用户名: 密码: 验证码:
开心胶囊抗内皮损伤的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冠心病是当前世界范围内严重威胁公众健康的重要疾病之一。统计资料表明,发达国家心血管病的发病率虽然有所下降,但是死亡率仍居首位。近年来,我国心血管病的死亡率有增加的趋势。因此,对冠心病发病机理和防治的研究是心血管病学的一个重要课题。其发病机制经历了多种学说,目前比较公认的是损伤反应学说。多种因素促进内皮损伤,导致动脉粥样硬化及冠心病的发生和发展。已知内皮功能不全不仅是动脉粥样硬化及冠心病发生的始动环节,而且在该病的发展过程中起着极其重要的作用。
     开心胶囊是导师陈镜合教授根据多年临床经验研制而成的,既往研究表明,开心胶囊对无症状心肌缺血、心梗后心室重塑、缺血性心肌病继发的早期心力衰竭及心肺复苏后心功能不全等的临床和实验研究均得到了良好的疗效。开心胶囊是由越鞠丸、失笑散及生脉散加减而成的,具有行气解郁、活血通络、养心安神之功效。临床实践证明,开心胶囊对气滞血瘀型冠心病心绞痛患者有肯定疗效。
     本课题主要是探讨开心胶囊的抗内皮损伤作用,以期为该药的临床应用提供理论依据。实验部分探讨开心胶囊药物血清对于气滞血瘀型高脂血症损伤人脐静脉内皮细胞的保护机制;临床部分验证开心胶囊对于气滞血瘀型冠心病心绞痛的临床疗效及对该类患者内皮功能的影响。本课题分文献研究、实验研究及临床研究三部展开。
     文献研究:归纳了古代医家对本病的病名、病因病机、治则、治法等几个方面的认识;另外,归纳了现代中医研究较为详细的治疗内皮功能不全的中药单味药及复方。最后,阐述了现代医学对内皮细胞功能不全的认识,包括内皮的生理功能、损伤因素、内皮功能不全在动脉粥样硬化及冠心病发生中的作用机制,以及治疗进展。
     实验研究:目的:探讨开心胶囊对气滞血瘀型高脂血清损伤内皮的保护作用机制。方法:首次采用夹尾郁怒伤肝法和食饵法复制肝郁气滞血瘀高脂血症大鼠动物模型。采用血清药物学方法,制备不同剂量组的开心胶囊药物血清及阳性对照药立普妥的药物血清。运用RT-PCR法和ELISA法检测气滞血瘀型高脂血清损伤人脐静脉内皮细胞12小时后,HUVECs中MCP-1mRNA含量、NF-κB活性的变化及开心胶囊药物血清干预后两者的变化。结果:气滞血瘀型高脂血清刺激HUVECs 12小时后,MCP-1mRNA含量增加、NF-κB活性升高,与空白组比较,具有显著性差异(p<0.05);开心胶囊的高剂量组药物血清干预后两者均表现为下降趋势,与模型组比较,具有显著性差异(p<0.05),与立普妥药物血清组比较,无显著性差异(p>0.05)。结论:开心胶囊的高剂量组药物血清能够降低气滞血瘀型高脂血清刺激HUVECs后MCP-1mRNA的含量及NF-κB活
As we all know, coronary heart disease is one kind of disease which needs pre-diagnose. Endothelium is not only a barrier, but also the organ which performs the functions of autocrine, paracrine and endocrine.Being a early symptom of CHD, Endothelial dysfunction is the primary stage in atherosclerosis and CHD. The traditional Chinese medicine is verified to have the prospective effect on the treatment of endothelial dysfunction after many years clinical experiments.Kaixin capsule is developed by the professor Chen jinghe, which has been identified with the clinical and experimental effects on symptomless myocardial ischemia, myocardial infarction ventricle remodeling, cardiac insufficiency after ischemic cardiomyopathy and cardio-pulmonary resuscitation. Kaixin capsule is mainly composed of yuejuwan, shixiaosan and shengmaisan, which has a function of xingqijieyu, huoxuetongluo and yangxinanshen. The article aims to evaluate the effect of Kaixin capsule on the endothelial dysfunction, also explore the machanism of Kaixin capsule on the angina pectoris patients who has the syndromes of stagnation qi and blood. The article has three aspects, including literature investigation, experiment and clinical investigation.There aren't terms of coronary heart disease, atheroscelorosis and endothelial dysfunction respectively in traditional Chinese medicine (TCM).According to the pathogenesis and clinical situations of endothelial dysfunction, it looks like "Xiongbi, zhenxintong" described in traditional Chinese medicine. Meanwhile,the symptom, pathology, therapy, and featured traditional Chinese medicine of the ancient time will be introduced in the article, among which, some are still used and investigated in
    treating of endothelial dysfunction nowadays. At last, there are some aspects about pathophysiology, treatment, and the mechanism of endothelial function in atherosclerosis.Experimental research Objective: To evaluate the effect of the serum of Kaixin absorped on MCP-lmRNA and NF- k B activity in cultured cells(HUVECs). Methods: Several groups of cultured HUVECs were incubated with different drugs:(l)the HUVECs were incubated with PBS for 12 hours.(2)in other groups HUVECs, the serum of Kaixin of different doses was added to the cultured medium for 12 hours.