用户名: 密码: 验证码:
空中炸药爆炸后冲击波传播及球壳动力不稳定性数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,爆炸在国防工业、国民经济建设中应用愈来愈广泛,近年来,各类建筑结构与工业产品在爆炸载荷作用下动力响应已经越来越受到人们的重视,结构的动态响应也是固体力学领域内一个重要的内容。结构的反直观现象是一种特殊的动力响应,即结构受瞬时强动载荷作用时,其最终的变形与载荷作用方向相反。
     自从20世纪80年代著名学者P. S. Symonds等在研究冲击载荷作用下两端铰支梁的动力响应时发现了反直观现象后,愈来愈多的科技人员给予了关注并进行了相关的研究,在脉冲载荷,弹体冲击,爆炸载荷等方式作用下结构都可能出现反直观现象,这在数值模拟与实验中都得到了证实。在相关研究中,人们很少考虑炸药形状对爆炸冲击波的影响,球壳在爆炸载荷下反直观响应也是研究甚少。
     本文首先对结构反直观行为与近年来关于爆炸方面的模拟情况进行了综述,描述了爆炸过程中的物理化学现象,介绍了任意拉格朗日与欧拉(ALE)算法特点。运用数值模拟的方法做了以下工作:
     1、对比了爆炸冲击波超压峰值的几个经验公式,在比距离Z较大时,数值模拟与经验公式比较符合。对几种形状炸药在空气中起爆后爆炸冲击波传播进行了数值模拟,对比了几种形状炸药起爆后传播特性以及在两个垂直方向超压峰值,炸药起爆后在较大表面的法线方向具有较大的冲量且传播速度较快。
     2、研究了相同质量的几种形状炸药起爆后对球壳的动力响应,得到了各种形状炸药起爆后产生的超压峰值与冲量,同等质量的炸药,长方体炸药产生的产生冲量与超压峰值最大,球体炸药产生的最小,这与文献给出实验结果是一致的。
     3、运用ALE流固耦合方法对炸药起爆后球壳动力响应进行了数值模拟,得到了球壳在爆炸载荷下产生反直观现象的爆心距区域。数值模拟结果表明,球壳的矢高与壳厚对反直观影响较大。给出了炸药起爆后爆轰产物的扩散示意图,研究了空气中的超压分布。对比了球壳附近某些点的压力时程曲线,球壳前方区域会出现两次峰值,可以得到球壳对爆炸冲击波有反射作用。
     本文最后分别从动态内力耦合,塑性变形,能量转换等方面说明了产生反直观现象的特点,阐释了球壳产生反直观现象的机理。
As science and technology develop,explosions are used more and more widely in national defense industry and economy. In recent years, dynamic responses of building structural and industrial products under blast loading have got more attention. Structural dynamic response is also one of important sides of solid mechanics. Counter-intuitive dynamic response is a special dynamic response, that is, structural final deformation is opposite to the direction of loading when under short-term impulsive loading.
     Since 1980s, P.S. Symonds and other scientists found the counter-intuitive response of beam when they studied dynamic response of beam supported by both hinged ends. More and more scientists pay close attention to the research. The structural counter-intuitive may occur under implusive loading (blast loading), projectiles (bullets shock) or explosive loading (pulse loading). And this has been confirmed in numerical simulation and experiments. But in related studies researchers rarely consider the influence of the shape of explosive on shock wave and pay little attention to the counter-intuitive response of spherical shells under explosive loading.
     In this paper, the structural counter-intuitive behaviour and simulations of blast shock in recent years are reviewed. Physical and chemical phenomena in the process of explosion are described. Then some theories of the finite element method and the ALE algorithm are introduced. At the same time, the following work is done with numerical simulation method:
     1、Comparing the peak blast overpressure of several empirical formula, It is considered that when the distance is larger than distance Z, the results of numerical simulation are more in line with empirical formula.The blast wave propagation is researched with numerical simulation after the detonation of explosives with different shapes in the air. The detonation propagation characteristics and two vertical peak overpressures are compared among several forms of explosives. After detonation explosives have larger impulse on larger surface in normal direction and spread faster.
     2、The dynamic response of forms of explosives with the same quality to spherical shell are studied. The peak overpressure and impulse are reached. To the same quality explosive, rectangular explosives produce the largest impulse and overpressure, but ball explosives produce the smallest impulse and overpressure, this document presents the experiment results are consistent.
     3、ALE arithmetic are used for numerical simulation on dynamic response of spherical shell after detation of explosives. And the blasting distance area of spherical shell, which is under explosive load and produces counter-intuitive phenomenon, is obtained. Results of numerical simulation show that the height and thickness of spherical shell have greater influence on counter-intuitive phenomenon. Meanwhile, the diagram of proliferation of detonation products is gained, and the distribution of air overpressure is researched. Then, comparisions are done among pressure-time curves of some points near spherical shell. There are two peaks in front region of spherical shell. It is reached that spherical shell has reflection on shock wave.
