用户名: 密码: 验证码:
苯胺激发态的动力学及醛类与小分子反应动力学的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要做了三方面的工作如下:第一部分是苯胺激发态动力学方面的研究;第二部分为甲醛与臭氧的反应机理和动力学的研究;第三部分是乙醛与甲氧基自由基的反应机理和动力学的研究。
     在苯胺激发态动力学方面的研究中,我们首先需要构建模型哈密顿函数,耦合多方面的参数,这里包括了苯胺的六个电子态。采用K ppel等人的二次振动耦合哈密顿算符。这些参数是通过拟合大量的运动方程耦合簇原理,以及双激发的EOM-CCSD方法得到的。在4.0–6.0eV区域进行了吸收光谱的计算和分析。
     基于二次振动耦合模型的哈密顿算符用于研究苯胺的电子吸收光谱。拟合了大量的EOM-CCSD计算结果得到模型哈密顿函数的参量。与CASSCF和SAC-CI相比,EOM-CCSD方法得到的结果在第二个ππ*态附近有2个3p里德伯态。采用CR-EOM-CCSD(T)方法得到的结果与EOM-CCSD一致。
     采用模型哈密顿函数,波包传播计算了激发到A (ππ*)和B (π*/3s)态的吸收光谱,其中发现A (ππ*)和C (3pz)有强烈的耦合作用。对于A (ππ)光谱,线性偶极激发算符,以及Herzberg-Teller效应的运用显得至关重要。
     激发到E (ππ)的光谱,通过模型哈密顿函数能非常好的表示出来。短时动力学研究表明,D (3py)和C (3pz)态表现活跃。但是实验提出的从E (ππ)态到基态的最有可能的路径没有包含在模拟中,因为在模型中没有设置S1/S0交叉点的存在。所以下一步的工作希望能找出更合理的模型势能函数,包含更合理的构型区间。
     第二部分研究了甲醛与臭氧的反应机理和动力学性质。
     甲醛和臭氧广泛存在于地球表面大气层中。近些年,臭氧机被用来―减少‖室内污染物。然而通过臭氧机与室内不饱和有机物的反应会产生醛类产物,这使得室内污染物并没有减少,反而加大了危害。尽管甲醛和臭氧的反应在很早就开始了研究,但是远没像乙醛与臭氧反应那样受到重视。Li等人开展了用臭氧去除室内甲醛的实验研究,结果发现其反应速率低,效果不佳。
     采用BMC-CCSD//BHandHLYP/6-311+G(d,p)方法计算了甲醛(CH2O)和臭氧(O3)在单重态和三重态上的势能面。提出了多条可能的异构化和解离反应路径。在单重态和三重态势能面上均找到了氢提取,氧提取,碳加成消除这三类反应通道。反应的主要通道是通过氢提取过程生成HCO和HOOO。采用过渡态(TST)理论和多通道RRKM理论计算了多个温度和压力下主要通道的反应速率和总速率,反映出温度强依赖和压力弱依赖的性质。
     第三部分是乙醛与甲氧基自由基的反应机理和动力学性质的研究。
     甲氧基是有机物燃烧的重要中间体,特别是在挥发性有机化合物的氧化过程中,广泛存在。此外,乙醛虽然是一种大气污染物,但也能用来消除空气中部分挥发性有机化合物。不管是生物作用还是人类活动,都大量产生这两种物质。甲氧基作为最小的烷氧基与乙醛这种最典型的醛类反应的研究,有很重要的意义。
     采用了密度泛函(B3LYP)理论和从头算电子相关(MP2)方法,结合6-311+G(d,p)基组进行了构型的优化。因MP2方法有较大的自旋污染,且与实验构型比较也没有B3LYP方法好,所以采用了B3LYP优化后的构型。在BMC-QCISD//(U)B3LYP/6-311+G(d,p)水平下进行了势能面的系统研究,发现醛基中的氢提取,生成CH3CO和CH3OH为主反应,与实验结果一致。并得出在298K时的速率常数为8.73E-15cm3molecule-1s-1,与实验结果符合得非常好(8.30E-15cm3molecule-1s-1)。对于形成P3和P4的加成消除反应通道,我们推测不是传统的醛类的亲核加成消除反应,但可以用轨道理论进行解释。中间体IM1通过乙醛的HOMO(π轨道)和甲氧基中的LUMO(π*轨道)加成得到。运用过渡态理论和多通道的RRKM理论,我们发现该体系对温度有强依赖,氢提取对压力没有依赖,加成消除反应对压力有一定的依赖,但是在总速率中所占比率太小,所以总反应对压力是没有依赖的。
Formaldehyde (CH2O) and ozone (O3) are ubiquitous species in the atmosphereand at the surface of the Earth. Formaldehyde is a significant pro-knock additive ofthe methane-base fue and is particularly an important intermediate in the oxidation ofalcohols, ethers, and hydrocarbons in general. Moreover, formaldehyde leads to largeaccumulation in air and final pollution because of the thermodynamic stability.Therefore, it causes an environmental concern, especially influence of indoorformaldehyde on health. In recent years, the use of ozone intentionally produced by anozone generator, has been promoted as a means to―reduce‖the concentration ofindoor pollutants. However, reactions between ozone and certain unsaturated organiccompounds in indoor environments have been shown to generate large amount ofaldehydes, which are more reactive and/or irritating than their precursors. Therefore,the consequences of the emission of formaldehyde have been the object of severalstudies. Though the emissions of formaldehyde are related to the ozone as statedearlier, less attention was paid to the reaction of aldehyde with ozone. The relevantkinetic data are desirable to understand the reaction mechanism, to establish theimpact on the ozone, and perform kinetics modeling for the chemical process ofindoor environments. Li et al. experimentally investigated the ozone on removingindoor formaldehyde, and they found that ozone was not effective in formaldehyderemoval through releasing ozone into the room because of the small rate constant.