(3) the HUVECs were cultured with Lipitor for 12 hours. The HUVECs MCP-1 mRNA was measured by quantitative competitive reverse transcription-polymerase chain reaction(RT-PCR). And the NF- k. B protein activity was measured by endothelial cell enzyme linked immunosorbent assay (ELISA).Results: Hyperlipidemic serum markedly increased HUVECs' MCP-1 mRNA expression after 12 hours incubation (p<0.05). After treatmemt with different dose of Kaixin capsule serum for 12 hours, MCP-1 mRNA expression was decreased ,0.48 ± 0.07,0.25 ± 0.02,0.21 ± 0.03 of lipitor group. There was no significant difference between the serum of high dose of kaixin and Lipitor group(p>0.05). The ELISA was performed to evaluate the effect of kaixin capsule on HUVECs. OD450 of NF- x B protein activity was 2.287±0.267, 2.147 + 0.356,1.141 ±0.107,0.108 ±0.095 respectively, in control group, OD450 was 0.935 ±0.086. The increase in NF- k B protein activity was significantly in model group, the activity of NF- k B was suppressed by treating with Kaixin capsule and Lipitor. There wsa no difference between Kaixin capsule of high dose and Lipitor group in NF- k B activity(p>0.05).Conclusion: 1 Hyperlipidemic serum markedly increased HUVECs MCP-1 mRNA expression and NF- k B activity. HUVECs MCP-lmRNA and NF- k B for 12 hours was decreased in HUVECs after incubated with the serum of Kaixin capsule and Lipitor. 2 The effects of endothelial dysfunction were blocked by pretreatment of HUVECs with Kaixin capsule .Kanxin capsule can lessen NF- k B activity and MCP-lmRNA expression, and Kaixin capsule may produce anti-endothelial dysfunction effect by this way.Clinical research Objective : To explore the effect and mechanism of traditional medicine Kaixin capsule in angina pectoris patients with the syndroms of stagnation qi and blood. Methods: Eighty cases of patients were selected, according to the
    criteria of both the syndrom of stagnation qi and blood and of the coronary heart disease angina pectoris. All patients were allocated randomly to two groups: Kaixin group and the control group. Kaixin group were treated with Kaixin capsules, the control group were treated with Lunanxinkang. Before and after the treatment, the levels of hemorheology, NO, ET-1 were measured, and the score of the syndroms of the patients. Result: There was no significant difference between Kaixin group and Lunanxinkang group in clinical symptom total curative effect aspect. The total effective ratio of Kaixin group is 85%,the total effective ratio of Lunanxinkang group is 77.5% (P>0.05). But kaixin capsule can improve the syndrome of the stagnation of qi and blood better, such as touyuntoutong, shimianduomeng and aiqishantanxi. kaixin capsule can improve the ischemic changes in EKG, and there were no significant difference between two groups(P>0.05). In the aspect of hemorheology and hyperlipidemic, kaixin capsule can improve partly. Also, Kaixin capsule can lower the level of NO, ET-1.Conclusion: 1 kaixin capsule has a definite effect on angina pectoris patients with the syndrom of stagnation qi and blood. 2 kaixin capsule may have the ability of improving the endothelial dysfunction.
引文
[1] 司秋菊,王鑫国,王亚利,等.蜈蚣对动脉粥样硬化家兔血管内皮细胞生长因子的影响.中西医结合心脑血管杂志,2003;1(1):5—6
    [2] 于永方,高瑞峰,李沈明.黄芩茎叶总黄酮对动脉粥样硬化早期病理改变的影响.中草药,2003;34(11):1033—1034
    [3] 范亚明,张颖,王绿亚,等.水蛭水蛭素对实验性动脉粥样硬化的影响及其机理研究.中国动脉硬化杂志,1995;3(2,会议专辑)
    [4] A bmed RS, Seth V, Pasha ST, et al. Influence of dietary ginger(Zingiber officinales Rose). onoxidative stress induced by malathion in rats. Food Chem Toxicol. 2000, 38(5): 443-450
    [5] Fubrman B, Rosenber M, Hayek T, et al. Ginger extract consumption reduces plasma cholesterol, inhibits LDL oxidation and attenuates development of atheroscleroesis in athersclerotic, apolipoprotein E-deficient mice. J Nutr, 2000;130(5): 1124-1231
    [6] 刘宁,霍贵成,张玲,等.生姜对高血脂大鼠脂质过氧化作用的研究.卫生研究,2003:32(1):22—23
    [7] 王保华,欧阳静萍,刘永明,等.当归对高脂血清所致ECV304细胞损伤的保护作用.生理学报,2001;53(3):240—243
    [8] 王保华,欧阳静平,魏蕾,等.当归及阿魏酸钠对内皮细胞中表达的影响.辽宁中医杂志,2001;28(1):45—47
    [9] 余道,王鑫国,王亚利,等.当归抗家兔主动脉粥样硬化形成的作用.中国动脉硬化杂志,2000;8(1):46—48
    [10] 李丽颖,董德武,魏宝霞.葛根素与雌激素替代疗法对老年高血压动脉粥样硬化患者血管内皮功能影响.中医药学报,2002;30(1):42—43
    [11] 郭晓刚,陈君柱,张雄,等.葛根素对人鼠心肌细胞L型钙离子通道的影响.中国中药杂志,2004;29(3):248
    [12] 徐平湘,孙薇,黑爱莲,等.葛根素对异内肾上腺素诱导大鼠心肌损伤的保护作用.首都医科大学学报,2003;24(3):251.
