cationic vesicles coexisting with copolymer of N-isopropylacrylamide and methacrylic acid [J]. Colloids Surf A, 2009, 348: 109-115.
    [28] FRITH W J, PICHOT R, KIRKLAND M, WOLF B. Formation, stability, andrheology of particle stabilized emulsions: influence of multivalent cations [J]. Ind Eng Chem Res, 2008, 47(17): 6434–6444.
    [29] CHEN T, COLVER P J, BON S A F. Organic–inorganic hybrid hollow spheres prepared from tio2-stabilized pickering emulsion polymerization [J].Adv Mater, 2007, 19: 2286–2289.
    [30] LIU B, WEI W, QU X, YANG Z. Janus colloids formed by biphasic grafting at a pickering emulsion interface [J]. Angew Chem Int Ed, 2008, 47: 3973–3975.
    [31] CHEN J H, CHENG C Y, CHIUW Y, LEE C F, LIANG N Y. Synthesis of ZnO/polystyrene composites particles by Pickering emulsion polymerization [J]. Eur Polym J, 2008, 44: 3271–3279.
    [1] STOLTERFOHT N, HELLHAMMER R, FINK D, SULIK B, JUHáSZ Z, BODEWITS E, DANG H M, HOEKSTRA R. Time evolution of ion guiding through nanocapillaries in a PET polymer [J]. Nucl Instrum Methods Phys Res Sect B,2004, 225: 169-177.
    [2] NAGASE, HISATO. Polyester resin composition containing organic modified layered silicate [P]. US20070015859, January 2007.
    [3] KIM, SUNG DUG. High flow polyester composition, method of manufacture, and uses thereof [P]. US20070049702, March 2007.
    [4] LU H, WANG H L, ZHENG AN, XIAO HN. Hybrid poly(ethylene terephthalate)/silica nanocomposites prepared by in-situ polymerization [J]. Polym Compos, 2007, 28(1): 42-46.
    [5] WU T, KE Y. Preparation of silica-PS composite particles and their application in PET [J]. Eur Polym J, 2006, 42(2): 274-285.
    [6] CHANG J, KIM S J, JOO Y L, IM S. Poly(ethylene terephthalate) nanocomposites by in situ interlayer polymerization: the thermo-mechanical properties and morphology of the hybrid fibers [J]. Polymer, 2004, 45: 919–926。
    [7] KOIDIS C, LOGOTHETIDIS S, LASKARAKIS A, TSIAOUSSIS I, FRANGIS N. Thin film and interface properties during ZnO deposition onto high-barrier hybrid/PET flexible substrates [J]. Micron, 2009, 40: 130–134.
    [8]施利毅,丁鹏,杨慧,葛春华,陈德杰,胡秀兰.纳米阻燃聚对苯二甲酸乙二醇酯工程塑料及其制备方法[P].CN101280097,2008-10-08.
    [9]褚艳红,郭欢欢,张国宝,赵根锁,余守志,王经武.功能化纳米碳酸钙母料的制备与表征[J].化工矿物与加工,2008, 3: 17-22.
    [10]郭涛,王炼石,蔡彤,曾祥斌.镧化物改性超细碳酸钙对PET非等温结晶行为的影响[J].高分子材料科学与工程2005, 21(03):173-176.
    [11] HER K Y, KIM D H, LIM S. Preparation of PET nanocomposites: dispersion
    
    of nanoparticles and thermal properties [J]. International Journal
    Of Precision Engineering And Manufacturing, 2008, 9(4): 71-73.
    [12] LORENZO M L D, ERRICO M E, AVELLA M. Thermal and morphological
    characterization of poly(ethylene terephthalate)/calcium carbonate
    nanocomposites [J]. J Mater Sci, 2002, 37: 2351–2358.
    [13]刘海明,王锐,张大省. PET/无机纳米粒子复合物的制备及性能[J].合
    成纤维工业, 2006, 29(3): 15-17.
    [14]刘学习,庄辉,张大陆,程振民,戴干策.纳米硫酸钡增强PET复合材料
    性能研究[J].塑料工业, 2007, 35(4): 35-37.
    [15] FAN X F, CHEN D J. The effect of attapulgite on crystallization
    behavior of Poly(ethylene terephthalate) (PET)/Attapulgite (AT)
    nano composites [J]. E-polymers Art, 2007, No.116.
    [16] ZHANG G Q, SUN F, GAO L P, WANG L N, SHAO M, LIU J Q. Thermodynamics
    properties and isothermal crystallization kinetics of carbon
    black/poly(ethylene terephthalate) composites [J]. J Compos
    Mater, 2007, 41(12): 1477-1485.
    [17] LAOUTID F, BONNAUD L, ALEXANDRE M, LOPEZ-CUESTA JM, DUBOIS P. New
    prospects in flame retardant polymer materials: from fundamentals
    to nanocomposites [J]. Mater Sci Eng R, 2009, 63: 100–125.
    [18] WANG D,LIU X, WANG J,WANG Y,STECB A A,HULL T R. Preparation and
    characterisation of a novel fire retardant PET/α-zirconium
    phosphate nanocomposite [J]. Polym Degrad Stab, 2009,94(4):
    544-549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700