用户名: 密码: 验证码:
隐式表达三维模型流水线的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为国家自然科学基金项目(项目号:60275012),广东省普通高校自然科学研究重点项目(项目号:04Z010),以及深圳市科技计划项目(项目号:200341)的重要研究内容之一,本论文旨在隐式表达的框架下,围绕三维数字成像及造型流水线中涉及的三个核心技术,即三维系统标定、多视点深度图像的匹配以及多视点深度图像的合成,从理论上和实践上进行深入系统的研究与探讨。
     论文的主要研究内容和取得的主要研究进展有:
     1.分析并论证了根据径向基函数插值构造变分隐式曲面进行曲面重建的优缺点,并在此基础上确定了基于隐式表达的匹配和合成多视点深度图像的研究方案。以实验室搭建的三维扫描器为工具实现三维建模流水线的标定、匹配和合成三个过程。
     2.设计点阵图案,利用位错点阵成像原理和基准传递概念标定三维扫描器,为重建三维模型提供精确数据。实验结果表明,经过标定的三维扫描器,对300×300×80mm~3的测量体积内,可以获得X方向的标准差为0.288mm,Y方向的标准差为0.238mm和Z方向的标准差为0.292mm的测量精度。
     3.估计三维扫描器在多个视点的位置姿态,以此作为多视点深度图像匹配的初值。将数字投影仪的投射过程,当作摄像机成像的逆过程。提出了“相位-坐标”的变换方法,利用投射正交的条纹图,快速寻找成像平面和投影平面上的对应点。将极线几何约束原理应用于主动三维视觉系统,并在考虑到采样数据受噪声影响的条件下建立了优化多视点位姿估计的数学模型。通过求解所建立的数学模型可以获得三维扫描器在多视点的位置姿态的优化估计。同时,此模型还可以应用于同步自标定三维扫描器的设备参数。这种方法不需要任何已知三维坐标的标定参照物,改善和提高了三维扫描器的实用性。
     4.针对同类合成方法中经常用到的符号距离函数,在向量空间进行了严格和系统的数学公式化证明和明确的几何解释,并在此基础上利用“最小二乘逼近深度曲面上的点到等值面上的对应点的距离”和“空间向量图解”的方法建立一个广义且规范的隐式曲面方程。重新解释设置“权函数”的标准以及隐式曲面造型中的其他一些几何关系,将相邻视点间的关系和深度图像采样点的可靠性考虑到权函数里,合成多个视点生成的变分隐式曲面。
As important research contents of the National Natural Science Foundation of China (Grant No. 60275012), the Natural Science Research Grant of Higher Education of Guangdong province (Grant No. 04Z010), and the Science & Technology Bureau of Shenzhen (Grant No. 200341), this thesis focuses on the three key issues of three dimensional pipeline-modeling based on implicit representation. Those issues involve in the calibration method for three dimensional vision system, the registration method for multi-view range images and the integration method for multi-view range images. Both theoretical and experimental aspects are considered, and some innovative research outcomes have been accomplished.
     The main research contents and contributions made by this thesis are summarized as follows:
     1. The surface reconstruction method using variational implicit surface with radial basis function interpolation was exploited in detail. On the basis of this analysis, we developed an efficient scheme for the registration and the integration of multiple range images. Moreover, we built up an in-house 3D scanner with which we demonstrated our approaches.
     2. With the concept of benchmark transmission and shifted point array encoding we developed a method for calibrating our 3D scanner. Experiment results showed that after the proposed calibration procedure the 3-D vision system was able to achieve such an accuracy as the standard deviation in X direction was 0.288mm, 0.238mm in Y direction, and 0.292mm in Z direction, respectively, for a measuring volume of 300×300×80mm~3.
     3. To register multiple range images, we presented a method for the pose estimation for 3D scanner based on the principle of fringe projection. The projector could be conceptually regarded as a camera that works in a reversed mode. To determine homologous points in the proposed camera/projector configuration, the phase map was converted to the u, v coordinates using two orthogonal fringe sequences. Taking epipolar geometry into account, this approach could further realize the estimation of arbitrary pose of view point and achieve a self-calibration of the 3D scanner by minimizing the squared distances between those imaging points and their corresponding epipolar lines. With this procedure, we were able to simultaneously calculate the parameters of the orientation and the system structure. Parameters with moderate accuracy could be estimated even if the input data deteriorated with the noise was presented. Because this procedure didn’t need a priori 3D calibration reference, the practicability of the 3D scanner had been therefore improved.
