用户名: 密码: 验证码:
镁合金轴承保持架挤压铸造工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挤压铸造是铸、锻结合的铸件成形工艺,液体金属在压力下结晶凝固,获得组织致密,性能高,表面光洁的优质铸件。本文针对镁合金轴承保持架的间接挤压铸造工艺进行了数值模拟。结果表明,数值模拟技术可以指导镁合金轴承保持架挤压铸造模具设计和生产工艺的优化。
     首先,设计了在保持架圈底部位水平分型,冲头自上而下压射,金属液反向流动充型的挤压铸造模具,并分析了挤压铸造的数值模拟基本理论及分析处理方法,深入探讨了SolidWorks与ProCAST的接口方式,使SM1+SM2=SM功能模型在模拟冲头压射运动过程中得到应用,解决了数据接口难的问题,再传递到MeshCAST模块剖分实体网格,获得试验所用模型。
     其次,利用ProCAST软件模拟了轴承保持架的间接挤压铸造的充型和凝固过程,通过正交试验和缺陷分析,得到了适宜的工艺参数为:浇注温度710℃,模具预热温度180℃,压射速度25mm/s,比压200MPa,保压时间20s左右,镁合金轴承保持架具有良好的成形性。分析了充型时间、凝固时间与模具预热温度和冲头压射速度之间的关系,利用数值分析方法建立并采用C++语言编程技术求解了充型、凝固时间分布规律的数学模型。
     采用本课题优化后的工艺参数并结合实际试验进行检验,证明了该模拟结果的正确性。由此说明在挤压铸造成形理论和现代计算机技术的指导下,计算机模拟技术可以应用到镁合金挤压铸造工艺优化中,实现产品生产工艺的合理开发,缩短产品生产调试周期,降低生产成本和风险,提高产品质量,最终达到提高挤压铸造产品市场竞争能力的目的。
Squeeze casting is a formation technique combining with casting and forging. Liquid metal solidifies under pressure condition in order to obtain high performance casts, which have fined structure, high performance and smooth surface. In this paper, squeeze casting process of magnesium alloy bearing cage is investigated by finite element simulation software. According to the results, numerical simulation can guide the design of mold and the optimum of production technology of squeeze casting of magnesium alloy bearing cage.
     To begin with, the mold of squeeze casting is designed. Level parting face is designed at the bottom of the cage. The punch shots top-down and liquid metal fills inversely. And simulation basic theory and analytical method of squeeze casting are analyzed. Interface method between SolidWorks and ProCAST software is researched deeply so that SM1+SM2=SM function model can be applied to simulate the punch shooting process, which overcomes the problem of data transferring between the two software. The file is transferred to MeshCAST modular to divide entity mesh to obtain the model used in the laboratory.
     Furthermore, filling and solidifying of squeeze casting process of magnesium alloy bearing cage was investigated to acquire the best technological parameters by ProCAST software through orthogonal test and defect analysis. The simulated results show that the optimized technological parameters are: casting temperature 710℃, die temperature 180℃, shot speed 25mm/s, specific pressure 200MPa, holding time 20s. Magnesium alloy bearing cage has good moldability under these parameters. The relationship between fill time, the solidification time and the die temperature, the shot speed is analyzed to establish mathematical models of the regularities of distribution of fill time and solidification time according to numerical analysis and C++ program.
     Experimental examination has certificated the simulated result optimized by adopting the technological parameters above. Computer simulating can be used in technology optimization of squeeze casting of magnesium, developing production reasonably, reducing cycle of production, decreasing the production cost and the risk, increasing the property, and finally achieving the aims of the enhancement of competitive ability of squeeze casting market.
引文
[1]齐丕骧.面向21世纪的挤压铸造技术.特种铸造及有色合金,2002,压铸专刊:209-213.
    [2]厄普顿 B.压力铸造.北京:机械工业出版社,1988.
    [3]Hans J H.Casting Nonferrous Alloys in Metal Molds.Foundry Management Technology,1996,38(7):22-28.
    [4]罗继相,潘欣,潘利波.间接立式挤压铸造液流充型特性研究.铸造,2003,52(1):26-31.
    [5]唐靖林,曾大本,常安国.挤压铸造的发展和应用现状.中国铸造装备与技术,1998,32(3):3-6.