     Much attention has been paid recently to the photochemistry and photophysics ofsmall heteroaromatic molecules, such as phenols, indoles and pyrroles. Such interesthas been invoked partly due to their being analogues of the chromophores ofbiologically important molecules, including the DNA bases and aromatic amino acids.This class of molecules is remarkable for their low fluorescence quantum yields, aproperty that has it’s origins in efficient non-radiative relaxation pathways that exist toconnect the ground and electronically excited states. Indeed, this property is believedto endow with photostability the fundamental building blocks of life. Much of theunderstanding of the mechanisms by which these heteroaromatic species are renderedphotoresistive has come from the theoretical studies performed by Sobolewski andcoworkers. In this pioneering work, the presence of low-lying singlet B (π*/3s)states that are dissociative with respect to a heteroatom-hydride bond was suggestedas providing highly efficient pathways to conical intersections with the ground statethat could constitute a universal mechanism for ultrafast electronic relaxation.Consequent experimental and theoretical studies have served to both confirm the important role played by B(π*/3s) states in the excited state dynamics ofheteroaromatic species and the wide-range of systems in which this mechanism isprominent. The focus of this work is the photoinduced dynamics of the prototypicalaromatic amine aniline. Through a number of experimental4and theoretical6studies,the electronic spectrum of aniline in the region4.0to6.0eV is known to bedominated by two bands centred at4.35eV and5.39eV, each corresponding toexcitation to one the first two ππ states. Further, a single low-lying B (π*/3s) statehas been identified to exist between these two3p states at an energy of4.6eV by the(2+2) resonance enhanced multiphoton ionisation measurements of Ebata et al.7
     Recent experimental studies of the excited state dynamics of aniline have servedto reveal the rich and complex photochemistry of this molecule. Through the use of ofenergy-resolved H (Rydberg) atom photofragment translational spectroscopymeasurements, Ashfold et al.8reasoned that for excitation energies in excess of4.60eV, N-H dissociation via the S2(π*/3s) state occurs, with the dissociation proceedingdiabatically to produce ground state anilino radicals. The timeresolved ion yieldstudies of Montero and co-workers9furnished both short (165fs) and long (tens ofpicoseconds to nanoseconds) timescales for relaxation following excitation in therange4.60to5.17eV. These timescales were attributed, respectively, to dissociationon the S2(π*/3s) surface, and sequential transfer of population to the S2(ππ)) and S0surfaces. Using femtosecond pump-probe velocity map imaging, Stavros et al. reporta timescale of155fs for the formation of both high and low kinetic energy H-atomsfollowing excitation at5.17eV. Further, excitation to the S1(ππ)) state was found tonot result in direct N-H dissociation. Employing time-resolved photoelectron imaging,Fielding and co-workers find that excitation at energies between5.17and5.21eVresults in a time-scale of decay of <100fs.11,12This is attributed to excitation to thesecond, bright (ππ) state followed by ultrafast internal conversion to the ground state.
     The alkoxy radicals1are key intermediates during the combustions, especiallythe oxidation of volatile organic compounds (VOC). In the same way, acetaldehydeplays an important role in both clean and polluted atmosphere because of VOCoxidation. Both alkoxy radicals and acetaldehydes are emitted into the tropospherefrom biogenic and anthropogenic sources. CH3O and acetaldehyde are the typicallyalkoxy radicals and aldehyde, so it is significant to study the chemical reaction ofCH3O with acetaldehyde.
     The potential energy surface for CH3O and CH3CHO is theoretically researchedat the BMC-QCISD//(U)B3LYP/6-311+G(d,p) level. Three kinds of mechanisms arefound: hydrogen abstraction, addition-elimination andaddition-isomerization-elimination. The addition reaction can be explained by π-πaddition, not nucleophili addition reaction. The TST and multichannelRice–Ramsperger–Kassel–Marcus theory are carried out rate constants fordeterminant channels over a wide range of temperatures and pressures. The major products of the total reaction are CH3CH and CH3OH. The individual rate constant(k1=8.73E-15cm3molecule-1s-1) is good agree with the experiment (8.30E-15cm3molecule-1s-1) at298K. The total rate constant is also in good accordance withexperimental results.
引文
[1]唐敖庆,李前树.应用量子化学[M].北京市:知识出版社,1987.12-40.
    [2]徐光宪,黎乐民,王德民量子化学——基本原理和从头计算法(第二版)[M].北京:科学出版社,2009.1-48.
    [3]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982.1-33.
    [4]陈念陔,高坡,乐征宇.量子化学理论基础[M].哈尔滨:哈尔滨工业大学出版社,2002.2-48.
    [5]金松寿.量子化学基础及其应用[M].上海:上海科学技术出版社,1980.
    [6]王殿勋.2001科学发展报告[R].北京:科学出版社,2001,86.
    [7] McElroy M B, Salawitch R J, Wofsy S C, et al. Reductions of antarctic ozone due tosynergistic interactions of chlorine and bromine[J]. Nature,1986,321(6072):759-762
    [8]刘静玲.环境污染与控制[M].化学工业出版社,2001,282.
    [9]秦大河.大气臭氧层和臭氧空洞[M].气象出版社,2003年3月第一版,187.
    [10]王明星.大气化学[M].气象出版社,1999,467.
    [11]Montzka S A, Butler J H, Mayers R C, et al. Decline in the tropospheric abundance of halogenfrom halocarbons: Implications for stratospheric ozone depletion[J]. Science,1996,272(5266):1318-1322.