     4. The signed-distance function has been used frequently in most of integration methods based on implicit representation. In this thesis, we expanded the definition of signed-distance function in a vector space. Furthermore we developed a generalized implicit equation (GIE) by virtue of a strict mathematical formulation and a geometric reasoning. The GIE was a canonical implicit equation and was constructed by using least-mean-square approximation and vector-map reasoning. With the GIE, we could reexplain how to establish a weighted function and other geometric relations. Finally, we integrated multiple range images with the technique of variational implicit surfaces. In this process, the embedded relationship among the neighboring viewpoints and reliability of data points used in the weighted function should be considered.
引文
[1] M. Petrov, A. Talapov, T. Robertson et al. Optical 3D digitizers: bringing life to the virtual world, IEEE Computer Graphics and Application, 1998, 18(5~6): 28~37
    [2] J.L.C. Sanz. Advances in machine vision, Berlin: Springer-Verlag, 1989
    [3] R.C. Jain, A.K. Jain. Analysis and interpretation of range images, Berlin: Springer-Verlag, 1990
    [4] L. Li, N. Schemenauer, X. Peng, et al. A reverse engineering system for rapid manufacturing of complex objects, Robotics and CIM, 2002, 18: 53~67
    [5] X. Peng, C. Liu, Z. Zhang, et al. Reverse engineering with 3D imaging and modeling, Proc. SPIE, 2002, 4921: 1~10
    [6] 陈任, 鲁东明, 潘云鹤, 多维度对象数字化信息记录技术研究, 测绘学报, 2003, 32(4): 339~343
    [7] M. Levoy, K. Pulli, B. Curless, et al. The Digital Michelangelo Project: 3D scanning of large statues, In Proceedings of SIGGRAPH 2000: 131~144
    [8] F. Bernardini, I. Martin, J. Mittleman, et al. Building a digital model of Michelangelo 's Florentine Pieta, IEEE Computer Graphics and Applications, 2002, 22(1): 59~67
    [9] G. Guidi, J.A. Beraldin, C. Atzeni. High accuracy 3D modeling of cultural heritage: the digitizing of Donatello’s Maddalena, IEEE Transactions on Image Processing, 2004, 13(3): 370~380
    [10] G. Guidi, L. Micoli, M. Russo, et al. 3D digitization of a large model of Imperial Rome, 5th International Conferences on 3-D Imaging and Modeling, 2005: 565~573
    [11] F. Chen, G. M. Brown, M. Song. Overview of three-dimensional shape measurement using optical methods, Opt. Eng., 2000, 39(1): 10~22
    [12] R. Valkenburg, A. McIvor. Accurate 3D measurement using a structured light system, Image Vis. Comput, 1998, 16(2): 99~110
    [13] W. Osten. Application of optical shape measurement for the nondestructive evaluation of complex objects, Opt. Eng., 2000, 39(1): 232~243
    [14] C. Quan, X.Y. He, C.F.Wang, et al. Shape measurement of small objects using LCD fringe projection with phase shifting, Optics Communications, 2001, 189(1-3): 21~29
    [15] X. Peng, Z.H. Zhang, S.M. Zhu et al. 3D digital imaging system based onwhite-light digital moiré, Acta Optica Sinica, 1999, 19(10): 1401~1405
    [16] J.D. Tian, X. Peng. 3-D digital imaging based on shifted point-array encoding. Appl. Opt., 2005, 44(26): 5491~5496
    [17] F. Blais. Review of 20 years of range sensor development, Journal of Electronic Imaging, 2004, 13(1): 231~243