     Finally, the phenomenon of counter-intuitive is explained individually from the perspectives of dynamic coupling, plastic deformation, energy transformation, etc. The mechanism interpreting the reasons for the phenomenon of shell counter-intuitive is also presented.
引文
[1]周听清.爆炸动力学及其应用.[M].合肥:中国科学技术大学出版社,2001.
    [2]中国大百科全书.力学.[M].北京:中国大百科全书出版社,1985.
    [3]李翼祺,马素贞.爆炸力学. [M].北京:科学出版社,1992.
    [4]李晓军,燕志良,谢中锋.反爆炸恐怖防护的基本思考.[C].中国土木工程学会防护工程分会第九次学术年会论文集,2004.1446~1451.
    [5]龚敏.爆炸冲击作用下多层框架结构的动力特性与毁伤效应研究[D].武汉:武汉理工大学,2007.
    [6] Ross C A, Strickl and W S, Sierakowski R L. Response and failure of simple structural elements subjected to blast loading.[J]. Shock Vibration Digest,1977,9(12):15-16.
    [7] Lavrentiev M.A. and shabat B.V. Problems of Hydrodynamics and Their Models. [J]. Nauka. Moscow, 1977(inRussin).
    [8] Genna F, Symonds P S. Dynamic plastic instabilities in response to short-pulse excitation : effects of slenderness ratio and damping[A] . Proceedings of Royal Society of London[C]. London: Printed in Great Britain, A417 ,1988.
    [9] Symonds P S, YU Tong-xi. Counterintuitive behavior in a problem of elastic-plastic beam dynamics[J]. Journal of Applied Mechanics, 1989, 52:517-522.
    [10]Borino G, Perego U, Symonds P.S. An energy approach to anomalous damped elastic-plastic response to short pulse loading [J]. Journal of Applied Mechanics , 1991 , 56:430-438.
    [11]Lee J Y, Symonds P.S, Borino G. Chaotic response of a two-degree-of-freedom elastic-plastic beam model to short pulse loading [J]. Journal of Applied Mechanics ,1992 ,59:711-721.
    [12]Qian Yin, Symonds,P.S. Anomalous dynamic elastic-plastic response of a Galerkin beam model,Int.J.Mech.Sci.,1996,38:687-708.
    [13]张年梅.弹塑性系统的混沌运动研究[D].太原:太原工业大学,1997.
    [14]席丰,杨嘉林,黎在良.再访结构弹塑性动力响应的异常行为[J].固体力学学报,1999,20(2):113 -122.
    [15]李海旺,秦冬祺.载荷作用方式及范围对简支圆板反常直观行为的影响[J].爆炸与冲击,2005,25(1):35-40.
    [16]吴桂英,秦冬祺,杨桂通.冲击荷载作用下弹塑性板的反常动力响应研究[J].爆炸与冲击,2003,23 (5):420-424.
    [17]吴桂英,秦冬祺,杨桂通.在冲击荷载作用下弹塑性圆板的反直观动力行为数值分析[J]固体力学学报,2004,25 (4):389-393.
    [18]吴桂英,杨桂通.考虑材料硬化时弹塑性方板受脉冲载荷作用的反常动力行为.第三届全国爆炸力学会议,计算爆炸力学与进展,2006:267-270.
    [19]Moessner,J.R.,Snap-back of a clamped beam loaded impulsively, Laboratory Project No45, Department of mechanical Engineering,University of Cape Tome,South Aftica,October 1984.
    [20]吴桂英,赵勇刚,赵隆茂等.圆板动力反直观行为实验研究[J].爆炸与冲击,2006,2(2):121-124.
    [21]吴桂英,李鑫,周稳等.铝合金圆板受空中爆炸冲击波作用时反直观动力响应的数值模拟与实验研究[C].第九届全国冲击动力学学术会议论文集,2009,597-601.
    [22]吴开腾.挡墙对爆炸形成的空气冲击波防护效应的三维数值模拟研究[J].内江师范学院学报,2003,18(2):5-11.
    [23]Alex M. Remennikov, Timothy A. Rose. Modelling blast loads on buildings in complex city geometries[J].Computers and Structures,2005(83):2197-2205.
    [24]李卫平,王少龙,汪德武等.基于ALE算法的爆破战斗部爆炸效应数值模拟研究[J].含能材料, 2006,14(2):105-107.
    [25]都浩,李忠献,郝洪.建筑物外部爆炸超压荷载的数值模拟[J].解放军理工大学学报(自然科学版),2007.10,8(5):413-418.
    [26]王可强,苏经宇,王志涛.爆炸冲击波在建筑群中传播规律的数值模拟研究[J].中国安全科学学报,2007,17(10):121-127.
    [27]杨鑫,石少卿,程鹏飞等.爆炸冲击波在空气中传播规律的经验公式对比及数值模拟[J].四川建筑,2007.10,27(5):71-73.