    [12] Cederbaum L S, K ppel H, Domcke W, Multimode vibronic coupling effects in molecules[J].International Journal of Quantum Chemistry1981,20(S15),251-267.
    [13] Worth G A, Beck M H, J ckle A, et al. The MCTDH Package, Development Version9.0,
    [EB/OL]. http://www.pci.uniheidelberg.de/tc/usr/mctdh/.2008.
    [14] Montero R, Conde A P, Ovejas V, et al. Ultrafast dynamics of aniline in the294-234nmexcitation range: the role of the π*state[J]. The Journal of chemical physics2011,135(5),054308.
    [15] Beck M H, J ckle A, Worth G A, et al. The multiconfiguration time-dependent Hartree(MCTDH) method: a highly efficient algorithm for propagating wavepackets[J]. Physics Reports2000,324(1),1-105.
    [16] Worth G A, Meyer H D, K ppel H, et al. Using the MCTDH wavepacket propagation methodto describe multimode non-adiabatic dynamics[J]. International Reviews in Physical Chemistry2008,27(3),569-606.
    [17] Light J C, Hamilton I P, Lill J V, Generalized discrete variable approximation in quantummechanics[J]. The Journal of chemical physics1985,82(3),1400-1409.
    [18] Honda Y, Hada M, Ehara M, et al. Excited and ionized states of aniline: Symmetry adaptedcluster configuration interaction theoretical study[J]. The Journal of chemical physics2002,117(5),2045-2052.
    [19] Ebata T, Minejima C, Mikami N, A new electronic state of aniline observed in the transientIR absorption spectrum from S1in a supersonic jet[J]. Journal of Physical Chemistry A2002,106(46),11070-11074.
    [20] King G A, Oliver T A A, Ashfold M N R, Dynamical insights into1π state mediatedphotodissociation of aniline[J]. Journal of Chemical Physics2010,132(21),214307-214318.
    [21] Becke A D, A new mixing of Hartree-Fock and local density-functional theories[J]. TheJournal of Chemical Physics1993,98(2),1372-1377.
    [22] Lee C, Yang W, Parr R G, Development of the Colle-Salvetti correlation-energy formula intoa functional of the electron density[J]. Physical Review B1988,37(2),785-789.
    [23] Klopman G, Joiner C M, New evidence in the mechanism of ozonolysis of olefins[J]. Journalof the American Chemical Society1975,97(18),5287-5288.
    [24] Gonzalez C, Bernhard Schlegel H, An improved algorithm for reaction path following[J]. TheJournal of Chemical Physics1989,90(4),2154-2161.
    [25] Gonzalez C, Schlegel H B, Reaction path following in mass-weighted internal coordinates[J].Journal of Physical Chemistry1990,94(14),5523-5527.
    [26] Lynch B J, Zhao Y, Truhlar D G, The6-31B(d) Basis Set and the BMC-QCISD andBMC-CCSD Multicoefficient Correlation Methods[J]. The Journal of Physical Chemistry A2005,109(8),1643-1649.
    [27] Hou H, Wang B, Ab initio study of the reaction of propionyl (C2H5CO) radical with oxygen(O2)[J]. Journal of Chemical Physics2007,127(5).
    [28] Wang B, Hou H, Gu Y, Theoretical Investigation of the Reaction of O(3P) with CH2Cl[J].The Journal of Physical Chemistry A1999,103(13),2060-2065.
    [29] Hou H, Li A, Hu H, et al., Mechanistic and kinetic study of the CH3CO+O2reaction[J].Journal of Chemical Physics2005,122(22),1-11.
    [30] Mendell M J, Indoor residential chemical emissions as risk factors for respiratory and allergiceffects in children: a review[J]. Indoor Air2007,17(4),259-277.
    [31] Rumchev K, Brown H, Spickett J, Volatile organic compounds: Do they present a risk to ourhealth?[J]. Reviews on Environmental Health2007,22(1),39-55.
    [32] Schupp T, Bolt H M, Hengstler J G, Maximum exposure levels for xylene, formaldehyde andacetaldehyde in cars[J]. Toxicology2005,206(3),461-470.
    [33] Klopman G, Andreozzi P, The mechanism of ozonolysis. II[J]. Bulletin des SocietesChimiques Belges1977),86(6),481-485.
    [34] Yang J, Li Q S, Zhang S, Direct dynamics study on the reaction of acetaldehyde withozone[J]. Journal of Computational Chemistry2008,29(2),247-255.
    [35] Erickson R E, Bakalik D, Richards C, et al., Mechanism of Ozonation Reactions. II.Aldehydes[J]. The Journal of Organic Chemistry1966,31(2),461-466.
    [36] Becke A D, Density-functional thermochemistry. III. The role of exact exchange[J]. TheJournal of Chemical Physics1993,98(7),5648-5652.
    [37] Lee C, Yang W, Parr R G, Development of the Colle-Salvetti correlation-energy formula intoa functional of the electron density[J]. Physical Review B1988,37(2),785-789.
    [38] Lynch B J, Zhao Y, Truhlar D G, The6-31B(d) basis set and the BMC-QCISD andBMC-CCSD multicoefficient correlation methods[J]. Journal of Physical Chemistry A2005,109(8),1643-1649.
    [39].Donnelly R A, Parr R G, Elementary properties of an energy functional of the first-orderreduced density matrix[J]. The Journal of Chemical Physics1978,69(10),4431-4439.
    [40]. Nalewajski R F, Parr R G, Legendre transforms and Maxwell relations in density functionaltheory[J]. The Journal of Chemical Physics1982,77(1),399-407.