    [18] R. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses, IEEE Journal of Robotics and Automation, 1987, 3(4): 323~344
    [19] 段发阶,张键新,叶声华, CCD 摄象机参数标定新技术, 计量学报, 1997, 18(4): 294~299
    [20] G. Wei, S. Ma. Complete two-plane camera calibration and experimental comparisons, Proc. IEEE Int. Conf. on Computer Vision, Los Alamitos, 1993: 439~446
    [21] J. Salvi, X. Armangue, J. Batlle. A comparative review of camera calibrating methods with accuracy evaluation, Pattern Recognition, 2002, 35(7): 1617~ 1635
    [22] R. Hartley. Estimation of relative camera position for uncalibrated camera, Proc. of the ECCV'92, Italy, 1992: 379~387
    [23] S. Maybank, O. Faugeras. A theory of self-calibration of a moving camera, Int. J. Computer Vision, 1992, 8(2): 123~151
    [24] S. Ma. A self-calibration technique for active vision systems, IEEE Transactions on Robotics and Automation, 1996, 12(1): 114~120
    [25] 杨长江, 汪威, 胡占义, 一种基于主动视觉的摄像机内参数自标定技术, 计算机学报, 1998, 21(5): 428~435
    [26] 李华, 吴福朝, 胡占义, 一种新的线性摄像机自标定方法, 计算机学报, 2000, 23(11): 1121~1129
    [27] Z. Zhang. A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330~1334
    [28] P. Besl, N. McKay. A method for registration of 3-d shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239~256
    [29] G. Turk, M. Levoy. Zippered polygon meshes from range images, In Proceedings of SIGGRAPH 1994, 26: 311~318
    [30] A. Johnson, M. H′ebert. Recognizing objects by matching orieted points, In Proceedings of the International Conference on Computer Vision and Pattern Recognition, 1997: 121~128 106
    [31] R. Bergevin, D. Laurendau, D. Poussart. Registering range views of multipart objects, Computer Vision and Image Understanding, 1995, 61(1): 1~6
    [32] D. Huber, M. Hebert. Fully automatic registration of multiple 3D data sets, Image and Vision Computing, 2003, 21(7): 637~650
    [33] J. Wyngaerd, L.Gool. Automatic crude patch registration: towards automatic 3D model building, Computer Vision and Image Understanding, 2002, 87(1-3): 8~26
    [34] D. Tubic, P. Hebert, D. Laurendeau. A volumetric approach for interactive 3D modeling, Computer Vision and Image Understanding, 2003, 92(56-57): 56~77
    [35] T. Masuda. Registration and intergation of multiple range images by matching signed distance fields for object modeling, Computer Vision and Image Understanding, 2002, 87(1-3): 51~65
    [36] A. Johnson,S. Kang. Registration and integration of textured 3D data, In Proceedings of the International Conference on Recent Advances in 3D Digital Imaging and Modeling, Ottawa, Canada, 1997: 234~241
    [37] G. Roth. Registering two overlapping range images, In Proceedings of the 2nd International Conference on 3D Digital Imaging and Modeling, Ottawa, Canada, 1999: 191~200
    [38] S. Weik. Registration of 3D partial surface models using luminance and depth information, In Proceedings of the International Conference on Recent Advances in 3D Digital Imaging and Modeling, Ottawa, Canada, 1997: 93~100
    [39] R. Szeliski, H. Shum. Creating full panoramic mosaics and environment maps, In Proceedings of SIGGRAPH 97, 1997: 251~258
    [40] J. Boissonnat. Geometric structures for three-dimensional shape representation, ACM Transactions on Graphics, 1984, 3(4): 266~286