    [13] 吕圣莲,肖韵,龙萍,等.葛根素静滴致溶血反应2例,药物流行病学杂志,2002,11 (1)16
    [14] 梁勇,程昌盛.葛根素致急性溶血,药物不良反应杂志,2001,3,186
    [15] 王宏伟,赵月华,熊一力.穿心莲提出物对动脉粥样硬化家兔动脉壁DGF-B、c-sis、c-myc基因表达的影响.同济医科大学学报,1998;27(1):46—51
    [16] 汪道文,赵华月,汤执云.穿心莲提取物和鱼油预防粥样硬化性动脉狭窄的实验 研究.中国循环杂志,1994;9(31):295—297
    [17] 王林丽,俞稼.穿心莲及其制剂的药理作用和临床研究进展,中国药业,2003,12(10)72—73
    [18] 武明东,姜海燕,刘皿.软脉宁抗动脉粥样硬化作用的实验研究.辽宁中医杂志.2000;27(3):140—142
    [19] 周小青,罗尧岳,谢小兵,等.五首活血化瘀方度高脂饮食所致兔动脉粥样硬化保护作用的研究.中国中医药科技,2004;11(3):148—150
    [20] 沈晓君,魏重琴,姬生国,等.通脉降脂对高胆固醇血症鹌鹑血脂、v WF及GMP-140的影响.河南医科大学学报,2001;36(4):448—449
    [21] 吕崇山,张铁忠,张惠铭,等.通脉降脂口服液抗动脉粥样硬化作用的实验研究.中国中西医结合杂志,1995;15(8):479—482
    [22] 徐东波,张军平,张文志,等.丹参注射液对血管内皮细胞氧化损伤保护作用的实验研究.天津医科大学学报,2001;7(1):21—23
    [23] 李广斌,姜希娟,范英昌.调肝导浊中药及抗氧化损伤的实验研究.天津中医学院学报,2003;22(9):11—12
    [24] 史国峰,宋剑南,陈杲,等.沥水调脂胶囊对弱氧化低密度脂蛋白诱导的血管平滑肌细胞单核细胞趋化蛋白1及血管内皮细胞P选择素表达的影响.中国动脉粥样硬化杂志,2003;11(6):548
    [25] 赵学军,李任先,刘国普,等.理脾化痰方对食饵性动脉粥样硬化症家兔血管平滑肌细胞增殖和调亡的调控.广州中医药大学学报,2001;18(2):144—148
    [26] 马爱玲,王宗仁,郑谨,等.芪丹通脉片对实验性大鼠动脉壁ICAM-1、VCAM-1基因表达的影响.第四军医大学学报,2004;25(4):355—358
    [27] 王洪巨,黄元伟,章黎苹.中药制剂通心络抗家兔动脉粥样硬化实验研究.科技通报,2004;20(1)
    [28] 郝群,李大金,朱影,等.补肾宁心方对单核—内皮细胞在动脉粥样硬化中相互作用的影响.中国老年学杂志,2004;24(4):337—339
    [29] 黄召谊,吴汉卿.中药冠心康对实验性家兔动脉粥样硬化模型血液流变性的影响.微循环杂志,2000;10(4):42—43
    [30] 召谊,吴汉卿,叶慧明,等.冠心康对实验性家兔动脉粥样硬化血清NO及血浆ET-1的影响.微循环杂志,2004;14(2):10—12
    [31] 召谊,吴汉卿,叶慧明,等.冠心康对实验性家兔动脉粥样硬化血清NO及血浆ET-1的影响.微循环杂志,2004;14(1):10—12
    [32] Vita JA, Treasure CB, Nabel EG, et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation, 1990;81: 491-497
    [33] Poulter N. Coronary heart disease is a multifactorial disease. Am J Hypertens, 1999;12: 92s-95s
    [34] Malek AM, Alper SL, Lzumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA, 1999;282: 2035-2042
    [35] Simionescu N, Simionescu M(eds): Endothelial Cell Biology in Health and Disease. New York: Plenum Press, 1988
    [36] Gimbrone MA J r: Vascular endothelium in health and disease. In Haber E(ed): Molecular Cardiovascular Medicine. New York, Scientific American Medicine, 1995, pp49-61
    [37] Davies PF, Tripathi SC: Mechanical stress mechanisms and the cell: An endothelial paradigm. Eirc Res, 1993: 72: 239-245
    [38] Davies PF Flow-mediated endothelial mechanotransduction. Physiol Rev 1995;75: 519-560
    [39] Cooke JP, Tsao PS: Go with the flow. Circulation 2001;103: 2773-2775
    [40] Homma Y, Predictors of atherosclerosis, J Atheroscler Thromb, 2004;11: 265-270
    [41] Mehta JL, The role of LOX-1, a novel lectin-like receptor for oxidized density lipoprotein in atherosclerosis. Can J Cardiol, 2004;20 SupplB: 32B-36B
    [42] Mertens A, Holvoet P. Oxidized LDL and HDL: antagonists in atherothrombosis. FASEBJ, 2001;15: 2073-84
    [43] Bae JH, Schwemmer M, Lee IK, et al. Postprandial hypertriglyceridemia-induced endothelial dysfimction in healthy subjects is independent of lipid oxidation. Int J Cardiol, 2003;87: 259-267
    [44] Hua Cai, David G, Harrison. Endothelial Dysfunction in Cardiovascular Diseases: The Role of Oxidant Stress. Circ Res, 2000;87: 840-844
    [45] Sumida H, W atanabe H, Kugiyama K, et al. Does passive smoking impair endothelium-denpent coronary artery dialation in women? J Am Coil Cardiol, 1988;31: 811-815
    [46] Zeiher AM, Schachinger V, Minners J. Long-term cigarette smoking impairs endothelium -dependent coronary arterial vasodilation fimction. Circulation, 1995;92: 1094-1100
    [47] Schmidt AM, Yan SD, Wautier JL, et al. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res, 1999;84: 489-497
    [48] Delgado A. Hyperinsulinemia and Not Level Is a Predisposing Factor to Endothelial Dysfunction. Am J Cardiol, 2006;97(4): 590
    [49] Arcaro G, Cretti A, Balzano S, et al. Insulin causes endothelial dysfunction in humans. Circulation 2002;105: 576—582
    [50] Nakashima H, Suzuki H, Ohtsu H, et al. Angiotensin Ⅱ regulates vascular and endothelial dysfunction: recent topics of Angiotensin Ⅱ type-1 receptor signaling in the vasculature. Curr Vase Pharmacol, 2006;4(1): 67-78
    [51] Nicolettin A, Mandet C, Challah M, et al. Mediators of perivascular inflammation in the left ventricle of renovascular hypertensive rats. Cardiovasc Res, 1996;31: 585-595
    [52] Kranzhofer R, Schmidt J, Pfeiffer CAH, et al. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vase Biol, 1999;19: 1623-1629
    [53] Schieffer B, Schieffer E, Hilfiker-Kleiner D, et al. Expression of Angiotensin Ⅱ and interleukin 6 in human coronary atherosclerotic plaques: potential implications of inflammation and plaque instability. Circulation, 2000;101: 1372-1378
    [54] Kristal B, Shurtz-Swirski R, Chezar J, et al. Participation of peripheral polymorphonuclear leukocytes in the oxidative stress and inflammation in patients with essential hypertension. Am J Hypertens, 1998;11: 921-928