    [41] Anderson J S M, Melin J, Ayers P W, Conceptual density-functional theory for generalchemical reactions, including those that are neither charge-nor frontier-orbital-controlled.1.Theory and derivation of a general-purpose reactivity indicator[J]. Journal of Chemical Theoryand Computation2007,3(2),358-374.
    [42] Parr R, How G, I came about working in conceptual DFT[J]. Chemical reactivity theory: Adensity functional theory view2009.
    [43] Kelly N, Heicklen J, Rate coefficient for the reaction of CH3O with CH3CHO at25°C[J].Journal of Photochemistry1978,8(2),83-90.
    [44] Fittschen C, Delcroix B, Gomez N, et al., Rate constants for the reactions of CH3O withCH2O, CH3CHO and i-C4H10[J]. Journal De Chimie Physique Et De Physico Chimie Biologique1998,95(10),2129-2142.
    [1] Schr dinger E. Quantisierung als eigenwertproblem[J]. Ann Physik,1926,79:361-376.
    [2] Hartree D R. The wave mechanics of an atom with a non-coulomb central field. I. Theory andmethods[J]. Proc Cambridge Phil Soc,1928,24:89-110.
    [3] Fock V. Naherungsmethode zur Losung des quantenmechanischen mehrkorperproblems[J]. ZPhysik,1930,61:126-130.
    [4] Hartree D. Calculations of Atomic Structure[M]. New York: Wiley,1957.
    [5] Roothaan C C J. New developments in molecular orbital theory[J]. Rev Mod Phys,1951,23:69-89.
    [6] Head-Gordon M, Pople J A. MP2energy evaluation by direct methods[J]. Chem Phys Lett,1988,153:503-506.
    [7] Hylleraas E A. On the structure of the spectra of two-atomic molecules according to Quantummechanics[J]. Z Phys,1928,48:469.
    [8] James H M, Coolidge A S. The ground state of the hydrogen molecule[J]. J Chem Phys,1933,1:825.
    [9] Kolos W, Wolniewitcz L. Improved theoretical ground state energy of the hydrogenmolecule[J]. J Chem Phys,1968,49:404.
    [10] Roos B O. The complete active space self-consistent field method and its applications inelectronic structure calculations[J]. Adv Chem Phys,1987,69:399-445.
    [11] Olivucci M, Robb M, Bernardi F. Conformational Analysis of Molecules in Excited States[M].New York: Wiley-VCH,2000.
    [12] Bernardi F, Olivucci M, Robb M A. Potential energy surface crossings in organicphotochemistry[J]. Chem Soc Rev,1996,25:321-328.
    [13] Kozlowski, P. M,; Dupuis, M.; Davidson, E. R. The cope rearrangement revisited withmultireference perturbation theory[J]. J Am Chem Soc,1995,117(2):774-778.
    [14] McDouall J J, Pleasley K, Robb M A.[J].Chem Phys Lett,1998,148:183.
    [15] Andersson K, Malmqvist P A, Ross B O. Second-order perturbation theory with a completeactive space self‐consistent field reference function[J]. J Chem Phys,1992,96(2):1218.
    [16]Moore J W, Pearson R G. Kinetics and Mechannism,3rd Ed[M]. New York: Wiley,1980.
    [17]Zhao Y, Truhlar D G. Assessment of model chemistries for noncovalent interactions[J]. JChem Theory Comput,2006,2(4):1009-1018.
    [18]Miller W H. Quantum mechanical transition state theory and a new semiclassical model forreaction rate constants[J]. J Chem Phys,1974,61(5):1823-1834.
    [19]Eyring H. The activated complex in chemical reactions[J]. J Chem Phys,1935,3(2):107-115.
    [20]Garrett B C, Truhlar D G. Criterion of minimum state density in the transition state theory ofbimolecular reactions[J]. J Chem Phys,1979,70(4):1593-1598.
    [21]Garrett B C, Truhlar D G. Variational transition state theory.Primary kinetic isotope effects foratom transfer reactions[J]. J Am Chem Soc,1980,102(8):2559-2570.
    [22]Garrett B C, Truhlar D G. Generalized transition state theory. Classical mechanical theory andapplications to collinear reactions of hydrogen molecules[J]. J Phys Chem,1979,83(8):1052-1079.
    [23]Evans M G, Polanyi M. Some applications of the transition state method to the calculation ofreaction velocities, especially in solution[J]. Trans Faraday Soc,1935,31(0):875-894.
    [24]Wigner E. The transition state method[J]. Trans Faraday Soc,1938,34:29-41.
    [25]Garrett B C, Truhlar D G, Grev R S, et al. Improved treatment of threshold contributions invariational transition-state theory[J]. J Phys Chem,1980,84(13):1730-1748.
    [26]Truhlar D G, Kuppermann A. Exact tunneling calculations[J]. J Am Chem Soc,1971,93(8):1840-1851.
    [27]Fernandez-Ramos A, Truhlar D G. Improved algorithm for corner cutting calculations[J]. JChem Phys,2001,114(4):1491-1496.
    [28]Liu Y P, Lu D H, Gonzalez-Lafont A, et al. Direct dynamics calculation of the kinetic isotopeeffect for an organic hydrogen-transfer reaction, including corner-cutting tunneling in21dimensions[J]. J Am Chem Soc,1993,115(17):7806-7817.
    [29]Garrett B C, Joseph T, Truong T N, et al. Application of the large-curvature tunnelingapproximation to polyatomic molecules: abstraction of H or D by methyl radical[J]. Chem Phys,1989,136(2):271-293.
    [30]Berman M R, Lin M C. Kinetics and mechanism of the methylidyne+molecular nitrogenreaction. Temperature-and pressure-dependence studies and transition state theoryanalysis[J]. JPhys Chem,1983,87(20):3933-3942.