    [41] R.Veltcamp. 2D and 3D object reconstruction with the γ-neighborhood graph, Technical Report CS-R9116, CWI Centre for Mathematics and Computer Sience, 1991
    [42] H. Hoppe, T. DeRose, T. Duchamp. Surface reconstruction from unorganized points, Computer Graphics, 1992, 26(2): 71~78
    [43] C.L. Bajaj, F. Bernardini, G. Xu. Automatic reconstruction of surfaces and scalar fields from 3D scans, In proceedings of SIGGRAPH, 1995: 109~118
    [44] B. Curless, M. Levoy. A volumetric method for building complex models from range images, In proceedings of SIGGRAPH, 1995: 303~312
    [45] 刘晓利, 曲面简化与细分曲面造型的研究: [硕士学位论文], 天津; 天津大学, 2004
    [46] A. Rockwood. The displacement method for implicit blending surfaces in solid models, ACM Transactions on Graphics, 1989, 8(4): 279~297
    [47] 马利庄, 曲面几何连续理论及其应用: [博士学位论文], 杭州; 浙江大学, 1991
    [48] T. Sederberg, J. Snively. Parameterizing cubic algebraic surfaces, in The Mathematics of Surfaces II, R. R. Martin, ed., Oxford University Press, Oxford UK, 1987: 299~320
    [49] C. Grimm, J.F. Hughes. Smooth isosurface approximation, In Implicit Surface'95, Grenoble, France, 1995: 7~112
    [50] G. Turk, J. O’Brien. Variational implicit surfaces, Technical Report GIT-GVU-99-15, Georgia Institute of Technology, 1999
    [51] J. Carr, W. Fright, R. Beatson. Surface interpolation with radial basis functions for medical imaging, IEEE transactions on medical imaging, 1997, 16(1): 96~107
    [52] J. Carr, R. Beatson, J. Cherrie et al. Reconstruction and representation of 3D objects with radial basis functions, ACM SIGGRAPH, Los Angeles, CA, USA, 2001: 67~76
    [53] B. Mulgrew. Applying radial basis functions, IEEE Signal Processing Magazine, 1996, 3: 50~65
    [54] F. Girosi, M. Jones, T. Poggio. Priors, stabilizers and basis functions: from regularization to radial, tensor and additive splines, Technical Report: MIT, artificial intelligence laboratory, June, 1993
    [55] 方向, 鲍虎军, 王平安 等, 基于任意骨架的隐式曲面造型技术, 软件学报, 2000, 11(9): 1214~1220
    [56] 余莉, 金小刚, 冯结青 等, 隐式曲面重新多边形化, 计算机辅助设计与图形学学报, 2005, 17(2): 253~260
    [57] 余莉, 金小刚, 冯结青, 隐式曲面多边形化, 计算机工程与应用, 2005, 41(2): 63~68
    [58] 杜佶, 张丽艳, 王宏涛 等, 基于径向基函数的三角网络曲面孔洞修补算法, 计算机辅助设计与图形学学报, 2005, 17(9): 1976~1982
    [59] 万华根, 金小刚, 刘刚 等, 基于变分隐式曲面的网格融合, 软件学报, 2005, 16(11): 2000~2007
    [60] 余正生, 樊丰涛, 王毅刚, 点到隐式曲线曲面的最小距离, 工程图学学报, 2005, 26(5): 74~79
    [61] R. Beatson, J. Cherrie, C. Mouat. Fast fitting of raial basis functions: Methodsbased on preconditioned GMRES iteration, Advances in Computational Mathematics, 1999, 11: 253~270
    [62] R. Beatson, W. Light, S. Billings. Fast solution of the radial basis function interpolation equations: Domain decomposition methods, SIAM J.SCI.Comput, 2000, 22(5): 1717~1740
    [63] http://www.farfieldtechnology.com/products/toolbox/
    [64] Y. Hon, R. Schaback, X. Zhou. An adaptive greedy algorithm for solving large RBF collocation problems, Numerical Algorithms, 2003, 32(1): 13~25
    [65] W. Lorensen, H. Cline. Marching Cubes: A high resolution 3d surface reconstruction algorithm, Computer Graphics, 1987, 21(4): 163~169
    [66] M. Levoy. Display of surfaces from volume Data, IEEE Computer Graphics and Applications, 1988, 8(3): 29~37.
    [67] J. Hart. Ray tracing implicit surfaces, Technical Report, School of EECS, Washington State University, 1993