    [55] Barret Conner E, Bush TL, Jam Med Assoc, 1991;265(14): 1861-1867
    [56] Urakami Harasawa L, Shimokawa H, Nakashima M, et al. J Clin Invest, 1997;100(11): 2793-2799
    [57] Douglas, Cines, Eleanor S, et al. Endothelian cells in physiology and in the pathophysiology of vascular disoders. Blood, 1998;91(10): 3527—61
    [58] John S, Schmieder RE. Impaired endothelial function in arterial hypertension and hypercholesterolemia: potential mechanisms and differences. J Hypertens, 2000;18: 363-374
    [59] Patti G, Melfi R, Di Sciascio G, The role of endothelial dysfimction in the pathogenesis and in clinical practice of atherosclerosis. Current evidences, Recenti Prog Med, 2005;96(10): 499-507
    [60] Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerosis coronary arteries. N Engl J Med, 1986;315: 1046-1051
    [61] Vita JA, Treasure CB, Nabel EG. Coronary vasomotor response to acetylcholine relate to risk factor for coronary artery disease. Circulation, 1990;81: 491-498
    [62] Benzuly KH, Padgett RC, Kaul S, et al. Functional improvement precedes structural regression of atherosclerosis. Circulation, 1994;89: 1810-1818
    [63] Seccom be JF, Schaff HV. Coronary artery endothelial function after myocardial ischemia and reperfusion. Ann Thorac Surg, 1995;60: 778-788
    [64] Ley K, Tedder TF. Leukocyte interaction wity vascular endothelium, New insights into selectin-mediated attachment and rolling. J Immunol, 1995;155, 525-528
    [65] Gu L, Okada Y, Clinton SK, et al. Absence of monocyte chemoattractant reduces atherosclerosis in low density lipoprotein receptor-deficient mice. J Clin Invest, 1998;2: 275-281
    [66] Lerman A, Burnett JC Jr. Intact and altered endothelium in regulation of vasomotion. Circulation, 1992;86(suppl Ⅲ): Ⅲ-12-Ⅱ-19
    [67] Constans J, Conri C, Circulating markers of endothelial function in cardiovascular disease. Clin Chim Acta, 2006;8
    [68] Fenster BE, Taso PS, Rockson SG. Endothelail dysfunction: clinical strategies for treating osidant stress. Am Heart J, 2003;146(2): 218-226
    [69] Dupuis J, Tardif JC, Cernacek P, et al. Cholesterol reduction rapidly improves endothelial function after acute coronary syndromes. The RECIFE(reduction of cholesterol in ischemia and function of the endothelium) trial. Circulation, 1999;99(25): 3227-3233
    [70] Tamai O, Matsuoka H. Single LDL apheresis improves endothelium-dependent vasodilation in hypercholesterolemia humans. Ciuculation, 1997;95(1): 76-82
    [71] 杨鹏远,动脉粥样硬化大鼠实验模型的建立.第二军医大学学报,2003;(24)6:802—804
    [72] 张小丽,闫惠勤,李重平.畅胃胶囊对肝郁症大鼠治疗作用的实验研究.华西药学杂志,2002;17(3):173—174
    [73] 严灿,高敏.肝郁证免疫改变机制的临床与实验研究.中医研究,1995;8(6):18-20
    [74] 肖洪彬,赵艳明,王海,等.桃仁、红花配伍对慢性血瘀模型大鼠血液流变学的影响.中医药信息,2005;22(4):75—76
    [75] 李凤奎,王纯耀.实验动物学.郑州,郑州大学出版社.2001;第一版:156—157
    [76] 李仪奎.中药血清药理学实验方法的若干问题.1999;10(2):95—98
    [77] 乔明琦,张惠云,陈雨振,等.肝郁证动物模型研究的理论思考.中国医药学报,1999:12(5):42-44
    [78] 肖桂林.肝郁脾虚证实验诊断指标的研究.湖南中医学院学报,1998;18(2):4
    [79] 李松,陈镜合.开心胶囊对心肌缺血大鼠血清一氧化氮的影响.广州中医药大学学报,1999;16(2):124—125
    [80] 薛军,罗小星,陈镜合.开心胶囊对糖尿病大鼠心肌缺血和内皮素的影响.新中医,1999;31(6):34—35
    [81] 赵静,陈镜合.开心胶囊治疗无症状心肌缺血疗效观察.中国中西医结合急救杂 志,2000;7(2):67—68
    [82] 周迎春,赵锋利,陈镜合,等.开心胶囊对大鼠心梗后左室非梗塞区胶原改建的影响.广州中医药大学学报.2002;19(3):204—206
    [83] Iwama H, Amagaya S, Ogihain Y, effects of shosaikoto, a Japanese and Chinese herbal medicinal mixture, on the mitogenic activity lipopolysaccharide: A new pharmacological testing method. Jethnopharma, 1987, 21: 45
    [84] Terkeltaub R, Boisvert WA, Curtiss LK, Chemokines and atherosclerosis. Curr Opin Lipidol, 1998;9: 397-405
    [85] Reape TJ, Groot PH, Chemokines and atherosclerosis. Atherosclerosis, 1999;147: 213-25
    [86] Dosquet C, Weill D, Wqutier JL, Cytokines and thrombosis, J Cardiovasc Pharmacol. 1995, 25: S13-19
    [87] Groneubom AM, Clore GM. Modeling the three-dimensional structure of the monocyte chemoattractant and activating protein MCAF/MCP-1 on the basis of the solution structure ofinterleukin 8 Protein. Eng, 1991;4(3): 263
    [88] Mehrabian M, Lusis AJ, Fogelman AM, et al. Localization ofmonocyte chemotacite protein-1 gene(SCYA2) to human chromosome 17q11. 2q21. 1. Genomica, 1991;9(1): 200-202
    [89] Martinovic I, Abegunewardene N, Seul M, et al. Elevated monocyte chemoattractant protein-1 serum levels in patients at risk for coronary artery disease. Circ J, 2005;69(12): 1484-1489
    [90] Blandberg FG, Wen P, Dai M, et al. Detection of early atherosclerosis with radiolabeled monocyte chemoattractant protein-1 in prediabetic Zucker rats. Pediatr Radiol, 2002;31: 827-35
    [91] Sebastian S, Gudrun T, Elisabeth G, et al. Identification of syntenin and other TNF-inducible genes in human umbilical arterial endothelial cells by suppression subtractivehybridization. FEBS Letters, 2000;467: 299-304