    [31]Diau E W, Lin M C, Melius C F. A theoretical study of the CH3+C2H2reaction[J]. J ChemPhys,1994,101(5):3923-3927.
    [30]Wang B, Hou H, Gu Y. Ab initio/density functional theory and multichannel rrkm calculationsfor the CH3O+CO reaction[J]. J Phys Chem A,1999,103(40):8021-8029.
    [31]Lin M C, He Y, Melius C F. Theoretical aspects of product formation from the cyanato radical+nitric oxide reaction[J]. J Phys Chem,1993,97(36):9124-9128.
    [32]Berman M R, Lin M C. Kinetics and mechanism of the methylidyne+molecular nitrogenreaction. Temperature-and pressure-dependence studies and transition-state-theory analysis[J]. JPhys Chem,1983,87(20):3933-3942.
    [33] Hans-Dieter M, Fabien G, Graham A W. Multidimensional Quantum Dynamics: MCTDHTheory and Applications[M]. Weinheim: WILEY-VCH Verlag Gmbh&Co. KGaA,2009.
    [34] Light J C, Hamilton I P, Lill J V. Generalized discrete variable approximation in quantummechanics[J]. J Chem Phys,1985,82(3):1400–1409.
    [35] Born M, Oppenheimer J R. On the quantum theory of molecules[J]. Ann Phys,1927,84:457-484.
    [36] Born M, Huang K. Dynamical theory of crystal lattices[M], London: Oxford University,1954.
    [37] Cederbaum L S. Born–Oppenheimer approximation and beyond, in conical intersections[J].World Scientific,2004,3-40.
    [38] Domcke W, Yarkony D R, K ppel H. Conical intersections[J], World Scientific,2004.
    [39] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian03, Revision C.02, Gaussian, Inc.,Pittsburgh, PA[CP/DK],2003.
    [40] Werner H J, Knowles P J. MOLPRO is a package of ab initio programs.[EB/OL].http://www.tc.bham.ac.uk/molpro/.
    [41] Meyer H D, Manthe U, Cederbaum L S. The multi-configurational time-dependent Hartreeapproach [J]. Chem Phys Lett,1990,165(1):73-78.
    [42] Beck M H, J ckle A, Worth G A, et al. The multiconfiguration time-dependent Hartree(MCTDH) method: a highly efficient algorithm for propagating wavepackets[J]. Phys Rep,2000,324(1):1-105.
    [43] Meyer H D, Worth G A. Quantum molecular dynamics: propagating wavepackets and densityoperators using the multiconfiguration time-dependent Hartree method[J]. Theor Chem Acc,2003,109(5):251-267.
    [44] Baer M. Adiabatic and diabatic representations for atom-molecule collisions: Treatment ofthe collinear arrangement[J]. Chem Phys Lett,1975,35(1):112-118.
    [45] Sidis V. State-to-State ion molecule reaction dynamics[J]. Adv Chem Phys,1992,82:73.
    [46] Pacher T, Cederbaum L S, K ppel H. Adiabatic and quasidiabatic states in a gaugetheoretical framework[J]. Adv. Chem. Phys.84:293.
    [47] Worth G A. Accurate wave packet propagation for large molecular systems: Themulticonfiguration time-dependent Hartree (MCTDH) method with selected configurations [J]. JChem Phys,2000,112(19):8322-8329.
    [48] Beck M H, J ckle A, Worth G A, et al. The multiconfiguration time-dependent Hartree(MCTDH) method: a highly efficient algorithm for propagating wavepackets[J]. Phys Rep,324:1-105.
    [1] Sobolewski A L, Domcke W, Dedonder-Lardeux C, et al. Excited-state hydrogen detachmentand hydrogen transfer driven by repulsive1π*states: A new paradigm for nonradiative decay inaromatic biomolecules[J]. Physical Chemistry Chemical Physics2002,4(7),1093-1100.
    [2] Ashfold M N, King G A, Murdock D, et al. π*excited states in molecular photochemistry[J].Phys Chem Chem Phys2010,12(6),1218-1238.
    [3] Ashfold M N R, Cronin B, Devine A L, et al. The role of π*excited states in thephotodissociation of heteroaromatic molecules[J]. Science2006,312(5780),1637-1640.
    [4] Kimura K, Tsubomura H, Nagakura S, The Vacuum Ultraviolet Absorption Spectra of Anilineand Some of Its N-Derivatives[J]. Bull. Chem. Soc. Jpn.1964,37,1336-1346.
    [5] Kimura K, Nagakura S, Vacuum ultra-violet absorption spectra of various mono-substitutedbenzenes[J]. Molecular Physics1965,9(2),117-135.
    [6] Honda Y, Hada M, Ehara M, et al. Excited and ionized states of aniline: Symmetry adaptedcluster configuration interaction theoretical study[J]. The Journal of chemical physics2002,117(5),2045-2052.
    [7] Ebata T, Minejima C, Mikami N, A new electronic state of aniline observed in the transient IRabsorption spectrum from S1in a supersonic jet[J]. Journal of Physical Chemistry A2002,106(46),11070-11074.
    [8] King G A, Oliver T A A, Ashfold M N R, Dynamical insights into1π state mediatedphotodissociation of aniline[J]. Journal of Chemical Physics2010,132(21),214307-214318.
    [9] Montero R, Conde A P, Ovejas V, et al. Ultrafast dynamics of aniline in the294-234nmexcitation range: the role of the π*state[J]. The Journal of chemical physics2011,135(5),054308.
    [10] Roberts G M, Williams C A, Young J D, et al. Unraveling ultrafast dynamics in photoexcitedaniline[J]. Journal of the American Chemical Society2012,134(30),12578-12589.