    [68] 余正生, 吴启迪, 李启炎, 基于八叉树的隐式曲面与隐式曲面求交, 同济大学学报, 2001, 29(5): 568~570
    [69] 童伟华, 陈发来, 冯玉瑜, 基于偏微分方程的隐式曲面光顺方法, 计算机学报, 2004, 27(9): 1264~1271
    [70] 余正生, 彭群生, 马利庄 等, 隐式裁剪曲面的造型及绘制, 软件学报, 2001, 12(1): 111~116
    [71] 张焕玲, 隐式曲面的一种光滑拼接定义, 山东大学学报(工学版), 2002, 32(5): 444~446
    [72] 方向, 基于任意多面体骨架的隐式曲面造型技术研究: [博士学位论文], 浙江; 浙江大学,2001
    [73] 黄玉环, 基于数据造型的体数据可视化: [硕士学位论文], 浙江; 浙江大学, 2002
    [74] 江东, 冯成德, 林大全, 基于 MC 重建算法等值面的优化, 中国测试技术, 2006, 32(1): 80~82
    [75] 王正山, 吕理伟, 顾耀林 等, 基于改进 MC 算法的三维表面重建, 微电子学与计算机, 2005, 22(9): 3~6
    [76] J. Bloomenthal. A implicit surface polygonizer, Graphics Gems IV, Academic Press, 1994: 324~349
    [77] J. Bloomenthal, C. Bajaj, J. Blinn, et al. Introduction to implicit surfaces. San Francisco: Morgan Kaufman Publishers, Inc., 1997
    [78] G. Nielson, B. Hamann. The asymptotic decider: resolving the ambiguity inmarching cubes, IEEE Proceedings of Visualization, 1991: 83~91
    [79] 唐泽圣, 三维数据场可视化, 北京, 清华大学出版社, 1999. 89~107
    [80] 邱茂林, 马颂德, 李毅, 计算机视觉中摄像机标定综述, 自动化学报, 2000, 26(1): 44~55
    [81] 马颂德, 张正友, 计算机视觉---计算理论与算法基础, 北京, 科学出版社, 1997.36~70
    [82] S. Ganaphty. Decompositon of transformation matrices for robot vision, In Proc.Int. Conference on Robotics and Automation, 1984: 130~139
    [83] W. Faig. Calibration of close-range photogrammetric systems: mathematical formulation, Photogrammetric eng. Remote sensing, 1975, 41(12): 1479~1486
    [84] G. Wei, S. Ma. Implicit and explicit camera calibration: theory and experiments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(5): 469~480
    [85] J. Jun, C. Kim. Robust camera calibration using neural network, In Proceedings of the IEEE Region 10 Conference , 1999, 1: 15~17
    [86] T. Moumen, E. ElSayed. Neurocalibration: a neural network that can tell camera calibration parameters, In Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, 1: 20~27
    [87] 陈利红, 毛剑飞, 诸静, CCD 摄像机标定与修正的简便方法, 浙江大学学报(工学版), 2003, 37(4): 406~409
    [88] 周富强, 邾继贵, 杨学友 等, 双目视觉传感器的现场标定技术, 仪器仪表学报, 2000, 21(2): 142~145
    [89] 席文明, 芦俊, 颜景平, 一种摄像机内参数的改进标定方法, 仪器仪表学报, 2001, 22(3): 328~330
    [90] X. Meng, H. Li, Z. Hu A new easy camera calibration technique based on circular points, In Proceedings of the British Machine Vision Conference, Bristol: ILES Central Press, 2000: 496~501
    [91] R. Hartley. Self-calibration of stationary cameras, International Journal of Computer Vision, 1997, 22(1): 5~23
    [92] R. Hartley. Kruppa’s equations derived from the fundamental matrix, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2): 133~135
    [93] Z. Zhang, Q. Luong, O. Faugeras. Motion of an uncalibrated stereo rig: self-calibration and metric reconstruction, IEEE Transactions on Robotics and Automation, 1996, 12(1): 103~113
    [94] H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections, Nature, 1981, 293: 133~135
    [95] R. Enciso, T. Vieville. Self-calibration from four views with possibly varying intrinsic parameters, image vision computing, 1997, 15: 293~305
    [96] P. Sturm. Critical motion sequences for the self-calibration of cameras and stereo systems with variable focal length, image vision computing, 2002, 20: 415~426
    [97] 段发阶, 刘凤梅, 叶声华, 一种新型线结构光传感器结构参数标定方法, 仪器仪表学报, 2000, 21(1): 108~110
    [98] 魏振忠, 张广军, 结构光直光条中心线的鲁棒性自动提取方法, 仪器仪表学报, 2004, 25(2): 244~247