    [92] Peters W, Charo IF, Involvement of ehemokine receptor 2 and its ligand monocyte chemoattraetant protein-1 in the development of atheroselerosis: lesions from knockout mice. CurrOpinLipidol, 2001;12: 175-180
    [93] Nelken NA, Coughlin SR, Gordon D, et al, Monocyte chemoattractant protein-1 in human atheromatous plaques, J Clin Invest, 1991, 88: 1121-27
    [94] Yla-Herttuala S, Lipton BA, Rosenfeld ME, et al. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesion. Proe Natl Acad Sci U S A, 1999;88(12): 5252-56
    [95] Yu X, Dluz S, Graves DT, et al. Elevated expression of monocyte chemoattractant protein 1 by vascular smooth muscle cells in hypercholesterolemic primates. Proc Natl Acad SciUSA, 1992;89(15): 6953-57
    [96] Takeya M, Yoshimura T, Leonard EJ, et al, Detection of monocyte chemoattractant protein-1 in human atherosclerotic lesions by an anti-monocyte chemoattractant protein-1 monoclonal antibody, Human Pathol, 1993, 24(5)534-539
    [97] Nelken NA, Coughlin SR, Gordon D, et al. Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest, 1991;88: 1121-1127
    [98] Inoue S, Egashira K, Ni W, et al. anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoproteinE-knockoutmice. Circulation, 2002;106: 2700-06
    [99] De Lemos JA, Morrow DA, Sabatine MS, et al. Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients withacute coronarysyndromes. Circulation, 2003;107: 690-695
    [100] Matinovic I, Abeaunewardene N, Seul M. Elevated monocyte chemoattractant protein-1 serum levels in patients at risk for coronary artery disease. Circ J. 2005;69(12): 1484-1489
    [101] Dco R, Khera A, Darren K, et al. association among plasma levels ofmonocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis. J Ameri College Card, 2004;44(9): 1812-18
    [102] Yang YY, Hu C J, Chang SM, et al. Aspirin inhibits monocyte chemoattractant protein-1 and interleukin-8 expression in TNF-alpha stimulated human umbilical vein endothelial cells. Atherosclerosis, 2004;174(2): 207-13
    [103] Nagoshi Y, Kuwasako K, Cao YN, et al. Effects of C-reactive protein on atherogenic mediators and adrenomedullin in human coronary artery endothelial and smooth muscle cells. Biochem Biophys Res Commun, 2004;314: 1057—1063
    [104] Cushing SD, Berliner JA, Valente AJ, et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA. 1990;87(5): 134-138
    [105] Cushing SD, Berliner JA, Valente AJ, et al. Mininmally modified low density lipoprotein induced monocyte chemotactic protein-1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA, 1990: 87(13): 5143-38
    [106] Ni W, Kitamoto S, Ishibashi M, et al. Monocyte chemoattractant protein-1 is an essential inflammatory mediator in angiotensin Ⅱ induced progression of established atherosclerosis in hypercholesterolemic mice. Arterisclerosis Thrombosis and Vascular Biology, 2004;24: 534-539
    [107] Rathinam S, Homi B. Complement-Induced Expression of Chemokine Genes in Endothelium: Regulation by IL-1-Dependent and -Independent Mechanisms, The Journal of Immunology, 1998;161: 4388-4395
    [108] Wang DL, Wung BS, Shyy-YJ, et al. Mechanical strain induces monocyte chemotactic protein-1 gene expression in endothelial cells: Effects of mechanical strain on monocyte adhesion to endothelial cells. Circ Res, 1995;77(2): 294-302
    [109] Frazier Jessen MR, Kovacs EJ, Estrogen modulation of JE/monocyte chemoattractant protein-1 mRNA expression in murine macrophages. J Immunol, 1995;154(4): 1838—45
    [110] Merritt R, Guruge BL, Miller DD, et al. Moderate alcohol feeding attenuates postinjury vascular cell proliferation in rabbit angioplasty model. J Cardiovasc Pharmacol, 1997;30(1): 19—25
    [111] Hemadez-Presa M, Bustos C, Ortego M, et al. Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-kappa B activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation, 1997;95(6): 1532-41
    [112] Rezaie-Majd A, Maca T, Bucek RA, et al. Simvastatin Reduces Expression of Cytokines Interleukin-6, Interleukin-8 and Monocyte Chemoattractant Protein-1 in Circulating Monocytes From Hypercholesterolemic Patients. Arteriscler thromb vasc boil, 2002;22: 1194-99
    [113] Leu HB, Wu CC, Wu TC. Fluvastatin reduces oxidative stress, decreases serum monocyte chemotactic protein-1 level and improves endothelial function in patients with hypercholesterolemia. J Formos Med Asso, 2004;103(12): 914-20
    [114] Brand K, Page S, Rogler G, et al. Activitated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest, 1996;97(7): 1715-22
    [115] Lindner V, Collins T, Expression ofNF-κ B and I κ B- α by aortic endothelium in a arterial injury model. Am J Pathol, 1996;148: 472
    [116] Jawien J, Gajda M, Mateuszuk L, et al. Inhibition of nuclear factor-kappaB attenuates artherosclerosis in apoE/LDLR-double knockout mice. J Physiol Pharmacol, 2005;56(3): 483-9.