    [28]李秀地,郑颖人.装药长径比对坑道中冲击波峰值压力影响的试验[J].解放军理工大学学报(自然科学版),2007,8(6):573-576.
    [29]李忠献,师燕超,周浩璋等.城市复杂环境中爆炸波的传播规律与超压荷载[J].工程力学,2009.6,26(6):178-183.
    [30]卢红琴,刘伟庆.空中爆炸冲击波的数值模拟研究[J].武汉理工大学学报,2009.10,31(19):105-108.
    [31]恽寿榕,赵衡阳.爆炸力学[M].北京:国防工业出版社,2005.
    [32]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显式动力分析[M].北京:清华大学出版社,2005.
    [33]李裕春,时党勇,赵远. ANSYS 11.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2008.
    [34]赵海鸥.LS-DYNA动力分析指南[M].上海:兵器工业出版社,2003.
    [35]张雄,陆明万,王建军.任意拉格朗日—欧拉描述法研究进展[J].计算力学学报,1997,14(1):91-102.
    [36]Noh W F. CEL: A time-dependent two-space-dimensional coupled Eulerian-lagrangian code, in:B. Alder, S. Fernbach and M. Rotenberg, eds. Method s in Computational Physics 3, (Academic press, New York, 1964)
    [37]Belytschko T, Kennedy J M. Computer models for subassembly simulation[J].Nuclear Engineering Design,1978,49(3).
    [38]HughesT J,LiuW K, Zinnerman TK. Lagrangian-Eulerian finite element method for incompressible viscous flows[J].Comput Meths Appl Mech Engrg, 1981,29(2).
    [39]徐加初,杨增涛.爆炸冲击下复合材料层合扁球壳的动力屈曲[J].爆炸与冲击, 2007,27(2):116-120.
    [40]李维新.一维不定常流与冲击波[M].北京:国防工业出版社,2003.
    [41]陈新华,聂万胜.液体推进剂爆炸危害性评估方法及应用[M].北京:国防工业出版社,2005.
    [42]亨利奇J .爆炸动力学及其应用[M] .熊建国,译.北京:科学出版社,1987.
    [43]US Department of Army Technical Manual (TM5-1300), Design of structures to resist the effects of accidental explosions [S]. Washington, DC, 1990.
    [44]US Department of Army Technical Manual (TM5-855-1), Fundamentals of protective design for conventional weapons [S]. Washington, DC, 1986.
    [45]杨鑫,石少卿,程鹏飞.空气中TNT爆炸冲击波超压峰值的预测及数值模拟[J].爆破,2008.3,25(1):15-18.
    [46]叶晓华.军事爆破工程[M].熊建国,译.北京:解放军出版社,1999.
    [47]Remennikov A M, Timothy A R. Modeling blast loads on buildings in complex city geometries [J]. Computers and Structures, 2005, 83(27): 2197-2205.
    [48]Rose T A, Smith P D. Influence of the principal geometrical parameters of straight city streets on positive and negative phase blast wave impulses [J]. International Journal of Impact Engineering, 2002, 27(4): 359-376.
    [49]Smith P D, Rose T A. Blast wave propagation in city streets―An overview [J]. Progress in Structural Engineering and Materials, 2006, 8(1): 16-28.
    [50]LS-DYNA. Keyword user’s manual [M].California: Livermore Software Technology Corporation, 2006.
    [51]Smith P D, Whalen G P, Feng L J. Blast loading on buildings from explosions in city streets [J]. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2001, 146(1): 47-55.
    [52]张挺.爆炸冲击波测量技术(电测法)[M] .北京:国防工业出版社,1984.
    [53]朱浩,朱亮,陈剑虹.应力三轴度和应变率对6.63铝合金力学性能的影响及材料表征.材料科学与工程学报,2007,25(3):358-362.
    [54]杨桂通.弹塑性动力学基础[M] .北京:科学出版社,2008.
    [55]恽寿榕,涂侯杰,梁德寿等.爆炸力学计算方法[M] .北京:北京理工大学出版社,1995.
    [56]薛守义.弹塑性力学[M] .北京:中国建材工业出版社,2005.
    [57]杨桂通.弹塑性系统动力行为探讨.[C].郑哲敏文集. 2004.181~185.
    [58]杨桂通.冲击载荷作用下弹塑性系统最终变形不确定性分析.[C].昆明.第七届全国冲击动力学讨论会文集. 2005.10~16.
    [59]杨桂通.弹塑性系统的异常动力行为.[C].上海.第九届全国现代数学和力学学术会议,2004.164~169.
    [60]吴桂英,杨桂通.考虑材料硬化时弹塑性方板受脉冲载荷作用的反常动力行为.[C].青岛.第三届全国计算爆炸力学学术会议,2006.367~270.
    [61]张年梅,杨桂通.非线性弹性和弹塑性结构的奇异动力行为.[C].上海.固体力学会议论文集,2002.1~9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700