    [99] D. Huynh. Calibration a structured light stripe system: a novel approach, International Journal of Computer Vision, 1999, 33(1): 73~86
    [100] 周富强, 张广军, 用于结构光视觉传感器标定的特征点获取方法, 仪器仪表学报, 2005, 26(4): 347~351
    [101] 张广军, 魏振忠, 孙志武 等, 基于 BP 神经网络的结构光三维视觉检测方法研究, 仪器仪表学报, 2002, 23(1): 31~35
    [102] G.J. Zhang, Z.Z. Wei. A novel calibration approach to structured light 3D vision inspection, Optics and Laser Technology, 2002, 34: 373~380
    [103] 彭翔, 张宗华, 朱绍明 等, 基于白光数字莫尔条纹的三维数字成像系统, 光学学报, 1999, 19(10): 1401~1405
    [104] D. Burton, A. Goodall, J. Atkinson, et al. The use of carrier frequency shifting for the elimination of phase discontinuities in fourier transform profilometry, Opt. Lasers Eng., 1995, 23: 245~257
    [105] 刘维一, 王肇圻, 母国光 等, 彩色数字编码投影光栅三维轮廓术的研究, 光学学报, 2001, 21(6): 687~690
    [106] 张宗华, 彭翔, 胡小唐, 一种新型的彩色三维光学成像系统, 光学学报, 2002, 22(8): 994~998
    [107] 许智钦, 孙长库, 陶立 等, 彩色三维激光扫描测量方法的研究, 光学学报, 2003, 23(8): 1008~1012
    [108] 田劲东, 彭翔, 位错点阵投影的三维数字成像, 光学学报, 2005, 25(10): 1319~1323
    [109] 张宗华, 彭翔, 史伟强 等, 实物表面三维相位图定标的研究, 仪器仪表学报, 2000, 21(5): 539~542
    [110] 黄琼, 苏显渝, 数字图象获取装置的相位漂移及其对相位测量轮廓术的影响, 光电子.激光, 1998, 9(5): 406~408
    [111] 周利兵, 苏显渝, 王立无, 相位测量轮廓术中探测器非线性误差的分析, 激光杂志, 2002, 23(3): 19~21
    [112] 曹益平, 苏显渝, 陈文静 等, 数字微镜器件的时空特性对相位测量轮廓术的影响, 光学技术, 2004, 30(2): 157~160
    [113] 王立无, 苏显渝, 周利兵, 相位测量轮廓术中随机相移误差的校正算法, 光学学报, 2004, 24(5): 614~618
    [114] 梁晓萍, 苏显渝, 位相测量轮廓术的仿真研究: 系统结构参数的影响, 光电工程, 1998, 25(5): 53~60
    [115] Q. Hu, P.S. Huang, Q. Fu, et al. Calibration of a three-dimensional shape measurement system, Opt. Eng., 2003, 42(2): 487~493
    [116] P.S. Huang, Q. Hu, F.P. Chiang. Error compenstation for a three-dimensional shape measurement system, Opt. Eng., 2003, 42(2): 482~486
    [117] 段发阶, 计算机视觉检测基础理论及应用技术研究: [博士学位论文]; 天津, 天津大学, 1994
    [118] 姜大志, 郁倩, 王冰洋 等, 计算机视觉中的设备标定和三维图形重构综述, 计算机工程与应用, 2001, 37(13): 53~55
    [119] C. Reich, R. Ritter, J. Thesing. 3-D shape measurement of complex objects by combining photogrammetry and fringe projection, Opt. Eng., 2000, 39(1): 224~231
    [120] R. Legarda-Saenz, T. Bothe, W.P. Juptner. Accurate procedure for the calibration of a structured light system, Opt. Eng., 2004, 43(2): 464~471
    [121] K. Fujii, M. D. Grossberg, S. K. Nayar. A projector-camera system with real-time photometric adaptation for dynamic environments, In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, 1: 814~821
    [122] W. Schreiber, G. Notni. Theory and arrangements of self-calibrating whole-body three-dimensional measurement systems using fringe projection technique, Opt. Eng., 2000, 39(1): 159~169
    [123] G. Sansoni, M. Carocci, R. Rodella. Calibration and performance evaluation of a 3-D imaging sensor based on the projection of structured light, IEEE Transactions on Instrumentation and Measurement, 2000, 49(3): 628~636
    [124] X. Peng, Z. Zhang, Hans J. Tiziani. 3-D imaging and modeling - Part II: integration and duplication, OPTIK, 2002, 113: 453~458
    [125] Z. Liu, Y. Ding, X. Peng. Generalized iso-surface equation and its applicationsto multi-view range images integration, OPTIK, 2004, 115(2): 71~76
    [126] M. Soucy, G. Godin, M. Rioux. A texture-mapping approach for the compression of colored compression of colored 3D triangulations, the Visual Computer, 1996, 12: 503~514.