    [11] Spesyvtsev R, Kirkby O M, Fielding H H, Ultrafast dynamics of aniline following269-238nm excitation and the role of the S2(π3s/π*) state[J]. Faraday Discussions2012,157,165-179.
    [12] Spesyvtsev R, Kirkby O M, Vacher M, et al. Shedding new light on the role of the Rydbergstate in the photochemistry of aniline[J]. Physical Chemistry Chemical Physics2012,14(28),9942-9947.
    [13] K ppel H, Domcke W, Cederbaum L S, Multi-mode molecular dynamics beyond theBorn-Oppenheimer approximation[J]. Advances in Chemical Physics1984,57,59-246.
    [14] Cederbaum L S, K ppel H, Domcke W, Multimode vibronic coupling effects in molecules[J].International Journal of Quantum Chemistry1981,20(S15),251-267.
    [15] Worth G A, Beck M H, J ckle A, et al. The MCTDH Package, Development Version9.0,[EB/OL]. http://www.pci.uniheidelberg.de/tc/usr/mctdh/.2008.
    [16] Bartlett R J, Musia M, Coupled-cluster theory in quantum chemistry[J]. Reviews of ModernPhysics2007,79(1),291-352.
    [17] Beck M H, J ckle A, Worth G A, et al. The multiconfiguration time-dependent Hartree(MCTDH) method: a highly efficient algorithm for propagating wavepackets[J]. Physics Reports2000,324(1),1-105.
    [18] Worth G A, Meyer H D, K ppel H, et al. Using the MCTDH wavepacket propagation methodto describe multimode non-adiabatic dynamics[J]. International Reviews in Physical Chemistry2008,27(3),569-606.
    [19] Light J C, Hamilton I P, Lill J V, Generalized discrete variable approximation in quantummechanics[J]. The Journal of chemical physics1985,82(3),1400-1409.
    [20] Colbert D T, Miller W H, A novel discrete variable representation for quantum mechanicalreactive scattering via the S-matrix Kohn method[J]. The Journal of chemical physics1992,96(3),1982-1991.
    [21] Kosloff R, Kosloff D, Absorbing boundaries for wave propagation problems[J]. Journal ofComputational Physics1986,63(2),363-376.
    [22] Kosloff R, Tal-Ezer H, A direct relaxation method for calculating eigenfunctions andeigenvalues of the schr dinger equation on a grid[J]. Chemical Physics Letters1986,127(3),223-230.
    [23] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian03, Revision C.02, Gaussian, Inc.,Pittsburgh, PA[CP/DK],2003.
    [24] Kowalski K, Piecuch P, New coupled-cluster methods with singles, doubles, and noniterativetriples for high accuracy calculations of excited electronic states[J]. Journal of Chemical Physics2004,120(4),1715-1738.
    [25] Penfold T J, Worth G A, A model Hamiltonian to simulate the complex photochemistry ofbenzene II[J]. The Journal of chemical physics2009,131(6),064303.
    [26] Minns R S, Parker D S N, Penfold T J, et al. Competing ultrafast intersystem crossing andinternal conversion in the "channel3" region of benzene[J]. Physical Chemistry Chemical Physics2010,12(48),15607-15615.
    [1] Johnson D, Marston G, The gas-phase ozonolysis of unsaturated volatile organic compounds inthe troposphere[J]. Chemical Society Reviews2008,37(4),699-716.
    [2] Norton T S, Dryer F L, Some New Observations On Methanol Oxidation Chemistry[J].Combustion Science and Technology1989,63(1-3),107-129.
    [3] Hunter T B, Wang H, Litzinger T A, et al., The oxidation of methane at elevated pressures:Experiments and modeling[J]. Combustion and Flame1994,97(2),201-224.
    [4] Westbrook C K, Dryer F L, Comprehensive Mechanism for Methanol Oxidation[J].Combustion Science and Technology1979,20(3-4),125-140.
    [5] Choudhury T K, Lin M C, Pyrolysis of Methyl Nitrite and1,3,5-Trioxane Mixtures in ShockWaves: Kinetic Modeling of the H+CH2O Reaction Rate[J]. Combustion Science and Technology1989,64(1-3),19-28.
    [6] Zabarnick S, Fleming J W, Lin M C, Kinetics of hydroxyl radical reactions with formaldehydeand1,3,5-trioxane between290and600K[J]. International Journal of Chemical Kinetics1988,20(2),117-129.
    [7] Mendell M J, Indoor residential chemical emissions as risk factors for respiratory and allergiceffects in children: a review[J]. Indoor Air2007,17(4),259-277.
    [8] Rumchev K, Brown H, Spickett J, Volatile organic compounds: Do they present a risk to ourhealth?[J]. Reviews on Environmental Health2007,22(1),39-55.
    [9] Schupp T, Bolt H M, Hengstler J G, Maximum exposure levels for xylene, formaldehyde andacetaldehyde in cars[J]. Toxicology2005,206(3),461-470.
    [10] Li Y H, Wang K, Zhao Q L, Removal of Indoor Formaldehyde with Ozonization. BuiltEnvironment and Public Health[J]. China Environmental Science Press2004,82-87.
    [11] Braslavsky S, Julan H, The Gas-Phase Reaction of O3with H2CO[J]. International Jochnal OfChemical Kinetics1976,8,801-808.
    [12] Voukides A C, Konrad K M, Johnson R P, Competing mechanistic channels in the oxidationof aldehydes by ozone[J]. Journal of Organic Chemistry2009,74(5),2108-2113.
    [13] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian03, Revision C.02, Gaussian, Inc.,Pittsburgh, PA[CP/DK],2003.