    [6]欧阳明.从普通压铸、挤压、低压铸造机的改造认识挤压压铸技术.第四届中国国际压铸会议,上海,2004:109-115.
    [7]利奥玻德·弗罗梅尔,古斯塔夫·利比.压力铸造技术.北京:国防工业出版社,1982.
    [8]罗继相,白旭.铝合金挤压铸造技术的研究与应用.铸造,2002,51(8):464-469.
    [9]里奇·杰卡斯,马科·亨特,布赖恩·席马努斯基.挤压铸造及其过程和质量控制技术.第四届中国国际压铸会议,上海,2004:47-54.
    [10]Mamoru Murakami,Hiroyuki Omura.High Vacuum Die cast Technology and its Application.第四届中国国际压铸会议,上海,2004:16-20.
    [11]蒋凯雁.真空液态挤压铸造工艺.特种铸造及有色合金,2001,中国压铸、挤压铸造、半固态加工学术年会论文集:108-109.
    [12]David C.High-strength aluminum automotive alloy.Kaiser Aluminum and Chemical Corp,1976,28(9):249-254.
    [13]洪慎章,曾振鹏.挤压铸造比压对晶粒尺寸的影响.特种铸造及有色合金,2002,压铸专刊:25-27.
    [14]红霞,王宁.AZ91D合金的挤压铸造工艺及性能.内蒙古工业大学学报,2006,25(1):30-34.
    [15]齐丕骧.挤压铸造.北京:国防工业出版社,1984.
    [16]邢书明,张励忠,张国华.白口铸铁磨球半固态挤压铸造工艺参数设计.铸造,2002,51(7):431-433.
    [17]李荣德,于海朋.ZA合金挤压铸造过程中保压时间的确定.第三届中国国际压铸会议,上海,2002:137-141.
    [18]谢优华,杨守杰,戴圣龙等.含锆铝合金的力学性能和强化机理.中国有色金属学报,2003,13(5):1193-1195.
    [19]Black M.Constitution and Age Hardening of Al-Si Alloys.J.Mater Sic.,1985,19(5):2861-2867.
    [20]罗继相.挤压铸造技术的发展及应用.中国铸造装备与技术,1999,33(2):3-6.
    [21]齐丕骧,齐霖.挤压铸件优质化技术进展.特种铸造及有色合金,2004,24(2):12-15.
    [22]唐多光,徐张翼,沈友良.铝合金挤压铸造若干技术问题的讨论.特种铸造及有色合金,2002,22(2):234-238.
    [23]邢书明,谭建波,张海英.半固态合金流变成型工艺理论.特种铸造及有色合金,2006,26(3):161-165.
    [24]张亮峰.论熔融金属的流动性与充型能力.湘潭机电高等专科学校学报.2000,7(3):18-20.
    [25]谭建波,邢书明,李立新.半固态A356合金微观组织特征对充型能力的影响.中国有色金属学报.2006,16(4):612-617.
    [26]Career C.H.,Din T.,Rashid A.K..On the quality index of Al-Cu alloys.Material Science and Engineering,1999,35(1):31-37.
    [27]Kawagoishi N,Nisitani H.Influence of Microstructures on the Crack Growth Behavior of Small Fatigue Cracks in Squeeze Casting Aluminum Alloys.Transactions of JSME,1994,60(5):358-363.
    [28]杨忠,李建平.锑和混合稀土对AZ91镁合金流动性的影响.热加工工艺,2004,39(5):18-20.
    [29]刘艳改,刘文辉,熊守美.工艺参数和型芯对AZ91D镁合金压铸充型能力的影响.铸造,2004,53(4):883-886.
    [30]严力,王猛,单志发.镁合金调压铸造充型能力的研究.铸造技术,2005,26(5):914-915.
    [31]揭小平,闫洪,袁有录等.圆形压铸件浇注系统对充填流态影响的数值分析.铸造技术,2006,27(1):63-66.
    [32]Chadwick G A,Yue T M.Principles and applications of squeeze casting.Metals and Materials,1989,15(2):6-12.
    [33]Michael P Martin.Recent Trends in Squeeze Casting.Die casting engineer,1996,26(5):40-42.