    [127] P.E. Debevec, C. Taylor, J. Malik. Modeling and rendering architecture from photographics: A hybrid geometry-and image- based approach, In proceedings of SIGGRAPH, 1996: 11~20
    [128] Y. Chen, G. Medioni. Object modeling by registration of multiple range Images, In proceedings of the 1991 IEEE Int. Conf. on Robotics and Automation Sacramento, California, April, 1991: 2724~2729
    [129] G. Dalley, P. Flynn. Pair-wise range image registration: A study in outlier classification, Computer Vision and Image Understanding, 2002, 87(1-3): 104~115
    [130] Z. Zhang. Iterative point matching for registration of free-form curves and surfaces, International Journal of Computer Vision, 1994, 13(2): 119~152
    [131] C. Dorai, G. Wang, Anil Jain, et al. Registration and integration of multiple object views for 3d model construction, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(1): 83~89
    [132] C. Sch¨utz, T.Jost, Heinz H¨ugli. Semi-automatic 3d object digitizing system using range images, In Proc. ACCV’98, Hong-Kong, 1998: 490~497
    [133] Y. Liu, M.A. Rodriguez. Accurate registration of structured data using two overlapping range images, In Proceedings of the 2002 IEEE International Conference on Robotics and Automatation, 2002, 3: 2519~2524
    [134] Y. Liu, F. Labrosse. Inverse validation for accurate range image registration with structered data, In Proceedings of 16th International Conference on Pattern Recognition, Qu′ebec, Canada, August, 2002, 3: 537~540
    [135] T. Pajdla, L.Gool. Matching of 3-D curves using semidifferential invariants, In Proceedings of the fifth International Conference on Computer Vision, 1995: 90~395
    [136] Ko Nishino, Katsushi Ikeuchi. Robust simultaneous registration of multiple range Images, ACCV2002, The 5th Asian Conference on Computer Vision, Melbourne, Australia, January, 2002: 23~25
    [137] D. W. Eggert, A. W. Fitzgibbon, R. B. Fisher. Simultaneous registration of multiple range views for use in reverse engineering of CAD models, Computer Vision and Image Understanding, 1998, 69(3): 253~272
    [138] K. Pulli. Multi-view registration for large datasets, In Proceedings of thesecond International Conference on 3-D Imaging and Modelling (3DIM’99), Ottawa, Canada, 1999: 160~168
    [139] G. Godin, D. Laurendau, R. Bergevin. A method for the registration of attributed range images, In Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling (3DIM 2001), May, 2001: 179~186
    [140] S. Rusinkiewicz, M. Levoy. Efficient variants of the icp algorithm, In proceedings of the third International Conference on 3-D Digital Imaging and Modeling (3DIM 2001), May, 2001: 145~152
    [141] G′erard Blais, M. Levine. Registering multiview range data to create 3d computer objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 820~824
    [142] P.J. Neugebauer. Geometrical cloning of 3d objects via simultaneous registration of multiple range images, In Proceedings of the international Conference on Shape Modeling and Applications, Aizu-Wakamatsu, Japan, March 3-6, 1997: 130~139
    [143] R. Benjemaa, F. Schmitt. Fast global registration of 3d sampled surfaces using a multi-z-buffer technique, Image and Vision Computing, 1999, 17: 113~123
    [144] Mensi (www.mensi.com)
    [145] EOIS (www.eois.com)
    [146] Steintek-3D-SCAN (www.steintek.de)
    [147] 3DMD-3Q (www.voxelan.co,jp)
    [148] Wolfbeck (www.wolfbeck.com)
    [149] Steinbichler Opotechnik-Comet (www.steinbichler.de)
    [150] L. Lucchese, G. Doretto, G.M. Cortelazzo. Frequency domain estimation of 3-d rigid motion based on range and intensity data, In Proceedings of the international Conference of Recent Advances in 3-D Digital Imaging and Modeling (3DIM’97), 1997: 107~112
    [151] J. Thirion. Extremely points: Definition and application to 3d image registration, In Proceedings of IEEE conference on computer vision and pattern recognition, Seattle, 1994: 587~592
    [152] P. Kresk, T. Padja, V. Hlavac. Differential Invariants as the base of triangulated surface registration, Computer Vision and Image Understanding, 2002, 87(1-3): 27~38
    [153] C.S.Chua, R. Jarvis. Point-signatures: a new representation for 3d object recognition, International Journal of Computer Vision, 1997, 25(1): 63~85
    [154] Y. Sun, M.A. Abidi. Surface matching by 3D Point’s Fingerprint, In Proceedings of IEEE international Conference on Computer Vision, 2001, 2: 263~269
    [155] A.P. Ashbrook, R.B. Fisher, C.Robertson, et al. Finding surface correspondences for object recognition and registration using pairwise geometric histograms, In Proceedings of the European Conference on Computer Vision (ECCV’98), 1998: 674~786