    [117] Bavendiek U, Libby P, Kilbride M, et al. Induction of tissue factor expression in human endothelial cells by CD40 ligand is mediated via activator protein 1, nuclear factor kappa B and Egr-1. J Biol Chem, 2002;277(28): 25032—39
    [118] Tham DM, Martin-Me Nulty B, WANG YX, et al. Angeiotension Ⅱ is associated with activation of NF-κ B mediated genes and downregulation of PPARs. Physiol Genomics, 2002;11: 21-30
    [119] Brasier AR, Recinos A, Eledrisi MS. Vascular inflammation and the rennin-angiotension system. Arterioscler Thromb Vase Biol, 2002;22: 1257-1266
    [120] Pueyo ME, Gonzalez W, Nicoletti A, et al. Angiotensin Ⅱ stimulates endothelial vascular cell adhesion molecular-1 via nuclear factor-κ B activation induced by intracellular oxidative stress. Arterio Thromb Vase Biol, 2000;20: 645-651
    [121] Costanzo A, Moretti F, Brugio VL, et al. Endothelial activation by angiotensin Ⅱ through NfkappaB and p38 pathways: Involvement of NfkappaB-induced kinase(NIK), free oxygen radicals, and selective inhubition by aspirin. J Cell Physiol, 2003;195: 402-10
    [122] Andreakos E, Smith C, Kiriakidis S, et al. Heterogeneous requirement of IKB kinase 2 for imfammatory cytokine and matrix metalloproteinase production in rheumatoid arthritis: implication for therapy. Arthritis Rheum, 2003;48: 1901-12
    [123] Wilsn SH, Best PJ, Edwards WD, et al. Nuclear factor-kappa B, immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris. Atherosclerosis, 2002;160(1): 147
    [124] Aoki M, Nata T, Morishita R et al. Endothelail apoptosis induced by oxidative stress through activation of NF-kappa B: Antiapoptosis effect of antioxidant agents on endothelial cells. Hypertension, 2001;38(1): 48-55
    [125] Li D, Chen H, Romeo F, et al. Statins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelail cells: role of Lox-1. J Pharmacol Exp Ther, 2002;302(2): 601-605
    [126] Csiszar A, Smith KE, Koller A, Kaley G, et al. Regulation of bone morphogeneticprotein-2 expression in endothelial cells: role of nuclear factor-kappaB activation by tumor necrosis factor-alpha, H202, and high intravascular pressure, circulation, 2005;111(18): 2364-72.
    [127] Verma S, Badiwala MV, Weasel RD, et al. C-reactive protein activates the nuclear factor-kappaB signal transduction pathway in saphenous vein endothelial cells: implications for atherosclerosis and restenosis. J Thorac Cardiovasc Surg, 2003;126(6): 1886-91
    [128] Wang HR, Li JJ, Huang CX, et al. Fluvastatin inhibits the expression of tumor necrosis factor-alpha and activation of nuclear factor-kappa B in human endothelial cells stimulated by C-reactive protein. Clin Chim Acat, 2005;353(1-2): 53-60
    [129] Engelman B, Zieseniss S, Brand K, et al. Tissue factor expression of human monocytes is suppressd by lysophosphatidylcholine. Arterioscler Thromb Vase Biol, 1999;19: 47-53
    [130] Ortego M, Bustos C, Hernandez-Presa MA, et al. Atorvastatin reduces NF-kB activation and chemokine expression in vascular smooth muscle cells and mononuclear cell. Atherosclerosis, 1999;147: 253-261
    [131] Kothe H, Dalhoff K, Rupp J, et al. Hydromethylglutaryl coenzyme A reductase inhibitors modify the inflammatory response of human macrophages and endothelial cells infected with Chlamydia pneumoniae. Circulation, 2000;101: 1760-1763
    [132] Kranzhofer R, Schmidt J, PferitTer CA, et al. Angiotension induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 1999;19: 1623-29
    [133] Kranzhofer R, Browatzki M, Schmidt J, et al. Angiotensin Ⅱ activates the proinflammatory transcription factor nuclear factor-kB in human monocytes. Biochem Biophys Res Commun, 1999;257: 826-828
    [134] Wilson SH, Capice NM, Simafi RD, et al. Activated nuclear factor-kB is present in the coronary vasculature in experimental hypercholesterolemia. Atherosclerosis, 2000;148: 23-30