    [34]胡汉起.金属凝固原理.北京:机械工业出版社,1991.
    [35]周尧和,胡壮麒,介万奇.凝固技术.北京:机械工业出版社,1998.
    [36]谭建波,邢书明,李立新.半固态A356合金流变充型的极限长度.中国有色金属学报,2006,16(6):970-975.
    [37]罗继相.挤压力对晶体生长速度及枝晶间距的影响.特种铸造及有色合金,2004,24(5):35-37.
    [38]陶文锉.数值传热学.西安:西安交通大学出版社,1988.
    [39]川陈乐平.松弛因子对铸造充型过程模拟软件的影响.铸造技术,2005,26(1):59-62.
    [40]李杰,曾怡丹.重力金属型铸造计算机辅助设计.中国铸造装备与技术,2004,38(3):55-58.
    [41]CHEN GM,MA YM,QI EN.Preparation and morghological study of an exfoliated polystyrene/monmorillonite composite.Scriptamater,2001,44(5):125-128.
    [42]Shoumei Xiong,Baicheng Liu.Study on numerical simulation of mold filling and solidification processes under pressure condition.J.Mater.Sic.,2002,38(5):413-416.
    [43]赵志远,朱慕霞,鲁立奇.航空材料学.上海:上海科学技术出版社,1985.
    [44]Yuan G Y,Ding W J,Inoue A.Development of a cheap creep resistant Mg-Al-Zn-Si-base alloy.Materials Science Forum,2003,25(6):419-422.
    [45]Lyon R,King J F,Nuttall.A new Magnesium HPDC alloy for elevated temperature use.Proceedings of the third Magnesium conference,Manchester,1996:99-105.
    [46]Luo A K,Westengen H,Ruden T J.The effect of varing Aluminum and rare-earth content on the mechanical properties of die cast Magnesium alloys.Material Science and Engineering A,2003,39(2):231-237.
    [47]丁文江.镁合金科学与技术.北京:科学出版社,2007.
    [48]张津,章宗和.镁合金及应用.北京:化学工业出版社,2004.
    [49]Ruden T J,Albright D L.Magnesium casting for auto applications.Advanced Materials and Processes,1994,45(6):28-32.
    [50]Robert E B.53 rd annual word Magnesium conference.Journal of Materials Science,2003,29(2):5265-5271.
    [51]吴士平,于彦东,王丽萍.提高充型过程数值模拟运算速度的动态超松弛迭代算法.中国有色金属学报,2003,13(2):1219-1222.
    [52]熊守美,苏仕方.镁合金成形技术研究进展.铸造,2005,54(1):20-23.
    [53]杨全.金属凝固与铸造过程数值模拟.浙江:浙江大学出版社,1996.
    [54]大中逸雄(日)著,许云祥译.计算机传热凝固解析入门—铸造过程中的应用.北京:机械工业出版社,1988.
    [55]罗继相.间接挤压铸造模具设计特点及研究.特种铸造及有色合金,2002,22(1):38-40.
    [56]武建国,屈华昌.铸造模具设计.北京:机械工业出版社,1994.
    [57]王建宏,龙思远.挤压铸造模具材料的选用及热处理.铸造技术,2004,25(10):803-805.
    [58]潘宪曾.压铸模设计手册(第二版).北京:机械工业出版社,1998.
    [59]许发樾.压铸模具设计应用实例.北京:机械工业出版社,2005.
    [60]刘正,张奎,曾小勤.镁基轻质合金理论基础及应用.北京:机械工业出版社,2002.
    [61]A.Boschetto,G.Costanza,F.Quadrini.Cooling rate inference in aluminum alloy squeeze casting.Materials Letters,2007,61(8):2969-2972.
    [62]T.Etter,J.Kuebler,T.Frey.Strength and fracture toughness of interpenetrating graphite/aluminum composites produced by the indirect squeeze casting process.Material Science and Engineering A.386,2004:61-67.
    [63]J.H.Lee,H.S.Kim,C.W.Won.Effect of the gap distance on the cooling behavior and the microstructure of indirect squeeze cast and gravity die cast 5038 wrought Al alloy.Material Science and Engineering A.338,2002:184-190.
    [64]邱爱保.多元函数插值讨论.宜春学院报,2007,29(4):52-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700