    [156] A. Johnson, M. Hebert. Surface registration by matching oriented points, In Proceedings of the international Conference of Recent Advances in 3-D Digital Imaging and Modeling (3DIM’97), 1997: 121~128
    [157] S.M. Yamany, A.A. Farag. Free-from surface registration using surface signatures, IEEE International Conference on Computer Vision, 1999: 1098~1104
    [158] S.M. Yamany, A.A. Farag. Surface signatures: An orientation independent free-form surface representation scheme for the purpose of objects registration and matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(8): 1105~1120
    [159] G. Barequet, M. Sharir. Partial surface matching by using directed footprints, In Proceedings of the twelfth annual symposium on Computational geometry, 1996: 409~410
    [160] P.Krek, T. Padja, V. Hlavac, et al. Range image registration driven by hierarchy of surface differential features, In Proceedings of the 22nd Workshop of the Austrian Association for Pattern Recognition, 1998: 175~183
    [161] 张宗华, 彭翔, 胡小唐, ICP 方法匹配深度图像的实现, 天津大学学报, 2002, 35(5): 571~576
    [162] 张宗华, 彭翔, 胡小唐, 获取 ICP 匹配深度图像初值的研究, 工程图学学报, 2002, 23(1): 78~84
    [163] R. Bergevin, M. Soucy, H. Gagnon, et al. Towards a general multiview registration technique, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(5): 540~547
    [164] P.J. Neugebauer. Reconstruction of real-world objects via simultaneous registration and robust combination of multiple range images, International Journal of Shape Modeling, 1997, 3(1&2): 71~90
    [165] R. Hartley. In defense of the 8-point algorithm, IEEE Trans. Pattern Analysis and Machine Intelligence, 1997, 19(6): 580~593
    [166] O. Faugeras, S. Maybank. Motion from point matches: multiplicity ofsolutions, Int. J. Computer Vision, 1990, 4: 225~246
    [167] 杨长江, 孙凤梅, 胡占义, 基于二次曲线的纯旋转摄像机自标定, 自动化学报, 2001, 22(3): 310~316
    [168] 吴福朝, 李华, 胡占义, 基于主动视觉系统的摄像机自标定方法研究, 自动化学报, 2001, 27(6): 752~762
    [169] J.H. Han, J.S. Park. Contour matching using epiploar geometry, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(4): 358~370
    [170] H. Edelsbrunner, E.P. M¨ucke. Three-dimensional alpha shapes, ACM Transactions on Graphics, 1994, 13(1): 43~72
    [171] F. Bernardini, C. Bajaj, J. Chen, et al. Automatic reconstruction of 3D CAD models from digital scans, International Journal of Computational Geometry and Applications, 1999, 9(4&5): 327~370
    [172] A. Hilton, A.J. Stoddart, J. Illingworth, et al. Marching triangles: range image fusion for complex object modeling, International Conference on Image Processing, 1996, 1(2): 381~384
    [173] S. Akkouche, E. Galin. Adaptive implicit surface polygonization using marching triangles, Computer Graphics Forum, 2001, 20(2): 67~80
    [174] O.G. Staadt, M.H. Gross, R. Weber. Multiresolution compression and reconstruction, Eighth IEEE Visualization, 1997: 337~346
    [175] D. Marchal, F. Aubert, C. Chaillou. Collision between deformable objects using fast-marching on tetrahedral models, In Proceedings of the 2004 ACM SIGGRAPH, 2004: 121~129
    [176] G.M. Treece, R.W. Prager, A.H. Gee. Regularised marching tetrahedra: Improved iso-surface extraction, Computers and Graphics, 1999, 23(4): 583~598
    [177] M. Soucy, D. Laurendeau. Multi-resolution surface modeling from multiple range views, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1992: 348~353
    [178] M. Soucy, D. Laurendeau. A general surface approach to the integration of a set of range views, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(4): 344~358
    [179] M. Soucy, D. Laurendeau. Generating non-redundant surface representations of 3D objects using multiple range views, In Proceedings of 10th Intelligence Conference Pattern Recognition, 1990: 198~200
    [180] M. Soucy, D. Laurendeau. Multiresolution surface modeling based onhierarchical triangulation, Computer Vision and Image Understanding, 1996, 63(1): 1~14
    [181] 张宗华, 彭翔, 胡小唐, 深度图像合成的主次缝合线方法, 工程图学学报, 2000, 22 (2): 102~109
    [182] M. Rutishauser, M. Stricker, M. Trobina. Merging range images of arbitrarily shaped objects. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1994: 573~580
    [183] A. Johnson, S.B. Kang. Registration and integration of textured 3-D data, Technical Report CRL 96/4, Cambridge Research Laboratory, Sept. 1996
    [184] G. Succi, G. Sandini, E. Grosso. 3D feature extraction from sequences of range data, Robotics Research. 5th Int. Symposium, 1990: 117~127
    [185] A. Hilton, A. J. Stoddart, J. Illingworth. Implicit surface-based geometric fusion, Computer Vision and Image Understanding, 1998, 69(3): 273~291

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700