    [135] Yerneni KK, Bai W, Khan BV, et al. Hyperglycemia-Induced activation of nuclear transcription factor-kB in vascular smooth muscle cells. Diabetes, 1999;48: 855-864
    [136] Baenerle PA, Baltimore D. IkB: a specific inhibitor of the NF-kB transcription factor. Science, 1998;242: 540-546
    [137] Shakhow AN, Collart MA, Vassalli P, et al. kB-Type enhancers are involved in llipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor α gene in primary macrophage. J Exp Med, 1990;171: 5-47
    [138] Brand K, Page S, Rogler G, et al. Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest, 1996;97(7): 1715-22
    [139] Ritchie ME. Nuclear factor-kB selectively and markedly activated in humans with unstable anginapectoris. Circulation, 1998;98: 1707-13
    [140] Death AK, McGrath KC, Sader MA, et al. Dihydrotestosterone promotes vascular cell adhesion molecule-1 expression in male human endothelial cells via a nuclear factor-kappaB-dependentpathway. Endocrinology, 2004;145(4): 1889-97
    [141] Kilgore KS, Schmid E, Shanley TP, et al. Sublytic concentrations of the membrane attack complex of complement induce endothelial interleukin-8 and monocyte chemoattractant protein-1 through nuclear factor-kappa B activation. Am J Pathol, 1997;150(6): 2019-31
    [142] Takehana K, Konishi A, Oonuki A, et al. APC0576, a novel inhibitor of NF-kappaB-dependent gene activation, prevents pro-inflammatory cytokine-induced chemokine production in human endothelial cells. Biochem Biophys Res Commun. 2002;293(3): 945-52
    [143] Matsubara M, Hasegawa K, effects ofbenidipine, a dihydropyridine-Ca2+ channel blocker, on expression of cytokine-induced adhesion molecules and chemoattractants in human aortic endothelial cells, Eur J Pharrnacol, 2004;498(1-3): 303-14
    [144] Takehana K, Konishi A, Oonuki A, et al. APC0576, a novel inhibitor of NF-kappaB-dependent gene activation, prevents pro-inflammatory cytokine-induced chemokine production in human endothelial cells Biochem Biophys Res Commun, 2002;293(3): 945-52
    [145] Acevedo M, Tagle R, Simpfendorfer C.Non-traditional risk factor of atherosclerosis. Rev Med Chil, 2001;129: 1212-221
    [146] Sehayek E, Butbul E, Avner R, et al. Enhanced cellular metabolism of very low density lipoprotein by simvastatin: a novel mechanism of action of HNG-CoA reductase inhibitors. Eur J Clin Invest, 1994, 24: 173-178
    [147] LaRosa JC, Hunninghake D, Bush D, et al. The cholestrol facts. A summary of the evidence relating dietary fats, serum cholesterol and coronary heart disease. A joint statement by the American Heart Association and the National Heart, Lung, and Blood Institute. AHA Medical/Science Statement, Special Report. Circulation, 1990, 90: 1721-733
    [148] Carmen B, Migue A, Hema NP, et al, HMG-CoA Reductase inhibition by torvastatin reduces neointimal inflammation in a rabbit model of atherosclerosis. J Am Coll Cardiol, 1998;32(7): 2057-64
    [149] Rong L, Juntian L, Ning P, et al. Lovastatin Reduces Nuclear Factor k B Activation Induced by C-Reactive Protein in Human Vascular Endothelial Cells. Biol Pharm Bull, 2005;28(9): 1630—1634
    [150] Zapolska-Downar D, Siennicka A, Aczmarczyk M, et al. Simvastatin modulates TNFa-induced adhesion molecules expression in human endothelial cells. Life Sciences, 2004;75: 1287-1302
    [151] Vosters O, Beuneu C, Nagy N, et al. CD40 expression on human pancreatic duct cells: role in nuclear factor-kappa B activation and production of pro-inflammatory cytokines. Diabetologia, 2004;47: 660-668
    [152] Li Zhou, Jihong Dong, Miao Yu, et al. Age-dependent increase of NF-kB translocation and PDGF-B expression in aortic endothelial cells of hypercholesterolemic rats. 2003;38: 1161-1168
    [153] Zhou L, Dong JH, Yu M, et al. Detection of NF-kappaB activation and platelet-derived growth factor-B expression in endothelial cells of hypercholesterolemic rats. Zhonghua Bing Li Xue Za Zhi, 2003;32(4): 354—359
    [154] 李松,陈镜合.开心胶囊对心肌缺血大鼠血清一氧化氮的影响.广州中医药大学学报,1999;16(2):124—125