    [14] Becke A D, A new mixing of Hartree-Fock and local density-functional theories[J]. TheJournal of Chemical Physics1993,98(2),1372-1377.
    [15] Lee C, Yang W, Parr R G, Development of the Colle-Salvetti correlation-energy formula intoa functional of the electron density[J]. Physical Review B1988,37(2),785-789.
    [16] Gonzalez C, Bernhard Schlegel H, An improved algorithm for reaction path following[J]. TheJournal of Chemical Physics1989,90(4),2154-2161.
    [17] Gonzalez C, Schlegel H B, Reaction path following in mass-weighted internal coordinates[J].Journal of Physical Chemistry1990,94(14),5523-5527.
    [18] Lynch B J, Zhao Y, Truhlar D G, The6-31B(d) Basis Set and the BMC-QCISD andBMC-CCSD Multicoefficient Correlation Methods[J]. The Journal of Physical Chemistry A2005,109(8),1643-1649.
    [19] Hou H, Wang B, Ab initio study of the reaction of propionyl (C2H5CO) radical with oxygen(O2)[J]. Journal of Chemical Physics2007,127(5).
    [20] Wang B, Hou H, Gu Y, Theoretical Investigation of the Reaction of O(3P) with CH2Cl[J].The Journal of Physical Chemistry A1999,103(13),2060-2065.
    [21] Hou H, Li A, Hu H, et al., Mechanistic and kinetic study of the CH3CO+O2reaction[J].Journal of Chemical Physics2005,122(22),1-11.
    [22] White H M, Bailey P S, Ozonation of aromatic aldehydes[J]. Journal of Organic Chemistry1965,30(9),3037-3041.
    [23] Klopman G, Joiner C M, New evidence in the mechanism of ozonolysis of olefins[J]. Journalof the American Chemical Society1975,97(18),5287-5288.
    [24] Klopman G, Andreozzi P, The mechanism of ozonolysis. II[J]. Bulletin des SocietesChimiques Belges1977),86(6),481-485.
    [25] Yang J, Li Q S, Zhang S, Direct dynamics study on the reaction of acetaldehyde withozone[J]. Journal of Computational Chemistry2008,29(2),247-255.
    [26] Erickson R E, Bakalik D, Richards C, et al., Mechanism of Ozonation Reactions. II.Aldehydes[J]. The Journal of Organic Chemistry1966,31(2),461-466.
    [27] Giamalva D H, Church D F, Pryor W A, Kinetics of ozonation.5. Reactions of ozone withcarbon-hydrogen bonds[J]. Journal of the American Chemical Society1986,108(24),7678-7681.
    [28] Johnston H S, Heicklen J, Tunnelling Corrections For Unsymmetrical Eckart PotentialEnergy Barriers[J]. The Journal of Physical Chemistry1962,66(3),532-533.
    [29] Stein S E, Accurate evaluation of internal energy level sums and densities includinganharmonic oscillators and hindered rotors[J]. The Journal of Chemical Physics1973,58(6),2438.
    [30] Astholz D C, Troe J, Wieters W, Unimolecular processes in vibrationally highly excitedcycloheptatrienes. I. Thermal isomerization in shock waves[J]. The Journal of Chemical Physics1979,70(11),5107.
    [31] Astholz,D.C.; Troe, J.; Wieters,W. J. Chem. Phys.1979,70,5107.
    [32] NIST Computational Chemistry Comparison and Benchmark Database.[EB/OL]http://srdata.nist.gov/cccbdb/
    [1] Marenich A V, Boggs J E, The molecular structure, spin-vibronic energy levels, andthermochemistry of CH3O[J]. Journal of Molecular Structure2006,780-781(SPEC. ISS.),163-170.
    [2] Atkinson R, Gas-phase tropospheric chemistry of organic compounds: A review[J].Atmospheric Environment-Part A General Topics1990,24A (1),1-41.
    [3] Guenther A, A global model of natural volatile organic compound emissions[J]. Journal ofGeophysical Research1995,100(D5),8873-8892.
    [4] Hoekman S K, Speciated measurements and calculated reactivities of vehicle exhaustemissions from conventional and reformulated gasolines[J]. Environmental Science andTechnology1992,26(6),1206-1216.
    [5] Kesselmeier J, Bode K, Hofmann U, et al., Emission of short chained organic acids,aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiologicalactivities, carbon budget and emission algorithms[J]. Atmospheric Environment1997,31(SUPPL.1),119-133.
    [6] Nondek L, Rodler D R, Birks J W, Measurement of sub-ppbv concentrations of aldehydes ina forest atmosphere using a new HPLC technique[J]. Environmental Science and Technology1992,26(6),1174-1178.
    [7] Weaver J, Meagher J, Shortridge R, et al., The oxidation of acetyl radicals[J]. Journal ofPhotochemistry1975,4(5-6),341-360.
    [8] Kelly N, Heicklen J, Rate coefficient for the reaction of CH3O with CH3CHO at25°C[J].Journal of Photochemistry1978,8(2),83-90.
    [9] Fittschen C, Delcroix B, Gomez N, et al., Rate constants for the reactions of CH3O withCH2O, CH3CHO and i-C4H10[J]. Journal De Chimie Physique Et De Physico Chimie Biologique1998,95(10),2129-2142.
    [10] Henon E, Bohr F, Theoretical study of the H-abstraction reaction of the CH3O radical withformaldehyde[J]. Chemical Physics Letters2001,342(5-6),659-666.
    [11] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian09, Revision A.02., Gaussian, Inc.,Pittsburgh, PA[CP/DK],2009.