    [155] 薛军,罗小星,陈镜合.开心胶囊对糖尿病大鼠心肌缺血和内皮素的影响.新中医,1999:31(6):34—35
    [156] Cullen P, Funker H, Schulte H, et al. Lipoproteins and cardivoscular risd from genetics to CHD prevention. J Atheoscler Thromb, 1997;4(2): 51
    [157] 唐铁军,陈镜合,邓铁涛,等.开心胶囊对冠心病大鼠血脂及脂蛋白亚组分的影响.广州中医药大学学报,1999;16(3):223—227
    [158] 胡金麟.细胞流变学[M].北京,科学出版社,2001;33
    [159] Ruachitzka FT, Noll G, Luscher T F. The endothelium in coronaryartery disease. Cardiology, 1997;88(3): 3-19
    [160] Verma S, Anderson TJ. Fundamentals of endothelial function for the clinical cardiologist. Circulation, 2002;105(5): 546-549
    [161] Lamping K, Faraci F. Enhanced vasoconstrictor responses in eNOS deficient mice. Nitric Oxide, 2003;8: 207-213
    [162] Yang ZH, Diederich D, Schneider K, et al. Endothelium-derived relaxing factor and protecting against contractions induced by histamine and serotonin in the human internal mammary artery and in the saphenous vein. Circulation, 1989;80: 1041-104
    [163] Yang Z, Luscher TF. Vascular endothelium, In: Pan vascular medicine Lanzer P, Topol EJ, eds, 2002;190-204
    [164] Ozuyaman B, Godecke A, Kusters S. Endothelial nitric oxide synthase plays a minor role in inhibition of arterial thrombus formation. Thromb haemost, 2005;93(6): 1161-7
    [165] Grumbach IM, Chen W, Mertens SA. J Mol Cell Cardiol, A negative feedback mechanism involving nitric oxide and nuclear factor kappa-B modulates endothelial nitric oxide synthase transcription, 2005;39(4): 595-603
    [166] Srigiridhar K, Sadis M, Toshiyuki M, et al. upregulation of immuoproteasomes by nitric oxide: potential antioxidative mechanism in endothelial cells, free radical biology medicine, 2006;40: 1034-1044
    [167] Subodh V, Todd JA. fundamentals of endothelial function for the clinical cardiologist, circulation, 2002;105: 546-549
    [168] Gurmukh S S, Vibhuti G M, Arun P M. Role of Endothelin-1 in Genesis of Coronary Artery Disease. Indian Heart J, 2005;57(2): 121-7
    [169] Pedard M, McClure CD, Schiller NL. Release of interleukin-8, interleukin-6, and colony stimulating factors by upper airway epithelial cells: implications for cystic fibrosis. Am J Respir Cell Mol Biol 1993;9: 141-145
    [170] 黄震华.血管内皮功能与硝酸酯类药物.国外医学 内科学分册,1999;(26)10:433-437
    [171] 湖南省中医药研究所实验研究室药理组.湖南医药杂志,1976;(2):48
    [172] 廖家桢,宋崇顺,秦腊梅,等.生脉散对红细胞2.3—二磷酸甘油酸作用的初步研究.中药药理与临床,1986;2(1):257
    [173] 方文贤,宋崇顺,周立孝.医用中药药理学.北京:人民卫生出版社,1998;第一版
    [174] 刘红,川芎嗪对动脉粥样硬化家兔血清一氧化氮、血浆内皮素和脂质过氧化物的影响.湖北民族学院学报(医学版),2000;10(4):4
    [175] 李国安,贺石林,川芎嗪抗凝血酶诱导的单个细胞—血小板聚集.中国药理学通报,1990:6(5):311
    [176] 唐利龙,汪丽慧,张均华,等.川芎嗪对原代培养血管平滑肌细胞胶原基因表达的影响.中国中西医结合杂志,1995:15(11):666
    [177] 张明发.阿魏酸抗动脉粥样硬化研究进展.中草药,1990;21(1):41—43
    [178] 付蕾,石晨静.阿魏酸对人脐静脉内皮细胞产生一氧化氮的影响.河南医科大学学报,2000;35(6):522—524
    [179] 王世久,刘玉兰,宋丽艳,等.五灵脂抗血小板聚集作用的药理研究.沈阳药学院学报.1994;11(4):246
    [180] 李育浩,梁颂明.苍术的抗缺氧作用极其活性成分冲药材,1991;4(6):41
    [181] 李爱群.山楂的心血管药理作用.湖南中医杂志,1988;4(4):33
    [182] 张丽,徐也鲁,王振义.蒲黄对慢性高脂血症家兔6—酮—PGF1α、血栓素B2、总胆固醇及高密度脂蛋白胆固醇的影响.中华心血管病杂志,1986;14(5):291
    [183] 张丽,王振义,徐也鲁,高血脂症家兔TXA2、PGl2和脂质的变化及药物对其影响,中华医学杂志1986;66(11):690
    [184] 黄春林.降脂中药的探索广东医学,1984;5(1):21。
    [185] 王世久,刘玉兰,宋丽艳,等.五灵脂抗血小板聚集作用的药理研究.沈阳药学院学报,1994;11(4):246
    [186] 王世久,刘玉兰,宋丽艳,等,五灵脂抗血小板聚集作用的药理研究.沈阳药学院学报,1994;11(4)246—250
    [187] 唐铁军,别平华,陈镜合.开心胶囊对大鼠血管壁PDGF-B及其受体mRNA表达的影响.中药药理与临床,2000;16(1):57-58
    [188] 吕忠智,张清兰,于晓凤,等.西洋参茎叶皂苷对家兔实验性心肌梗塞的保护作用.白求恩医科大学学报,1990;19(3):229-231
    [189] 张晶,孙静平,何静彬,等.人参提取液对心肌缺血再灌注损伤的研究冲华内科 杂志,1990;29(11):653—655
    [190] 杨世杰,曲极冰,钟国赣,等.西洋参茎叶皂苷对大鼠培养心肌细胞氧化损伤的保护作用.中国中药杂志,1991;17(9):555
    [191] 睢大员,陈满秋,于小凤,等.人参Rb组皂苷对犬实验性心肌梗死的保护作用.中草药,2001;32(2):136
    [192] 汪德清,沈文梅,田亚平,等.黄芪有效成分对氧自由基清除作用ESR研究.生物化学与生物物理进展,1996;23(3):260
    [193] 张灼,陈立新,秦腊梅,等.黄芪皂甙对大鼠心肌缺血—再灌注损伤血流动力学和氧自由基的影响.中国中医药信息杂志,2000;7(3):743
    [194] 陈立新.黄芪对急性心肌梗塞患者心功能和氧自由基的影响及强心机制探讨.中国中西医结合杂志,1995;15(3):141
    [195] 陈敏,杨正苑,朱寄天,等.麦冬总皂甙抗心律失常作用极其电生理特性.中国药理学报,1990;(2):161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700