    [12] Becke A D, Density-functional thermochemistry. III. The role of exact exchange[J]. TheJournal of Chemical Physics1993,98(7),5648-5652.
    [13] Lee C, Yang W, Parr R G, Development of the Colle-Salvetti correlation-energy formula intoa functional of the electron density[J]. Physical Review B1988,37(2),785-789.
    [14] Head-Gordon M, Pople J A, Frisch M J, MP2energy evaluation by direct methods[J].Chemical Physics Letters1988,153(6),503-506.
    [15] Leininger M L, Nielsen I M B, Crawford T D, et al., A new diagnostic for open-shellcoupled-cluster theory[J]. Chemical Physics Letters2000,328(4–6),431-436.
    [16] Jayatilaka D, Lee T J, Open-shell coupled-cluster theory[J]. The Journal of Chemical Physics1993,98(12),9734-9747.
    [17] Hou H, Wang B, Ab initio study of the reaction of propionyl (C2H5CO) radical with oxygen(O2)[J]. Journal of Chemical Physics2007,127(5).
    [18] Rienstra-Kiracofe J C, Allen W D, Schaefer Iii H F, C2H5+O2reaction mechanism:High-level ab initio characterizations[J]. Journal of Physical Chemistry A2000,104(44),9823-9840.
    [19] Gonzalez C, Bernhard Schlegel H, An improved algorithm for reaction path following[J].The Journal of Chemical Physics1989,90(4),2154-2161.
    [20] Lynch B J, Zhao Y, Truhlar D G, The6-31B(d) basis set and the BMC-QCISD andBMC-CCSD multicoefficient correlation methods[J]. Journal of Physical Chemistry A2005,109(8),1643-1649.
    [21] Raghavachari K, Trucks G W, Pople J A, et al., A fifth-order perturbation comparison ofelectron correlation theories[J]. Chemical Physics Letters1989,157(6),479-483.
    [22] Knowles P J, Hampel C, Werner H J, Coupled cluster theory for high spin, open shellreference wave functions[J]. The Journal of Chemical Physics1993,99(7),5219-5227.
    [23] Truhlar D G, Garrett B C, Variational transition-state theory[J]. Accounts of ChemicalResearch1980,13(12),440-448.
    [24] Garrett B C, Truhlar D G, Generalized transition state theory. Classical mechanical theoryand applications to collinear reactions of hydrogen molecules[J]. Journal of Physical Chemistry1979,83(8),1052-1079.
    [25] Klippenstein S J, Variational optimizations in the Rice-Ramsberger-Kassel-Marcus theorycalculations for unimolecular dissociations with no reverse barrier[J]. The Journal of ChemicalPhysics1992,96(1),367-371.
    [26] Klippenstein S J, Marcus R A, High pressure rate constants for unimolecular dissociation/freeradical recombination: Determination of the quantum correction via quantum Monte Carlo pathintegration.1987.
    [27] Wardlaw D M, Marcus R A, RRKM reaction rate theory for transition states of anylooseness[J]. Chemical Physics Letters1984,110(3),230-234.
    [28] Wang F, Sun H, Sun J, et al., Mechanistic and kinetic study of CH2O+O3reaction[J]. Journalof Physical Chemistry A2010,114(10),3516-3522.
    [29] Gonzalez J, Torrent-Sucarrat M, Anglada J M, The reactions of SO3with HO2radical and H2O HO2radical complex. Theoretical study on the atmospheric formation of HSO5and H2SO4[J].Physical Chemistry Chemical Physics2010,12(9),2116-2125.
    [30].Donnelly R A, Parr R G, Elementary properties of an energy functional of the first-orderreduced density matrix[J]. The Journal of Chemical Physics1978,69(10),4431-4439.
    [31]. Nalewajski R F, Parr R G, Legendre transforms and Maxwell relations in density functionaltheory[J]. The Journal of Chemical Physics1982,77(1),399-407.
    [32] Anderson J S M, Melin J, Ayers P W, Conceptual density-functional theory for generalchemical reactions, including those that are neither charge-nor frontier-orbital-controlled.1.Theory and derivation of a general-purpose reactivity indicator[J]. Journal of Chemical Theoryand Computation2007,3(2),358-374.
    [33] Parr R, How G, I came about working in conceptual DFT[J]. Chemical reactivity theory: Adensity functional theory view2009.
    [34] Jaramillo P, Pérez P, Contreras R, et al., Definition of a nucleophilicity scale[J]. Journal ofPhysical Chemistry A2006,110(26),8181-8187.
    [35]. Koopmans T, über die Zuordnung von Wellenfunktionen und Eigenwerten zu den EinzelnenElektronen Eines Atoms[J]. Physica1934,1(1-6),104-113.
    [36]. Zhang Y, Yang W, Perspective on "Density-functional theory for fractional particle number:Derivative discontinuities of the energy"[J]. Theoretical Chemistry Accounts2000,103(3-4),346-348.
    [37] Bersuker I B, Modern aspects of the Jahn-Teller effect theory and applications to molecularproblems[J]. Chemical Reviews2001,101(4),1067-1114.
    [38]. Barckholtz T A, Miller T A, Quantitative insights about molecules exhibiting Jahn-Tellerand related effects[J]. International Reviews in Physical Chemistry1998,17(4),435-524.
    [39] Alvarez-Idaboy J R, Mora-Diez N, Boyd R J, et al., On the importance of prereactivecomplexes in molecule-radical reactions: Hydrogen abstraction from aldehydes by OH[J]. Journalof the American Chemical Society2001,123(9),2018-2024.
    [40] Wigner E, Uber das Uberschreiten von Potentialschwellen bei chemischen Reaktionen[J]. Z.Phys. Chem.1932,19,203-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700